NOTE

Aranciamycin anhydride, a new anthracycline-type antibiotic isolated from *Streptomyces* sp. Tü 6384*

Jonny Nachtigall^{1,4}, Dirk Schulz^{2,4}, Winfried Beil³, Roderich D Süssmuth¹ and Hans-Peter Fiedler²

The Journal of Antibiotics (2010) 63, 397–399; doi:10.1038/ja.2010.59; published online 16 June 2010

Keywords: anthracycline antibiotic; antitumor activity; Streptomyces

Streptomycetes isolated from the rhizosphere of Norway spruce were grown in submerged culture in various complex media, and extracts prepared from culture filtrates and biomass were screened by HPLC-diode array analysis to detect novel secondary metabolites.² Strain Tü 6384 was found to produce a new anthracycline-type compound that showed a high similarity with aranciamycin, an antibiotic isolated from *Streptomyces echinatus*, in its UV–visible spectrum.³ The compound was characterized as aranciamycin anhydride (1).

Strain Tü 6384 was isolated from the rhizosphere of Norway spruce collected in Rammert forest near Tübingen, Germany. It was examined for a number of key properties that are known to be of value in streptomycete systematics.^{4,5} Whole-cell hydrolysates of strain Tü 6384 contained LL-diaminopimelic acid, and hexa- and octahydrogenated menaquinones with nine isoprene units were the predominant isoprenologs. Partial sequencing of the 16S rRNA gene led to a similarity of 99% with *Streptomyces prunicolor*.

Batch fermentations of strain Tü 6384 were carried out in a 10-l stirred tank fermentor (Biostat S; B Braun, Melsungen, Germany) in a complex medium that consisted of (per liter tap water) oatmeal (Holo Hafergold, Neuform, Germany) 20g, and 5 ml of a trace element solution that was composed of (per liter deionized water) $CaCl_2 \times 2H_2O$ 3 g, iron(III) citrate 1 g, $MnSO_4 \times 1H_2O$ 200 mg, ZnCl₂ 100 mg, CuSO₄×5H₂O 25 mg, Na₂B₄O₇×10H₂O 20 mg, CoCl₂×6H₂O 4 mg and Na₂MoO₄×2H₂O 10 mg; the pH was adjusted to 7.3 (5 M HCl) before sterilization. The fermentor was inoculated with 5% by volume of a shake flask culture grown in a seed medium at 27 °C in 500-ml Erlenmeyer flasks with a single baffle for 72 h on a rotary shaker at 120 r.p.m. The seed medium consisted of glucose 10 g, glycerol 10 g, oatmeal 5 g, soybean meal (Schoenenberger, Magstadt, Germany) 10 g, yeast extract (Ohly Kat, Deutsche Hefewerke, Hamburg, Germany) 5 g, Bacto Casamino acids 5 g and CaCO3 1 g in 11 tap water. The fermentation was carried out for 4 days with an aeration rate of 0.5 volume air per volume per min and agitation at 250 r.p.m. The production of 1 reached a maximal yield of 50 mg l⁻¹ at 72h of incubation. The culture filtrate (6l) was applied to an Amberlite XAD-16 column (60×4 cm i.d.; Rohm and Haas, Frankfurt, Germany), washed with each of 31 H₂O and H₂O-EtOH (6:4), and 1 was eluted with 31 EtOH and concentrated in vacuo. The crude product was dissolved in CH₂Cl₂ and added to a diol-modified silica gel column (45×2.6 cm i.d., LiChroprep Diol; Merck, Darmstadt, Germany). The separation was accomplished by a step gradient from CH₂Cl₂ to 5% EtOH. The combined fractions containing 1 were concentrated in vacuo and yielded 385 mg crude product, which was purified by preparative RP-HPLC (Nucleosil-100 C-18, 10 µm, 25×1.6 cm i.d.; Maisch, Ammerbuch, Germany) with CH₃CN-0.1% HCOOH using a linear gradient elution from 40 to 80% CH₃CN over 20 min at a flow rate of 20 ml min⁻¹. Compound 1, 45 mg, was obtained as a red-orange powder (Table 1).

