NOTE

Xylaropyrone, a new γ -pyrone from the endophytic fungus *Xylaria feejeensis* MU18

Ratklao Siriwach¹, Hiroshi Kinoshita¹, Shigeru Kitani¹, Yasuhiro Igarashi², Kanokthip Pansuksan³, Watanalai Panbangred³ and Takuya Nihira^{1,4}

The Journal of Antibiotics (2011) 64, 217-219; doi:10.1038/ja.2010.160; published online 22 December 2010

Keywords: endophytic fungus; Thai medicinal plant; xylaropyrone; Xylaria; y-pyrone

Novel bioactive compounds have been intensively screened to identify their potential benefit in many fields of human life, including medicine, agriculture and industry. Natural compounds have been a continuous and important source of bioactive compounds, and have led to the discovery of not less than 200 000 bioactive compounds so far,¹accounting for more than 50% of new medicines registered as anticancer, antibacterial, antifungal and antiviral agents during the period of 1981–2006.²

Fungal endophytes are defined as filamentous fungi that reside in the tissues of living plants without exerting any pathogenic effects. Judging from the fact more than one endophyte often inhabit a single plant, new and interesting endophytic microorganisms are likely to be found from the nearly 300 000 plant species, which inhabit the diverse environments and ecosystems of the earth.³ Moreover, considering that a great number of secondary metabolites with diverse chemical structures and various biological activities^{6–8} have been discovered from endophytes, endophytes can be regarded as a rich source of bioactive natural products.^{4,5}

Thailand is located in a tropical zone with abundant biodiversity and bioresources, suggesting that Thai endophytic fungi may be a rich source of bioactive compounds. A series of recent discoveries of novel bioactive substances, such as xylariaquinone A, scopararanes A and B, 11-hydroxymonocerin, phomoenamide, phomonitroester and deacetylphomoxanthone B, have confirmed the usefulness of fungal endophytes from Thai medicinal plants as promising bioresources.^{9–12}

In this study, novel compounds were screened from the endophytic fungus *Xylaria feejeensis* MU18, isolated from *Eryngium foetidum* Linn., a medicinal plant in Thailand. From the crude extract, one novel compound was isolated and its chemical structure was determined. The compound possesses a novel chemical structure comprising a γ -pyrone with a hydroxymethyl group and a methylpentyl group at C-2 and C-5, respectively. This is the first report of a natural or even a synthetic compound possessing a γ -pyrone moiety having these two side chains.

MATERIALS AND METHODS

General experimental procedures

The UV spectrum was recorded on a Hitachi U-3200 spectrophotometer (Hitachi Ltd., Tokyo, Japan). NMR spectra were recorded on a on a JEOL JNM-ECS400 (JEOL, Tokyo, Japan) at 400 MHz. The ¹H and ¹³C chemical shifts were referenced to the solvent signal (δ H 7.26 and δ C 77.0 in CDCl₃). HRFABMS was recorded on a JEOL JMS-700 spectrometer. Optical rotation was measured on a JASCO P-1020 polarimeter (Jasco, Tokyo, Japan). IR spectra were recorded on a FTIR-8400S (Shimadzu, Kyoto, Japan).

Microorganism

The endophytic fungus MU18 was isolated from leaves of *Eryngium foetidum* Linn., obtained from Mahidol University, Bangkok, Thailand. The fungus was identified as *X. feejeensis* based on the DNA sequences of the internal transcribed spacer (ITS) ribosomal RNA region (DNA data bank of Japan (DDBJ) accession number AB569622). A Genbank search for similar ITS sequences confirmed that the fungus was *X. feejeensis*, with 99% sequence identity.¹³ The fungus was deposited as *X. feejeensis* MU18 at the culture collection of International Center for Biotechnology (ICBiotech; Osaka University, Osaka, Japan).

Fermentation and isolation

All chemicals, media and reagents were purchased from Wako (Osaka, Japan) unless stated otherwise. For seed culture preparation, the mycelia of *X. feejeensis* MU18 grown on a potato dextrose agar slant was inoculated into 5 ml of medium two (soluble starch 5%, Pharmamedia 2%, oatmeal 0.5%, KH₂PO₄ 0.35%, Na₂HPO₄ 0.25% and (NH₄)₂SO₄ 0.6%) in test tubes (\emptyset 12.5 mm× 10.5 cm), and incubated for 3 days at 28 °C on a reciprocal shaker at 120 r.p.m. The seed culture (2 ml) was inoculated into 100 ml of medium two in 500-ml baffled flasks and cultivated for 21 days at 28 °C under a static condition.

