CORRIGENDUM

5-Hydroxy-5,6-dihydro-apo-4,4'-lycopene and methyl 5-hydroxy-5,6-dihydro-apo-4,4'-lycopenoate, novel C₃₀-carotenoids produced by a mutant of marine bacterium *Halobacillus halophilus*

Ayako Osawa, Yoko Ishii, Nao Sasamura, Marie Morita, Saskia Köcher, Volker Müller, Gerhard Sandmann and Kazutoshi Shindo

The Journal of Antibiotics (2014) 67, 733-735; doi:10.1038/ja.2014.53

Correction to: The Journal of Antibiotics (2010) 63: 291–295; doi:10.1038/ja.2010.33; published online 23 April 2010

The authors of the above Article noted an error in publication of this paper in Figures 1–3 and Table 1. The corrected figures and table are

shown below. Reflecting this correction, title of the article has been changed. Authors would like to apologize for the inconvenience caused.

5-hydroxy-5,6-dihydro-apo-4,4'-lycopene (1)

methyl 5-hydroxy-5,6-dihydro-apo-4,4'-lycopenoate (2)

Figure 1 The structure of carotenoids 1 and 2 produced by mutant OC1 (a mutant of *H. halophilus*), and methyl 5-glucosyl-5,6-dihydro-apo-4,4'-lycopenoate produced by *H. halophilus*.

Corrigendum

methyl 5-hydroxy-5,6-dihydro-apo-4,4'-lycopenoate (2)

Figure 2 Key ${}^{1}H{}^{-13}C$ long-range couplings, J values, and δ_{c} values observed in the NMR analyses of 1 and 2.

Figure 3 Proposed biosynthetic pathway of methyl 5-glucosyl-5,6-dihydro-apo-4,4'-lycopeonate in H. halophilus DSM2266.

