NOTE

Two new α -class milbertycin metabolites from mutant *Streptomyces avermitilis* NEAU1069-3

Lian-jie Li¹, Dan Zhou¹, An-liang Chen², Jun Huang³, Hui Zhang³, Ji-dong Wang^{2,3} and Wen-sheng Xiang¹

The Journal of Antibiotics (2015) 68, 354–356; doi:10.1038/ja.2014.159; published online 26 November 2014

Microbial metabolites attract increasing attention as potential pesticides owing to their potential bioactivity and low toxicity to non-target animals and humans.^{1,2} Several microbial metabolites, such as avermectins, milbemycins, have been commercialized and considered to be the most widely used drugs in animal health and agriculture.³ During the course of the screening program for new natural pesticides and antiparasitic veterinary drugs, two novel macrocyclic lactones, three milbemycins and six new doramectin congeners have been isolated from Streptomyces avermitilis NEAU1069.4-7 To screen for more bioactive compounds, a mutant S. avermitilis NEAU1069-3 was obtained by UV treatment and two new doramectin analogs were isolated from its fermentation broth.8 In further work to explore the chemical diversity of the constituent of S. avermitilis NEAU1069-3, two new α -class milberrycins, 23, 24-didehydro-13 α -hydroxy milbemycin A₃ (1) and 24, 30-didehydro- 13α -hydroxy milbemycin A₃ (2) were isolated from the broth of S. avermitilis NEAU1069-3. Herein, we describe the fermentation, isolation, structural elucidation and insecticidal activity of the two new α -class milberrycins.

The culture and fermentation of S. avermitilis NEAU1069-3 were conducted according to the procedure as described previously.⁶ Thirty liters of broth from 300×100 ml fermentations was filtered. The resulting cake was washed with water, and both filtrate and wash were discarded. Methanol (101) was used to extract the washed cake. The MeOH extract was evaporated under reduced pressure to 21 at 45 °C and the resulting concentrate was extracted three times using an equal volume of EtOAc. The combined EtOAc phase was concentrated under reduced pressure to yield 26 g of oily substances. The residual oily substance was chromatographed on silica gel (Qingdao Haiyang Chemical Group, Qingdao, China; 100-200 mesh) and eluted with a petroleum ether-acetone mixture (100:0-50:50, v/v). The fractions eluted with petroleum-acetone mixture (85:15, v/v) were combined and evaporated to obtain fraction I and the fractions eluted with the petroleum ether-acetone mixture (80:20, v/v) were pooled and concentrated to give fraction II. The fraction I was subjected to Sephadex LH-20 (GE Healthcare, Glies, UK) column eluting with MeOH to give subfraction I. The semi-preparative HPLC (Agilent 1100, Zorbax SB-C18, 5 µm, 250 × 9.4 mm i.d.; Agilent, Palo Alto, CA, USA) was applied to obtain pure compounds. The eluates were monitored using a photodiode array detector at 254 nm, and the flow rates were 1.5 ml min⁻¹ at room temperature. The subfraction I was further separated by semi-preparative HPLC using a solvent containing a CH₃OH-CH₃CN-H₂O mixture (72:7:21, v/v/v) to obtain compound 1 (t_R 17.3 min, 12 mg) and the fraction II was subjected to Sephadex LH-20 column eluting with MeOH to give subfraction II and the subfraction II was purified by the semi-preparative HPLC using a solvent containing a CH₃OH-CH₃CN-H₂O mixture (69:24:7, v/v/v) to obtain compound 2 (t_R 30.1 min, 8 mg).