After cultivation, culture broth (100 ml×10 flasks) was mixed with an equal amount of EtOAc and left to stir for 1 h at room temperature. Mycelia were removed by filtration with Miracloth (Calbiochem, La Jolla, CA, USA), and the EtOAc layer was recovered from a separation funnel, dried over anhydrous Na_2SO_4 and evaporated to afford a crude extract (brown gum, 650 mg).

¹International Center for Biotechnology, Osaka University, Suita, Osaka, Japan; ²Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama, Japan; ³Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand and ⁴MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand

This is a part of the doctoral dissertation of RS.

Correspondence: Professor T Nihira, International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: nihira@icb.osaka-u.ac.jp

Received 21 July 2010; revised 10 November 2010; accepted 18 November 2010; published online 22 December 2010

The crude extract (200 mg each) was at first separated on a C_{18} cartridge (Sep-Pak Vac 35 cc; Waters, Milford, MA, USA) by stepwise elution with increasing MeOH concentrations (MeOH/H₂O=2:8, 4:6, 6:4, 8:2 and 1:0 v/v). The 60% MeOH fractions containing compound 1 were combined and evaporated (50 mg from two repeats). The compound 1 was further purified by preparative reversed-phase C_{18} HPLC (PU-1570; Jasco, equipped with a UVIDEC-100-V detector) using a CAPCELL PAK C_{18} column (UG80S5; Shiseido, Tokyo, Japan) with a shallow MeOH gradient in 0.1% TFA (a 60–75% MeOH gradient over a period of 20 min) to yield 10 mg of pure compound 1.

Antimicrobial assay

The minimum inhibitory concentration of xylaropyrone (1) was determined by a twofold broth microdilution method in three individual experiments according to the procedures of the Clinical and Laboratory Standards Institute for antimicrobial, anti-yeast and antifungal activity.¹⁴ Kojic acid was used as a reference for the γ -pyrone compound. The minimum inhibitory concentration is defined as the lowest concentration of the compound at which there is no visible growth of the indicator strains: *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 29923, *Enterococcus faecalis* ATCC 29212, *Saccharomyces cerevisiae* ATCC 6275, *Candida albicans* OUT 6266, *Aspergillus niger* ATCC 6275, *Rhizopus oryzae* ATCC10404 and *Candida candidum* IFO4598.

Xylaropyrone (1) was obtained as a yellow oil. The molecular formula was determined to be $C_{12}H_{18}O_3$ on the basis of HRFABMS (obs. *m*/*z* 211.1335 [M+H]⁺, calcd. 211.1334 for $C_{12}H_{19}O_3$), ¹H and ¹³C NMR spectra data (Table 1). The IR spectrum showed a broadened OH absorption band at 3390 cm⁻¹.

¹H NMR data of 1 showed two methyl signals at δ 0.82 (t, *J*=6.9 Hz, 3H) and 0.85 (d, *J*=6.9 Hz, 3H), eight methylene protons at δ 1.14 (ddq, *J*=7.6, 15.0, 11.0 Hz, 1H), 1.31 (m, 1H), 1.41 (m, 1H), 1.61(dddd, J=6.7, 7.6, 13.4, 16.6 Hz, 1H), 2.48 (m, 2H) and 4.42 (s, 2H), one methine proton at δ 1.33 (m, 1H) and two aromatic protons at δ 7.74 (s, 1H) and 6.20 (s, 1H) (Supplementary Figure S1). The ¹³C NMR spectrum of **1** indicated one carbonyl carbon at δ 180.4, two quaternary carbons at δ 126.8 and 171.4, two methyl carbons at δ 11.2 and 18.3, four *sp*³ methylene carbons at δ 29.1, 31.3, 33.4 and 58.3, one *sp*³ methine carbon at δ 33.8 and two *sp*² methine carbons at δ 113.4

Three partial structures of 1, namely, a hydroxymethyl group, a methylpentyl group and a 2,5-disubstituted γ -pyrone, were deduced by comprehensive interpretation of its ¹H, ¹³C NMR, COSY, hetero-

Table 1 NMR spectroscopic data of xylaropyrone (1) in CDCl₃

nuclear single quantum correlation (HSQC) and HMBC spectra and
other spectroscopic data (Figure 1). The observed carbon signals at δ
113.4, 126.8, 152.3, 171.4 and 180.4 in the ¹³ C NMR spectrum
suggested the presence of a γ -pyrone moiety. ¹⁵ This was further
supported by the maximum UV absorption at 252 nm and strong
absorption band at 1660 cm ⁻¹ in the IR spectrum. ¹⁵

