NOTE

New tensidols, JBIR-86 and JBIR-87, isolated from *Aspergillus* sp. fJ80

Motoki Takagi¹, Keiichiro Motohashi¹, Ji-Hwan Hwang¹, Aya Nagai¹ and Kazuo Shin-ya²

The Journal of Antibiotics (2010) 63, 371-373; doi:10.1038/ja.2010.45; published online 12 May 2010

Keywords: Aspergillus; Candida albicans; furopyrrole; miconazole; tensidol

Aspergillus is a member of the phylum Ascomycota. There are over 185 known species of ascomycetes, about 20 of which are known to be harmful to humans and other animals. The *Aspergillus* species is known to produce more than 1000 secondary metabolites containing bioactive compounds, such as mevinolin, aflatoxin and citrinin.¹ In a previous study, we reported that a fungus belonging to the *Aspergillus* species produces a novel secondary metabolite, JBIR-15.² Therefore, in this study, we screened for novel secondary metabolites from cultures of *Aspergillus* species and succeeded in discovering novel furopyrrole compounds, JBIR-86 (1) and JBIR-87 (2), in addition to the known compounds, tensidols A and B (Figure 1a). In this study, we report the fermentation, isolation and structural determination of 1 and 2, and briefly describe their biological activities.

Aspergillus sp. fJ80 was isolated from a soil sample collected in Akita Prefecture, Japan. The strain was cultivated in 50 ml test tubes containing 15 ml of the seed medium (24 gl⁻¹ potato dextrose broth; BD Biosciences, San Jose, CA, USA). The test tubes were shaken on a reciprocal shaker (355 r.p.m.) at 27 °C for 3 days. Aliquots (5 ml) of the seed culture were inoculated into 500 ml Erlenmeyer flasks containing the production medium (15 g brown rice and 45 ml solution containing 0.67 gl⁻¹ yeast extract, 0.33 gl⁻¹ sodium tartrate dihydrate and 0.33 gl⁻¹ K₂HPO₄) and incubated in static culture at 27 °C for 14 days.

The production culture (10 flasks) was extracted with 80% aqueous Me_2CO (11) and concentrated *in vacuo*. The aqueous concentrate (200 ml) was extracted with EtOAc (200 ml×5). After drying over Na_2SO_4 , the organic layer was evaporated to dryness. The residue (0.52 g) was subjected to normal-phase, medium-pressure liquid chromatography (Purif-Pack SI-60; Moritex, Tokyo, Japan) and successively eluted with gradient systems of *n*-hexane–EtOAc (0–30% EtOAc) and CHCl₃–MeOH (0–50% MeOH). The 1% MeOH-eluted fraction (70.0 mg) was purified by preparative reversed-phase HPLC using an L-column2 ODS column (20 i.d. ×150 mm; Chemical

Evaluation and Research Institute, Tokyo, Japan) with 55% MeOH– H_2O containing 0.1% formic acid (flow rate 10 ml min^{-1}) to yield **2** (0.99 mg, retention time (Rt) 12.6 min), tensidol B (3.22 mg, Rt 9.1 min) and a crude fraction of **1** (7.25 mg, Rt 4.3 min). The eluate containing **1** was further purified by preparative reversed-phase HPLC using an L-column2 ODS column (20 i.d. ×150 mm) with 50% MeOH– H_2O containing 0.1% formic acid (flow rate 10 ml min⁻¹) to yield **1** (1.02 mg, Rt 13.0 min) and tensidol A (3.81 mg, Rt 11.0 min).

Compound 1 was isolated as a colorless oil that yielded an [M + H]⁺ ion at m/z 244.0986 in the HR-ESI-MS corresponding to a molecular formula of C14H12NO3 (calcd for C14H13NO3, 244.0974). Furthermore, 1 displayed the following UV and IR spectra: UV (CHCl₃) $\lambda_{max}(\epsilon)$ 241 (11750), IR (KBr) ν_{max} 1670 cm⁻¹. The ¹H and ¹³C NMR spectral data for 1 are listed in Table 1. The structural information on 1 was obtained by a series of 2D NMR analyses such as heteronuclear single-quantum coherence, HMBC and double-quantum filtered (DQF)-COSY spectra (Figure 1b). The spin couplings observed in the DQF-COSY spectrum among aromatic protons 9/13-H ($\delta_{\rm H}$ 7.24), 10/12-H ($\delta_{\rm H}$ 7.32) and 11-H ($\delta_{\rm H}$ 7.32) revealed the existence of a phenyl residue. In the HMBC spectrum, a singlet methylene proton 7-H ($\delta_{\rm H}$ 3.83) was ¹H–¹³C long-range coupled to aromatic methine carbons C-9/13 ($\delta_{\rm C}$ 129.4). The ¹H–¹³C long-range couplings from 9/13-H to aromatic carbon C-11 ($\delta_{\rm C}$ 128.0) and to methylene carbon C-7 ($\delta_{\rm C}$ 40.0) established the presence of a benzyl moiety, as shown in Figure 1b. In addition to the resonances ascribed to the benzyl moiety, 1 showed seven additional ¹³C resonances. Longrange couplings from aromatic protons 2-H ($\delta_{\rm H}$ 8.43) and 5-H ($\delta_{\rm H}$ 6.21) to each of the aromatic carbons C-3 ($\delta_{\rm C}$ 163.9), C-3a ($\delta_{\rm C}$ 119.8), C-4 ($\delta_{\rm C}$ 175.0) and C-6a ($\delta_{\rm C}$ 167.6) were observed. Moreover, the long-range coupling between the methoxyl proton 3-OMe ($\delta_{\rm H}$ 3.87) and C-3 revealed that the methoxyl group is substituted at the C-3 position. A comparison of the ¹³C chemical shifts with those of