Compound 1 was isolated as colorless oil with $[\alpha]_D^{25}$ 43.3 (c 0.03, EtOH) and UV (EtOH) λ_{max} nm (log ϵ): 245 (4.01). The positive HRESIMS showed a pseudo molecular ion at *m/z* 565.2759 (M+Na)⁺, corresponding to the molecular formula C₃₁H₄₂O₈ that required 11 degrees of unsaturation. The IR spectrum of 1 showed absorption bands assignable to the hydroxyl group (3400 cm⁻¹) and carbonyl group (1710 cm⁻¹). The ¹H NMR spectrum of 1 showed two doublet aliphatic methyl signals at $\delta_{\rm H}$ 1.15 (3H, d, J=7.0 Hz), 1.24 (3H, d, J = 6.7 Hz), three olefinic methyl signals at $\delta_{\rm H}$ 1.52 (3H, br s), 1.61 (3H, br s), 1.79 (3H, br s) and one trans-double bond at $\delta_{\rm H}$ 5.73 (1H, dd, J = 14.9, 9.8 Hz) and 5.93 (1H, dd, J = 14.9, 11.2 Hz). Inspection of the ¹³C NMR (DEPT) and HMQC spectra revealed the existence of an ester carbonyl at $\delta_{\rm C}$ 171.7 (s), a ketal at $\delta_{\rm C}$ 96.7 (s), six oxygenated methines at $\delta_{\rm C}$ 80.7 (d), 76.7 (d), 68.5 (d), 68.1 (d), 67.7 (d) and 67.0 (d), two aliphatic methines at $\delta_{\rm C}$ 45.8 (d), 40.2 (d), one oxygenated quaternary carbon at $\delta_{\rm C}$ 80.4 (s), one oxygenated methylene at $\delta_{\rm C}$ 67.4 (t), five methyls at $\delta_{\rm C}$ 18.9 (q), 18.9 (q), 18.4 (q), 18.3 (q) and 13.7 (q) in addition to four aliphatic methylenes and ten sp² carbons. Comparison of the ¹H NMR data (Table 1) of 1 with those of the milbemycin A3 suggested that 1 was similar to milbemycin A_3^9 . The differences between 1 and milberrycin A_3 were that 1 contained a double bond at C-23 and C-24 and a hydroxy group at C-13. The ¹H-¹H COSY correlation of $\delta_{\rm H}$ 4.19 and $\delta_{\rm H}$ 2.59, and the

¹Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin, China; ²Provincial Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang Agricultural and Forestry University, Lin'an, China and ³Department of New Drug Screening, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, China Correspondence: Dr J-D Wang, Department of New Drug Screening, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China. E-mail: jdwang@hisunpharm.com

or Professor W-S Xiang, Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China. E-mail: xiangwensheng@neau.edu.cn

Received 21 July 2014; revised 14 October 2014; accepted 27 October 2014; published online 26 November 2014

Table 1 $\,^1\text{H}$ and ^{13}C NMR data of compounds 1 and 2

Position	δ_H (J in Hz)		δ_{C}	
	1	2	1	2
1			171.7 (s)	173.6 (s)
2	3.20 br s	3.26 br s	45.8 (d)	45.7 (d)
3	5.37 br s	5.39 br s	118.4 (d)	118.1 (d)
4			136.7 (s)	137.8 (s)
5	4.19 br s	4.29 br s	67.7 (d)	67.7 (d)
6	3.80 br s	3.97 d (6.2)	80.7 (d)	79.1 (d)
7			80.4 (s)	80.2 (s)
8			140.5 (s)	140.0 (s)
9	5.83 br d (11.2)	5.81 d (10.4)	120.2 (d)	120.3 (d)
10	5.93 dd (14.9, 11.2)	5.75 dd (14.8, 10.4)	124.8 (d)	124.8 (d)
11	5.73 dd (14.9, 9.8)	5.70 dd (14.8, 9.8)	137.1 (d)	136.9 (d)
12	2.59 m	2.53 m	40.2 (d)	40.2 (d)
13	4.19 br s	4.02 br s	76.7 (d)	77.6 (d)
14			139.1 (s)	138.7 (s)
15	5.53 br t (8.0)	5.39 m	117.3 (d)	117.2 (d)
16	2.23 m	2.34 m	34.0 (t)	34.2 (t)
17	3.77 m	3.71 m	68.5 (d)	67.9 (d)
18	1.92 m	1.82 m	36.3 (d)	36.7 (t)
	0.85 t (12.2)	0.87 q (12.2)		
19	5.11 m	5.39 m	68.1 (d)	68.3 (d)
20	2.21 m	2.00 m	40.9 (t)	40.6 (t)
	1.29 t (12.0)	1.37 t (11.9)		
21			96.7 (s)	97.9 (s)
22	1.97 m	1.64 m	35.7 (t)	37.2 (t)
	2.17 m			
23	5.29 m	2.59 m	116.2 (d)	28.6 (t)
24		2.21 m	134.6 (s)	147.2 (s)
25	4.11 m	4.14 q (6.4)	67.0 (d)	66.3 (d)
26	1.79 br s	1.87 br s	18.9 (q)	19.9 (q)
27	4.64 dd (14.4, 2.1)	4.66 dd (14.6, 2.2)	67.4 (t)	68.5 (t)
	4.57 dd (14.4, 2.1)	4.70 dd (14.6, 1.8)		00.0 (1)
28	1.15 d (7.0)	1.18 d (7.0)	18.9 (q)	19.1 (q)
29	1.52 br s	1.54 br s	13.7 (q)	14.6 (q)
30	1.61 br s	4.79 d (4.6)	18.3 (q)	106.9 (t)
31	1.24 d (6.7)	1.30 d (6.4)	18.4 (q)	17.4 (q)