The key long range connections of H-8 (δ 2.48) with C-2 (δ 171.4) and C-3 (δ 113.4) and of H-7 (δ 4.42) with C-4 (δ 180.4), C-5 (δ 126.8) and C-6 (δ 152.4) indicated that the hydroxylmethyl and methylpentyl groups were connected to C-5 and C-2 of the γ -pyrone nucleus, respectively. Regarding the absolute configuration at C-10, it was deduced to be *R*, from the comparison of optical rotations on compounds having similar aliphatic chain with 3-methyl or 3-hydroxymethyl group: those of R-configuration were all minus ((*R*)-2-(3-(hydroxymethyl)pentyl)-4H-*pyran*-4-one ([α]₂₀² -0.567), (*R*)-(3-methylpentyl)benzene ([α]₂₀² -5.52), (*R*)-4-methylbexan-1-ol ([α]₂₀² -8.1),¹⁶⁻¹⁸ whereas those of S-configuration were all plus.¹⁹⁻²¹ Thus, the structure of **1** was elucidated as (*R*)-5-(hydroxymethyl)-2-(3-methylpentyl)-4H-pyran-4-one (Figure 2).

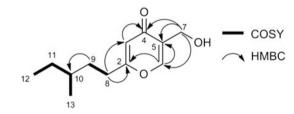


Figure 1 COSY and HMBC correlation of xylaropyrone (1).

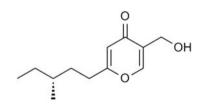


Figure 2 Structure of xylaropyrone (1).

Position	$\delta_{\mathcal{C}}$	δ_H	H–H COSY	НМВС
2	171.4	_		H-3, H-6, H-8
3	113.4 CH	6.20 (s)		H-8
4	180.4	—		H-3, H-6, H-7
5	126.8	—		H-3, H-6, H-7
6	152.4 CH	7.74 (s)		H-7
7	58.3 CH ₂	4.42 (s)		H-6
8	31.3 (CH ₂)	2.48 (m)	H-9	H-3, H-9
9	33.4 (CH ₂)	1.41 (m)	H-8,H-9	H-8, H-10, H-12, H-13
		1.61 (dddd, J=6.7, 7.6, 13.4, 16.6 Hz)	H-8, H-9	
10	33.8 (CH)	1.33 (m)	H-11, H-13	H-9, H-11, H-12, H-13
11	29.1 (CH ₂)	1.14 (ddq, <i>J</i> =7.6, 15.0, 11.0 Hz)	H-10, H-12	H-9, H-10, H-12, H-13
		1.31 (m)	H-10, H-12	
12	11.2 (CH ₃)	0.82 (t, <i>J</i> =6.9 Hz)	H-11	H-11
13	18.8 (CH ₃)	0.85 (d, <i>J</i> =6.9 Hz)	H-10	H-9, H-10, H-11

¹H, ¹³C NMR and 2D NMR spectra were obtained on JOEL JNM-ECS400 NMR spectrometers, in CDCl₃ at room temperature, and the solvent peak was used as an internal standard (δ_H 7.26 and δ_C 77.0 in CDCl₃).

218

To the best of our knowledge, xylaropyrone, which consists of a γ -pyrone moiety, a hydroxymethyl group and a methylpentyl group, is a novel compound that has not previously been identified in natural resources or derived from chemical synthesis.

Xylaropyrone (1): a yellow oil; $[\alpha]_{12}^{26}$ –4.1 (*c* 0.10, MeOH); UV (MeOH) λ_{max} (log ϵ) 215 (3.48), 252 (3.85); HRFABMS *m/z* [M+H]⁺ 211.1335 (calcd. for C₁₂H₁₉O₃, 211.1334). IR ν_{max} (film) 3161–3502 (OH), 2958, 2523, 2858, 1654 (C=O), 1596, 1419, 1338, 1184, 1128 and 1029 cm⁻¹. ¹H (CDCl₃, 400 MHz), ¹³C (CDCl₃, 100 MHz), H–H COSY and HMBC see Table 1.

As no antimicrobial data is available on a γ -pyrone compound possessing two side chains, especially to evaluate the effect of two side chains on a γ -pyrone on biological activities, the antimicrobial activities against typical prokaryotes and eukaryotes were measured using kojic acid as a reference. Xylaropyrone showed moderate activity against *S. cerevisiae* (minimum inhibitory concentration=32 µg ml⁻¹), whereas kojic acid did not show any inhibition even at a concentration of 128 µg ml⁻¹. Neither xylaropyrone nor kojic acid showed any inhibitory activity against *E. coli, P. aeruginosa, S. aureus* or *E. faecalis* when used at a concentration of 512 µg ml⁻¹, or against *A. niger, R. oryzae* or *C. candidum* when administered at 128 µg ml⁻¹.