7	3	5

	1		2		2 Peracetate	
Position	δ _Η	δ _C	δ _Η	δ _C	δ _Η	δ _C
4	1.24 (3H, s)	29.2 (CH ₃)	1.24 (3H, s)	29.3 (CH ₃)	1.17 (3H, s)	26.6 (CH ₃)
5		71.0 (C)		71.0 (C)		78.8 (C)
6	2.31 (2H, d, 7.4)	47.5 (CH ₂)	2.32 (2H, d,7.4)	47.5 (CH ₂)	2.24 (1H, dd, 7.9, 13.8) 2.42 (1H, dd, 7.4, 13.8)	45.9 (CH ₂)
7	5.76 (1H, ddd, 7.4, 7.4, 15.7)	124.5 (CH)	5.78 (1H, ddd, 7.4, 7.4, 15.7)	124.6 (CH)	5.72 (1H, ddd, 7.4, 7.9, 15.1)	125.2 (CH)
8	6.21 (1H, d, 15.7)	138.8 (CH)	6.21 (1H, d, 15.2)	138.8 (CH)	6.13 (1H, d, 15.1)	137.9 (CH)
9		135.0 (C)		135.0 (C)		135.5 (C)
10	6.14 (1H, d, 11.4)	131.2 (CH)	6.14 (1H, d, 10.9)	130.9 (CH)	6.08 (1H, d, 11.3)	130.9 (CH)
11	6.61 (1H, dd, 11.4, 15.2)	124.9 (CH)	6.62 (1H, dd, 10.9, 15.2)	125.1 (CH)	6.63 (1H, dd, 11.3, 14.4)	125.0 (CH)
12	6.35 (1H, d, 15.2)	137.8 (CH)	6.36 (1H, d, 15.2)	137.6 (CH)	6.35 (1H, d, 14.4)	137.4 (CH)
13		136.2 (C) ^a		136.3 (C) ^a		136.0 (C) ^a
14	6.25 (1H, d, 10.3)	132.7 (CH) ^a	6.24 (1H, d, 10.3)	132.5 (CH)	6.26 (1H, d, 9.7)	132.5 (CH)
15	6.63 (1H, dd, 10.3, 15.2)	130.0 (CH) ^a	6.65 (1H, dd, 10.3, 15.2)	131.2 (CH)	6.65 (1H, dd, 9.7, 15.2)	130.8 (CH)
18	1.24 (3H, s)	29.2 (CH ₃)	1.26 (3H, s)	29.5 (CH ₃)	1.19 (3H, s)	25.6 (CH ₃)
19	1.93 (3H, s)	13.0 (CH ₃)	1.94 (3H, s)	13.0 (CH ₃)	1.91 (3H, s)	13.0 (CH ₃)
20	1.97 (3H, s)	12.8 (CH ₃)	1.98 (3H, s)	12.8 (CH ₃)	1.98 (3H, s)	12.8 (CH ₃)
4′	1.82 (3H, s)	26.3 (CH ₃)		169.0 (C)		169.1 (C)
5′		135.8 (C)		125.7 (C)		125.7 (C)
6′	5.94 (1H, d, 10.8)	126.1 (CH)	7.30 (1H, d, 12.3)	139.1 (CH)	7.30 (1H, d, 11.3)	139.1 (CH)
7′	6.47 (1H, dd, 10.8, 15.9)	124.7 (CH)	6.52 (1H, dd, 12.3, 15.0)	122.9 (CH)	6.51 (1H, dd, 11.3, 15.1)	122.9 (CH)
8′	6.21 (1H, d, 15.9)	135.0 (CH)	6.66 (1H, d, 15.0)	144.2 (CH)	6.62 (1H, d, 15.1)	144.2 (CH)
9′		136.6 (C) ^a		135.2 (C) ^a		135.1 (C)
10′	6.18 (1H, d, 12.0)	131.4 (CH)	6.32 (1H, d, 11.9)	136.2 (CH)	6.35 (1H, d, 11.4)	136.2 (CH)
11'	6.63 (1H, m)	125.2 (CH)	6.63 (1H, dd, 11.9, 15.2)	125.1 (CH)	6.63 (1H, dd, 11.4, 15.0)	125.0 (CH)
12′	6.35 (1H, d, 15.2)	137.3 (CH)	6.45 (1H, d, 15.2)	139.9 (CH)	6.45 (1H, d, 15.0)	139.9 (CH)
13′		136.3 (C) ^a		136.0 (C)		137.0 (C) ^a
14′	6.25 (1H, d, 12.0)	132.5 (CH) ^a	6.29 (1H, d, 11.0)	134.1 (CH)	6.31 (1H, d, 11.4)	134.1 (CH)
15′	6.63 (1H, dd, 12.0, 15.2)	130.2 (CH) ^a	6.63 (1H, dd, 11.0, 15.2)	129.9 (CH)	6.63 (1H, dd, 11.4, 15.2)	129.9 (CH)
18′	1.82 (3H, s)	18.6 (CH ₃)	2.00 (3H, s)	12.8 (CH ₃)	2.00 (3H, s)	12.8 (CH ₃)
19′	1.97 (3H, s)	13.0 (CH ₃)	2.00 (3H, s)	12.8 (CH ₃)	2.00 (3H, s)	12.8 (CH ₃)
20′	1.97 (3H, s)	12.8 (CH ₃)	2.00 (3H, s)	12.8 (CH ₃)	1.98 (3H, s)	12.8 (CH ₃)
COOCH ₃			3.77 (3H, s)	51.8 (CH ₃)	3.77 (3H, s)	51.7 (CH ₃)
1''					4.69 (1H, d, 7.8)	93.4 (CH)
2''					4.98 (1H, dd, 7.8, 9.5)	71.6 (CH)
3′′					5.24 (1H, dd, 9.0, 9.5)	73.1 (CH)
4''					5.04 (1H, dd, 9.0, 10.0)	68.9 (CH)
5''					3.68 (1H, ddd, 1.5, 5.8, 10.0)	71.6 (CH)
6''					4.10 (1H, dd, 1.5, 12.1)	62.5 (CH ₂)
					4.22 (1H, dd, 5.8, 12.1)	
					4.22 (1H, dd, 5.8, 12.1)	

Table 1 ¹H and ¹³C NMR data for 5-hydroxy-5,6-dihydro-apo-4,4'-lycopene (1), methyl 5-hydroxy-5,6-dihydro-apo-4,4'-lycopenoate (2) and 2 peracetate [9] in CDCl₃

 ^{13}C signals of acetyl groups in **2** peracetate were observed at $\delta\!=\!20.6\text{--}20.7$ (CH₃) and $\delta\!=\!169.0\text{--}170.6$ (C=0). ^aInterchageable.