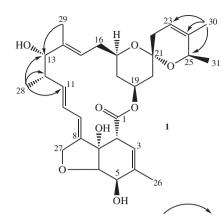
observed HMBC correlation from H₃-30 to $\delta_{\rm C}$ 116.2 (C-23), $\delta_{\rm C}$ 135.6 (C-24) and $\delta_{\rm C}$ 62.0 (C-25) and from H₃-28 and H₃-29 to $\delta_{\rm C}$ 76.7 (C-13) further confirmed the structural assignment of **1**. As a result, the gross structure of **1** was established as shown in Figure 1. The small coupling constant of H-13 (1H, br s) compared with that of doramectin¹⁰ indicated that the 13-hydroxy was α -oriented. The other relative stereochemistry of **1** was assigned by analogy with milbemycin A₃.

Compound **2** was isolated as colorless oil with $[\alpha]_D^{25}73.3$ (*c* 0.03, EtOH) and UV (EtOH) λ_{max} nm (log ε): 245 (4.29). It's molecular formula was determined to be $C_{31}H_{42}O_8$ on the basis of HRESIMS at m/z 565.2743 [M+Na]⁺ (cald 565.2772 for $C_{31}H_{42}NaO_8$), indicating 11 degrees of unsaturation. The IR spectrum of **2** showed absorption bands assignable to the hydroxyl group (3400 cm⁻¹) and carbonyl group (1730 cm⁻¹). The ¹H NMR spectrum of **2** showed one transdouble bond at δ_H 5.75 (1H, dd, J=14.8, 10.4 Hz) and 5.70 (1H, dd, J=14.8, 9.8 Hz), two olefinic methyls at δ_H 1.54 (3H, br s), 1.87 (3H, br s), two aliphatic doublet methyls at δ_H 1.18 (3H, d, J=7.0 Hz) and

1.30 (3H, d, J=6.4 Hz). The ¹³C NMR and DEPT spectra of **2** displayed an ester carbonyl at $\delta_{\rm C}$ 173.6 (s), a ketal carbon at $\delta_{\rm C}$ 97.9 (s), four *sp*² quaternary carbons, five *sp*² methines, one *sp*² methylene, one oxygenated quaternary carbon, six oxygenated methylene, in addition to two aliphatic methylenes and four methyls. Detailed analysis of the ¹H and ¹³C NMR data of **2** (Table 1) suggested that **2** has a same scaffold as **1**, except the $\Delta^{23,24}$ olefin in **1** was disappeared and a $\Delta^{24,30}$ olefin was present in **2**. The downfield ¹³C NMR chemical shift at C-30 ($\delta_{\rm C}$ 106.9) and the HMBC correlations (Figure 1) from $\delta_{\rm H}$ 4.79 to $\delta_{\rm C}$ 28.6 (t, C-23), 147.2 (s, C-24) and 66.3 (d, C-25) and from $\delta_{\rm H}$ 1.30 (3H, d) to 147.2 (s, C-24) and 66.3 (d, C-25) further confirmed the structural assignment of **2** as shown in Figure 1. The relative stereochemistry of **2** was assigned by analogy with **1**.