ACKNOWLEDGEMENTS

This study was supported in part by a scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to RS and by a grant for a 'Research Project in the Field of Biotechnology' from MEXT, the National Research Council of Thailand and the National Science and Technology Development Agency of Thailand to TN, HK and SK.

- 1 Bérdy, J. Bioactive microbial metabolites. J. Antibiot. 58, 1-26 (2005).
- 2 Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).
- 3 Strobel, G. A. Endophytes as sources of bioactive products. *Microbes Infect.* 5, 535–544 (2004).

- 4 Guo, B., Wang, Y., Sun, X. & Tang, K. Bioactive natural products from endophytes: a review. Appl. Biochem. Micro. 44, 136–142 (2008).
- 5 Suryanarayanan, T.s. *et al.* Fungal endophytes and bioprospecting. *Brit. Mycol. Soc.* 23, 9–19 (2009).
- 6 Schulz, B., Boyle, C., Draeger, S., Römmert, A. K. & Krohn, K. Endophytic fungi: a source of novel biologically active secondary metabolites. *Brit. Mycol. Soc.* 106, 996–1004 (2002).
- 7 Tan, R. X. & Zou, W. X. Endophytes: a rich source of functional metabolites. *Nat. Prod. Rep.* **18**, 448–459 (2001).
- 8 Zhang, H. W., Song, Y. C. & Tan, R. X. Biology and chemistry of endophytes. *Nat. Prod. Rep.* 23, 753–771 (2006).
- 9 Tansuwan, S. *et al.* Antimalarial benzoquinones from an endophytic fungus, *Xylaria* sp. J.Nat.Prod. **70**, 1620–1623 (2007).
- 10 Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., Rungjindamai, N. & Sakayaroj, J. Pimarane diterpene and cytochalasis derivatives from the endophytic fungus *Eutypella scoparia* PSU-D44. *J.Nat.Prod.* **69**, 856–858 (2006).
- 11 Sappapan, R. *et al.* 11-Hydroxymonocerin from the plant endophytic fungus. Exserohilum rostratum. *J.Nat.Prod.* **71**, 1657–1659 (2008).
- 12 Rukachaisirikul, V., Sommart, U., Phongpaichit, S., Sakayaroj, J. & Kirtikara, K. Metabolites from the endophytic fungus *Promopsis* sp. PSU-D15. *Phytochemistry* 69, 783–787 (2008).
- 13 Hsieh, H. M. *et al.* Phylogenetic status of *Xylaria* subgenus *Pseudoxylaria* among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. *Mol. Phylogenet. Evol.* **54**, 957–969 (2010).
- 14 Clinical and Laboratory Standards Institute (CLSI). 2007. (a) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-seventh edition; approved standard M07-07, (b) Reference method for broth dilution antifungal susceptibility testing of yeasts-third edition; approved standard M27-A3 (c) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi-second edition; approved standard M38-A2, Wayne, PA.
- 15 Hosoe, T. et al. Lepidepyrone, a new γ-pyrone derivative, from Neolentinus lepideus, inhibit hyaluronidase. J. Antibiot. 60, 388–390 (2007).
- 16 Crimmins, M. T. & O'Mahony, R. Synthesis of spiroketals: a general approach. J. Org. Chem. 55, 5894–5900 (1990).
- 17 Levene, P. A. & Harris, S. A. Maximum rotations of carboxylic acids containing a phenethyl group. J. Biol. Chem. 110, 725–733 (1935).
- 18 Reiss, T. & Breit, B. A unified strategy for the stereospecific construction of propionates and acetate-propionates relying on a directed allylic substitution. *Chem. Eur. J.* 15, 6345–6348 (2009).
- 19 McCabe, R. W., Parri, O. L. & Price, A. H. Synthesis and mesophase formation of branched-chain bis-1,2 dithiolatonickel (II) complexes. *J. Mater. Chem.* 3, 609–613 (1993).
- 20 Ishmuratov, G.Yu., Yakovleva, M. P., Ganieva, V. A., Amirkhanov, D. V. & Tolstikov, G. A. L-(-)-Menthol in the synthesis of key synthons for optically active methyl-branched insect pheromones. *Chem. Nat. Comp.* **41**, 719–721 (2005).
- 21 Barrett, A. G. M., Pena, M. & Willardsen, J. A. Total synthesis and structural elucidation of the antifungal agent papulacandin D. J. Org. Chem. 61, 1082–1100 (1996).

Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)