The molecular mass of 1 was determined by high-resolution electrospray ionization-FT-ion cyclotron resonance mass spectrometry, which gave the mass of 710.17728, suggesting a molecular formula of $C_{35}H_{34}O_{16}$ (theoretical: 709.17741, Δ =0.13 p.p.m.). The chemical structure of 1 as shown in Figure 1 was determined by ¹H-, ¹³C- and 2D-NMR experiments (Table 2) and GC-MS. The complete NMR assignments were unambiguously carried out on the basis of COSY and heteronuclear multiple bond correlation (HMBC) experiments. The ¹H-NMR and heteronuclear single quantum coherence (HSQC) data showed a total of 30 carbon-attached protons, among which five methyl, two methylene and eleven methine carbons could be assigned. Inspection of the 2D-NMR data (COSY, HSQC and HMBC) allowed assignment of the structure of 1, a new derivative of the aranciamycin family, aranciamycin anhydride (Figure 2). The ¹H–¹H–COSY spectra of 1 revealed protons attached to two ethyl, one phenyl and one sugar (hexose) moiety, as shown by the bold lines in Figure 2. All expected

- E-mail: hans-peter.fiedler@uni-tuebingen.de or Professor RD Süssmuth, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Berlin 10623, Germany.
- E-mail: suessmuth@chem.tu-berlin.de

¹Institut für Chemie, Technische Universität Berlin, Berlin, Germany; ²Mikrobiologisches Institut, Universität Tübingen, Tübingen, Germany and ³Institut für Pharmakologie, Medizinische Hochschule Hannover, Hannover, Germany

⁴These authors contributed equally to this work.

Correspondence: Professor H-P Fiedler, Mikrobiologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.

^{*}Art. No. 55 in 'Biosynthetic Capacities of Actinomycetes'. Art. No. 54: see ref 1.

Received 18 February 2010; revised 18 March 2010; accepted 11 April 2010; published online 16 June 2010

Table 1 Physico-chemical properties of aranciamycin anhydride¹

	1		
Appearance	Red-orange powder		
Optical rotation ^a	[α] ²⁰ _D +82° (c. 0.05, MeOH)		
FT-ICR-MS ^b	709.17728 found (M–H) [–]		
	709.17741 calculated (M–H) [–]		
	Δ=0.13 p.p.m.		
Molecular formula	C ₃₅ H ₃₄ O ₁₆		
UV ^c λ_{max} (MeOH) nm (log ε)	240 (4.48), 260 (4.44), 435 (4.08)		
IR ^d V _{max} (cm ⁻¹)	3503, 2977, 2933, 1766, 1715, 1675, 1625,		
	1448, 1415, 1380, 1290, 1247, 1191, 1170,		
	1135, 1109, 1083, 1031, 1001, 957, 840,		
	758, 735		

Abbreviation: ICR, ion cyclotron resonance.

^aOptical rotation was recorded on a 341 polarimeter (Perkin-Elmer, Überlingen, Germany). ^bHR-FT-ICR-MS measurement was carried out on an APEX II FT-ICR mass spectrometer (4.7 T, Bruker-Daltonics, Bremen, Germany).

^cUV-visible spectra were obtained on a HP 1090M diode array detector (Agilent Technologies,

Waldbronn, Germany).

^dInfrared data measurement was carried out on an 881 IR-spectrometer (Perkin-Elmer).

Figure 1 Structure of aranciamycin anhydride (1).