E-mail: motoki-takagi@aist.go.jp or Dr K Shin-ya, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.

¹Biomedicinal Information Research Center, Japan Biological Informatics Consortium, Tokyo, Japan and ²Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Correspondence: Dr M Takagi, Biomedicinal Information Research Center, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.

E-mail: k-shinya@aist.go.jp

Received 6 March 2010; revised 15 April 2010; accepted 16 April 2010; published online 12 May 2010

372

Figure 1 (a) Structures of tensidols, JBIR-86 (1) and JBIR-87 (2). (b) Key correlations in DQF-COSY (bold lines) and HMBC (arrows) spectra of 1. (c) Key correlations in DQF-COSY (bold lines) and HMBC (arrows) spectra of 2. (d) Key correlations in DQF-COSY (bold lines) and HMBC (arrows) spectra of tensidol B.

Position	1		2		Tensidol B	
	¹³ C	¹ H (J in Hz)	¹³ C	¹ H (J in Hz)	¹³ C	¹ H (J in Hz)
2	161.7	8.43, s	165.3	8.80, s	163.4	8.72, s
3	163.9ª		162.7ª		161.5	
За	119.8		119.5		118.8	
4	175.0 ^a		179.7 ^a		178.0	
5	117.3	6.21, s	116.5	6.38, s	116.3	6.30, s
6a	167.6		171.9		169.6	
7	40.0	3.83, s	40.0	4.06, s	39.8	3.88, s
8	134.1		135.9		133.7	
9	129.4	7.24, m	130.3	7.34, m	130.3	7.22, m
10	129.3	7.32, m	130.0	7.36, m	129.4	7.36, m
11	128.0	7.32, m	128.7	7.32, m	128.7	7.30, m
12	129.3	7.32, m	130.0	7.36, m	129.4	7.34, m
13	129.4	7.24, m	130.3	7.34, m	130.3	7.22, m
1′			174.4		172.9	
2′			42.6	2.90, dd (4.8, 18.0)	41.9	2.86, dd (4.7, 17.9)
				3.16, dd (8.4, 18.0)		3.24, dd (8.4, 17.9)
3′			36.3	2.98, m	35.1	3.02, m
4'			177.8		180.8	
5′			17.4	1.22, d (7.2)	17.2	1.26, d (7.2)
3-0CH3	52.8	3.87, s				
4'-0CH ₃			52.4	3.66, s		
3-0H				11.71		11.72

Table 1 ¹H and ¹³C NMR spectral data for JBIR-86 (1), JBIR-87 (2) and tensidol B

¹³C (150 MHz) and ¹H (600 MHz) NMR spectra were recorded using NMR System 600 NB CL (Varian, Palo Alto, CA, USA) in CDCl₃ with the residual solvent peak being used as an internal standard ($\delta_{\rm C}$ 77.0, $\delta_{\rm H}$ 7.24 p.p.m.). ^aThese assignments are exchangeable.

373

tensidol A suggested the existence of a 4-methoxy-6H-furo[2,3-b]pyrrol-3-ol moiety³ (Figure 1b). Finally, the ¹H–¹³C long-range couplings from 7-H to C-5 and C-6a and from 5-H to C-7 established a relation between these partial structures. Although four-bond HMBC correlations from H-2 to C-4 and from H-5 to C-3 were observed, and the ¹³C chemical shifts were identical to the tensidol A chemical shifts, we could not determine the exact assignment of the C-3 and C-4 signals.