The insecticidal activities of compounds 1 and 2 against *Brevicoryne* brassicae (L.) were tested by the leaf dip method and the insecticidal capacities of the two compounds were compared with milbemycin A_3/A_4 . In this technique, the aphids were collected from insecticide-

New α -class milbemycin from S. avermitilis L-j Li et al



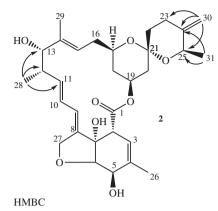

Figure 1 Structures and key HMBC correlations of compounds 1 and 2.

Table 2 Insecticidal activities of compounds 1 and 2 against Brevicoryne brassicae

Compound	Ŷ	IC ₅₀ (mg l ^{−1})	Coefficient correlation	95% Confidence interval
1 2 Milbemycins A ₃ /A ₄ ^a	5.4063+1.3447X 5.3108+1.2708X 5.0878+1.4836X	0.5694	0.9928 0.9972 0.9945	0.41–0.61 0.46–0.71 0.7–1.09

^aMilbemycins A₃ and A₄ mixtures, 30:70 (in volume).

free flowering-Chinese cabbage and reared at room temperature. Serial dilutions (five concentrations) of each compound were prepared in distilled water for use in the bioassays. Leaf discs with a diameter of ~ 35 mm were prepared from cabbage leaves and dipped for 30s in various concentrations of each test material. Leaf discs dipped only in distilled water served as controls. The dried leaf discs were then transferred to Petri dishes and 80–90 aphids were released in each dish. The mortality was recorded after 24 h. The mortality of the treated compound was corrected using the control mortality and the corrected data were used to calculate LC₅₀ values. The bioassays were performed simultaneously on three replicates for each concentration. The bioassay results (Table 2) demonstrated that compounds 1 and 2 have good aphidicidial activities and would be a potential insecticide

ACKNOWLEDGEMENTS

This research work was financially supported by the Special Program for the Science and Technology Plan of Zhejiang Province of China, under Grant No. 2012C03006-2, the National Key Project for Basic Research (2010CB126102) and the National Natural Science Foundation of China (30771427 and 31000884).

- Tanaka, Y. & Omura, S. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 47, 57–87 (1993).
- 2 Saxena, S. & Pandey, A. K. Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl. Microbial. Biotechnol. 55, 395–403 (2001).
- 3 Carter, G. T. *et al.* LL-F28249 antibiotic complex: a new family of antiparasitic macrocyclic lactones. Isolation, characterization and structures of LL-F28249 alpha, beta, gamma, lambda. *J. Antibiot.* **41**, 519–529 (1988).
- 4 Wang, M. et al. New β-class milbernycin compound from Streptomyces avermitilis NEAU1069: fermentation, isolation and structure elucidation. J. Antibiot. 62, 587–591 (2009).
- 5 Wang, X. J. et al. Isolation and identification of novel macrocyclic lactones from Streptomyces avermitilis NEAU1069 with acaricidal and nematocidal activity. J. Agric. Food Chem. 58, 2710–2714 (2010).
- 6 Wang, X. J. et al. Two new doramectin analogs from Streptomyces avermitilis NEAU1069: fermentation, isolation and structure elucidation. J. Antibiot. 64, 591–594 (2011).
- 7 Xiang, W. S. et al. Four new doramectin congeners with acaricidal and insecticidal activity from Streptomyces avermitilis NEAU1069. Chem. Biodiversity 8, 2117–2125 (2011).
- 8 Li, J. S. et al. New doramectin analogs from mutant Streptomyces avermitilis NEAU1069-3. J. Antibiot. 67, 187–189 (2014).
- 9 Ley, S. V., Madinb, A. & Moncka, N. J. T. Total synthesis of the spiroketal macrolide (+) milbemycin α₁. *Tetrahedron Lett.* **34**, 7479–7482 (1993).
- 10 Dutton, C. J. et al. Structure of doramectin. J. Chem. Soc. Perkin Trans. 2, 403–408 (1995).