HMBC correlations of the aranciamycin moiety could be seen and couplings were in good accordance with the data given in literature.⁶ The connection between the sugar moiety and the aranciamycin chromophore was established by the 1H-13C-long-range coupling from C-10 ($\delta_{\rm H}$ 5.19, $\delta_{\rm C}$ 72.4) to H-1" ($\delta_{\rm H}$ 5.65, $\delta_{\rm C}$ 100.5) and vice versa as shown in Figure 2. The constitution of the sugar was determined from COSY and HMBC spectra, which revealed a 6desoxyhexose moiety. The coupling constants (Table 3) indicated that the sugar was a mannopyranose. A ¹H-1³C long-range coupling from the methyl group at $\delta_{\rm H}$ 3.56 to C-2" ($\delta_{\rm C}$ 80.3) of the sugar established the position of the methoxy group. Additional examination of the NMR data and chiral GC-MS analysis of the derivatized hydrolysate allowed us to identify the moiety as B-2-O-methyl-L-rhamnose in accordance with the literature.⁷ In comparison with the molecular formula of aranciamycin, derivative 1 has an additional C8H6O4 moiety. In addition, the NMR spectra showed five quaternary olefinic, two methylene and one methyl moiety compared with the aranciamycin core structure. The ¹H-¹³C long-range couplings from H-9" $(\delta_{\rm H} 2.77)$ to C-8" ($\delta_{\rm C} 171.8$), C-10" ($\delta_{\rm C} 19.9$) and C-11" ($\delta_{\rm C} 142.0$), from H-10" ($\delta_{\rm H} 2.78$) to C-8", C-9" ($\delta_{\rm C} 31.3$) and C-14" ($\delta_{\rm C} 165.8$), and from H-15" ($\delta_{\rm H}$ 2.10) to C-11", C-12" ($\delta_{\rm C}$ 142.6) and C-13" ($\delta_{\rm C}$ 166.1) gave rise to an anhydride structure in excellent accordance with literature values.8 The connection between the sugar and the anhy-

Table 2 ¹H- and ¹³C-NMR assignment of 1 in CDCl₃-d (25 °C)

Position	δ (¹ H) (p.p.m.) J in Hz	δ (¹³ C) (p.p.m.)	
1	7.88 (d, 7.5)	120.9	
2	7.75 (t, 7.9)	138.5	
3	7.34 (d, 8.3)	125.3	
4	_	163.2	
5	_	115.9	
6	_	193.2	
7	_	119.1	
8	_	162.5	
9	_	133.3	
10	5.19 (d, 2.4)	72.4	
11	3.72 (d, 2.5)	85.9	
12	_	76.9	
13	_	198.9	
14	_	136.3	
15	8.41 (s)	118.0	
16	_	134.0	
17	_	180.6	
18	_	133.6	
1'	3.54 (s)	60.3	
2′	1.54 (s)	23.1	
1″	5.65 (s, br)	100.5	
2″	3.53 (dd, 1.4; 3.6)	80.3	
3″	3.59 (dd, 3.6; 9.8)	69.6	
4″	4.87 (dd, 9.8; 9.8)	75.1	
5″	3.92 (dq, 9.8; 6.2)	67.6	
6″	1.23 (d, 6.2)	17.7	
7″	3.56 (s)	59.0	
8″	_	171.8	
9″	2.77 (m)	31.3	
10″	2.78 (m)	19.9	
11″	_	142.0	
12″	_	142.6	
13″	—	166.1	
14″	—	165.8	
15″	2.10 (s)	9.7	

Figure 2 ¹H–¹H–COSY and HMBC correlations observed in 1.

dride moiety was established by the ${}^{1}\text{H}{-}{}^{13}\text{C}$ long-range coupling observed from H-4" (δ_{H} 4.87) to the carbonyl of C-8", resulting in the structure of **1** (Figure 1).

Table 3 Growth-inhibitory activity of 1 and aranciamycin ($\mu g\,m l^{-1}$) against selected human tumor cell lines

	1		Aranciamycin	
Cell line	GI ₅₀	TGI	GI ₅₀	TGI
HM02	6.5	>10	0.62	1.35
MCF 7	>10	>10 >10	1.15 1.3	3.2 3.3

Abbreviations: GI₅₀, 50% growth inhibition; TGI, 100% growth inhibition.