Compound 2 was obtained as a colorless oil ($[\alpha]_D$ + 6.0, c 0.1, MeOH), and it displayed a UV spectrum ($\lambda_{max}(\epsilon)$ 239 (14050), in CHCl₃) and an IR spectrum (KBr, v_{max} 1730 and 1670 cm⁻¹). The molecular formula of 2 was established as C19H18NO6 by HR-ESI-MS $(m/z 358.1286 [M + H]^+$, calcd for C₁₉H₁₉NO₆, 358.1291). The NMR data were similar to those of 1 except for the appearance of two carbonyl carbons C-1' ($\delta_{\rm C}$ 174.4) and C-4' ($\delta_{\rm C}$ 177.8), a methine carbon C-3' ($\delta_{\rm C}$ 36.3), a methylene carbon C-2' ($\delta_{\rm C}$ 42.6) and a methyl carbon C-5' ($\delta_{\rm C}$ 17.4), as listed in Table 1. The sequence from doublet methyl protons H-5' ($\delta_{\rm H}$ 1.22) to methylene protons H-2' ($\delta_{\rm H}$ 2.90, 3.16) through a methine proton 3'-H ($\delta_{\rm H}$ 2.98) was observed in the DQF-COSY spectrum. The long-range couplings from methoxyl protons 4'-OMe ($\delta_{\rm H}$ 3.66) to C-4'; from 5'-H to C-2', C-3' and C-4'; and from 2'-H and 3'-H to C-1' established the presence of a 4-methoxy-3-methyl-4-oxobutanoate moiety, as shown in Figure 1c. Because the long-range couplings from 3-OH ($\delta_{\rm H}$ 11.71) were not the same as those observed in 1, we could not determine the substituted position of the side-chain moiety. To determine the assignment of C-3 and C-4, which would establish the substituted positions of the methyl residue and the side-chain moiety in 1 and 2, respectively, detailed NMR analyses of tensidol B isolated from Aspergillus sp. fJ80 were carried out (Figure 1d). Using the analysis results, we could confirm that the long-range couplings from a hydrogen-bonded phenolic hydroxy proton 3-OH ($\delta_{\rm H}$ 11.72) to C-2 ($\delta_{\rm C}$ 163.4), C-3 ($\delta_{\rm C}$ 161.5) and C-3a ($\delta_{\rm C}$ 118.8) established the exact assignment of all the signals of tensidol B and 3-OH was found to be substituted at the C-3 position. Taking into consideration the ¹³C chemical shifts at C-3 and C-4 in both 1 and 2, we conclude that the methyl residue and 4methoxy-3-methyl-4-oxobutanoate moiety of 1 and 2 are substituted at the C-3 and C-4 positions, respectively. Note that the assignment of the ¹H and ¹³C NMR signals published by Fukuda et al.³ should be corrected as per the results of this study. The identical ¹J_{C-H} values at C-2 and C-5 in tensidol B, 1 and 2 (1J2C-2H: tensidol B 200.6 Hz, 1 197.4 Hz, 2 198.0 Hz; ${}^{1}J_{5C-5H}$: tensidol B 167.5 Hz, 1 165.4 Hz, 2 168.0 Hz) provided further evidence in support of the proposed structures of 1 and 2. Thus, 1 and 2 were established as 3-O-methyl tensidol A and 4'-O-methyl tensidol B, respectively.

Because it has been reported that tensidols A and B potentiate miconazole activity against *Candida albicans*,³ we tested the miconazole-potentiating activities of 1 and 2 using the previously reported

Table 2 Miconazole-potentiating activity of tensidols, JBIR-86 (1) and JBIR-87 (2) $\,$

	Concentration	Inhibition zone (mm)		
Compounds	μg per disk (6 mm)	Plate A	Plate B	
Tensidol A	50	_	21	
	25	_	14	
	10	_	8	
1	50	_	11	
	25	_	7	
	10	_	_	
Tensidol B	50	_	14	
	25	_	9	
	10	_	_	
2	50	_	16	
	25	_	10	
	10	_	_	

Plate A is a GY agar plate containing a 0.1% aliquot of *C. albicans* NBRC 1594 culture, and plate B is a GY agar plate containing *C. albicans* and 0.06 μ m miconazole.

paper disk method.^{3,4} As in the case of the tensidols, **1** and **2** did not show an inhibition zone against *C. albicans* at 50 µg per disk (plate A) and exhibited miconazole-potentiating activity in a dose-dependent manner on plate B (plate A containing 0.06 µM miconazole), as listed in Table 2. However, the activity of **1** was weaker than that of tensidol A. In addition, the cytotoxic activity of **1** and **2** against several cancer cell lines was tested by the WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2*H*-tetrazolium, monosodium salt) colorimetric assay (Cell Counting Kit; Dojindo, Kumamoto, Japan). However, **1** and **2** showed no cytotoxicity even at a concentration of 50 µg ml⁻¹ for 48 h.

ACKNOWLEDGEMENTS

This work was supported by a grant from the New Energy and Industrial Technology Department Organization (NEDO) of Japan.

¹ Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo) 58, 1-26 (2005).

² Motohashi, K., Inaba, S., Takagi, M. & Shin-ya, K. JBIR-15, a new aspochracin derivative, isolated from a sponge-derived fungus, *Aspergillus sclerotiorum Huber Sp080903f04. Biosci. Biotechnol. Biochem.* **73**, 1898–1900 (2009).

³ Fukuda, T. et al. Tensidols, new potentiators of antifungal miconazole activity, produced by Aspergillus niger FKI-2342. J. Antibiot. 59, 480–485 (2006).

⁴ Arai, M. et al. Funicone-related compounds, potentiators of antifungal miconazole activity, produced by Talaromycesflavus FKI-0076. J. Antibiot. (Tokyo) 55, 172–180 (2002).