The antimicrobial activity spectrum of 1 was tested in an agar plate diffusion assay against *Bacillus subtilis* DSM 10, *Escherichia coli* K12, *Saccharomyces cerevisiae* ATCC 9010 and *Botrytis cinerea* Tü 157 in a concentration of $0.1-1 \text{ mg ml}^{-1}$. Similar to aranciamycin, 1 showed weak antibacterial activity only against *Bacillus subtilis*. The inhibitory action of 1 on the growth of tumor cells was compared with aranciamycin and tested according to NCI guidelines⁹ with the human tumor cell lines HM02 (gastric adenocarcinoma), MCF 7 (breast carcinoma) and HepG2 (hepatocellular carcinoma). Cells were grown in 96-well microtiter plates in RPMI 1640 with 10% fetal calf serum in a humidified atmosphere of 5% CO₂ in air. Aranciamycin and 1 ($0.1-10 \text{ µg ml}^{-1}$) were added to the cells after incubation for 24 h. Stock solutions were prepared in DMSO; the final DMSO concentration of the cultures was 0.1%. The cells were fixed and cell protein analyzed with sulforhodamine B after incubation for 48 h. The

cytostatic activity of **1** was somewhat less than that of aranciamycin (Table 3).

ACKNOWLEDGEMENTS

Financial support from the Deutsche Forschungsgemeinschaft (Graduate College 685 'Infection Biology'; DS), the European Commission (project ACTINOGEN, 6th framework, Grant LSHM-CT-2004-005224; RDS), and Bayer Schering Pharma AG (Berlin, Germany) is gratefully acknowledged. We thank Mr A Kulik, Universität Tübingen, for assistance in fermentations.

- Abdel-Mageed, W. M. et al. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 8, 2352–2362 (2010).
- 2 Fiedler, H.- P. Biosynthetic capacities of actinomycetes. 1. Screening for novel secondary metabolites by HPLC and UV-visible absorbance spectral libraries. *Nat. Prod. Lett.* 2, 119–128 (1993).
- 3 Keller-Schierlein, W., Sauerbier, J., Vogler, U. & Zähner, H. Stoffwechselprodukte von Mikroorganismen—Aranciamycin. *Helv. Chim. Acta* 53, 779–789 (1970).
- 4 Williams, S. T., Goodfellow, M. & Alderson, G. Genus Streptomyces Waksman and Henrici 1943, 339^{AL}. in Bergey's Manual of Systematic Bacteriology, Vol. 4 (eds. Williams, S.T. et al.) 2452–2492 (Williams & Wilkins, Baltimore, 1989).
- 5 Manfio, G. P., Zakrzewska-Czerwinska, J., Atalan, E. & Goodfellow, M. Towards minimal standards for the description of *Streptomyces* species. *Biotekhnologiya* 8, 228–237 (1995).
- Bols, M., Binderup, L., Hansen, J. & Rasmussen, P. Inhibition of collagenase by aranciamycin and aranciamycin derivatives. *J. Med. Chem.* 35, 2768–2771 (1992).
 Keller-Schierlein, W. & Müller, A. The sugar component of aranciamycin: 2-0-methyl-
- rhener-scherten, w. & wuhlet, A. The sigar component of arancianycin: 2-o-methylrhamnose. Experientia 26, 929–930 (1970).
- Naganawa, A., Ichikawa, Y. & Isobe, M. Synthetic studies on tautomycin: synthesis of 2,3-disubstituted maleic anhydride segment. *Tetrahedron* 50, 8969–8982 (1994).
 Grever, M. R., Shenartz, S. A. & Chahner, B. A. The National Cancer Institute cancer.
- 9 Grever, M. R., Shepartz, S. A. & Chabner, B. A. The National Cancer Institute: cancer drug discovery and development program. *Semin. Oncol.* **19**, 622–638 (1992).