Activation of secondary metabolite-biosynthetic gene clusters by generating *rsmG* mutations in *Streptomyces griseus*

Yukinori Tanaka^{1,2}, Shinji Tokuyama² and Kozo Ochi¹

Unlike other *Streptomyces* spp., the streptomycin producer *Streptomyces griseus* IFO13189 shows emergence of a small fraction of *rsmG* and *rpsL* mutants among spontaneous low- or high-level streptomycin-resistant mutants. *rsmG*, but not *rpsL*, mutants showed greater ability (two- to threefold) to produce streptomycin, accompanied by enhanced transcription of *metK* and *strR*, together with streptomycin biosynthetic genes, such as *strB1*, *strD* and *strF*, thus underlying the observed increase in streptomycin production in the *rsmG* mutants. Moreover, *rsmG* mutation was effective for activating the 'silent' or poorly expressed secondary metabolite–biosynthetic genes present in *S. griseus*.

The Journal of Antibiotics (2009) 62, 669–673; doi:10.1038/ja.2009.97; published online 9 October 2009

Keywords: rsmG; silent genes; Streptomyces griseus; streptomycin resistance

INTRODUCTION

Actinomycetes produce a variety of natural products that are of major importance in the pharmaceutical industry. More than 50% of all antiinfective and anticancer compounds developed over the past 25 years have been natural products or derivatives thereof.¹ In the past several years, the complete genome sequences of many organisms have been reported. The information from these genome projects indicated that Streptomyces coelicolor, S. avermitilis and S. griseus have 20, 25 and 34 clusters of genes involved in secondary metabolism, respectively, but only a few secondary metabolites are known in each case.²⁻⁴ Recently, we described a practical method for increasing antibiotic production in bacteria by modulating ribosomal components (ribosomal proteins or rRNA), specifically by generating mutations conferring drug resistance, such as streptomycin resistance.^{5–7} This approach, called 'ribosome engineering,⁸ has several advantages including the ability to screen for drug resistance mutations by simple selection on drug-containing plates, even if the mutation frequency is extremely low (for example, $< 10^{-10}$), and has been shown to be effective for improving the industrial strains, which had been bred to produce large amount of antibiotics.9,10 S. griseus is a filamentous, soil-living, Gram-positive bacteria, which produces an aminoglycoside antibiotic, streptomycin, and is characterized by the presence of a streptomycin self-resistance gene, *aphD*, which encodes streptomycin-6-phosphotransferase. Here, we showed that rsmG and rpsL (conferring low and high levels of resistance to streptomycin, respectively) mutations can be generated in S. griseus, although this organism already possesses a relatively high level of self-resistance to this antibiotic produced by the organism itself. The effects of *rsmG* and *rpsL* mutations on streptomycin production were examined, along with those of many other 'silent' secondary metabolite-biosynthetic genes present in this organism.

MATERIALS AND METHODS

Bacterial strains and culture conditions

Streptomyces griseus IFO13189, a prototrophic streptomycin-producing wildtype strain, was used as the parental strain. Spontaneous streptomycin-resistant mutants were obtained as colonies that grew within 5–7 days after spores were spread on glucose–yeast extract–malt extract (GYM) agar¹¹ containing various concentrations of streptomycin. Mutations in *rpsL* or *rsmG* genes were determined by DNA sequencing using the primers listed in Table 1. Cultivation was performed at 30 °C (for preculture) or 25 °C (for main culture) using SPY medium¹¹ with rotary shaking at 220 r.p.m.

Assay for streptomycin and determination of minimum inhibitory concentrations

Streptomycin was determined by bioassay using *Bacillus subtilis* ATCC6633 as the test organism. Minimum inhibitory concentrations (MICs) were determined by spotting spore solutions ($\sim 10^6$) onto streptomycin-containing GYM plates, followed by incubation for 5 days at 30 °C.

Total RNA preparation

Total cellular RNA was prepared using Isogen reagent (Nippon Gene, Toyama, Japan). Each pellet was resuspended in 1 ml of Isogen reagent and incubated at 50 °C for 10 min. After cooling, 0.2 ml of chloroform was added. Each sample was mixed well by vortexing and centrifuged at $16\,000 \times g$ for 10 min, and 0.6 ml of the aqueous phase (top layer) was transferred to a clean tube. To each test tube, 0.4 ml of chloroform was added and each sample was mixed by repeated inversions and centrifuged at $16\,000 \times g$ for 10 min. A portion (0.6 ml) of the aqueous phase (top layer) was transferred to a clean tube. The RNA in each

¹National Food Research Institute, Tsukuba, Ibaraki, Japan and ²Faculty of Agriculture, Department of Applied Biological Chemistry, Shizuoka University, Shizuoka, Japan Correspondence: Dr K Ochi, National Food Research Institute, 2–1–12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan. E-mail: kochi@affrc.go.jp

Received 14 July 2009; revised 10 September 2009; accepted 18 September 2009; published online 9 October 2009

Effect of rsmG and	rpsL	mutations	on	S. §	grise	us
		ì	' Ta	inaka	a et	al

Table 1 The primers used in this study

PCR and sequencing for <i>rpsL</i> rpsL-F1 CGACAC.	ACCCGACCGCGTGGG Tanaka <i>et al.</i> ⁶
rpsL-R1 CGGGTC	GAIGAIGACCGGGCGCTTC
PCR and sequencing for <i>rsmG</i> rsmG-F2 CGGAAG	GACGGTCCCCGTG Tanaka <i>et al.</i> ⁶
rsmG-R2 GAGCGA	CGTTTCACGTGAAACACGATGC
Real-time qPCR for <i>hrdB</i> SGR1701 hrdB F GAAGGT	CATCGAGGTCCAGAAG Ohnishi et al.4
SGR1701 hrdB R GTGGCG	GAGCTTCGACATC
Real-time gPCR for <i>adpA</i> adpA-77F TTGCCG	TGCTGCTGTTCA This study
adpA-130R AAACGG	AGAGCGGGATGGA
Real-time gPCR for metK metK-F2 CAACCT	CGTGCGCAACAA This study
. metK-R2 CACAGG	AAGCACCGTCGAA
Real-time oPCR for <i>strR</i> SGR5931 strR F AATTATC	CGCCGTGACAATGG Ohnishi <i>et al.</i> ⁴
SGR5931 strR R GGATGG	GTCTCCAGGACAC
Real-time gPCR for <i>strB1</i> strB1-F2 ACTACG	AGAGCCAGGAGCAGAT This study
strB1-R2 TGACTC	CGAGCTTGGTCAACT
Real-time gPCR for <i>strD</i> strD-F2 ACCCAC	ACGTCTGCGAAAC This study
strD-R2 TGGCCT	CCAGCCCATAGA
Real-time dPCR for strE StrE-E2 GACTAC	GACAAGGTGCACGACTA This study
StrF-R2 AAGCGG	ATGTTCTCGATGGT
Real-time oPCR for SGR 281 281-802E CGCACG	
281-874R GGTAGT	
Peol time aPCP for SCP 443 443 643E CTCCAC	
Pool time aPCP for SCP 503 503 445	
Treat-time qi cit ioi 30k 353 353-44i Gi i cit i 502 101P 0000040	
Deal time a DOD for SOD 604 604 155 000000	
Real-Line drok for SGR 604 604-13F GCCCTAG	
004-78K GIAGAU	
Real-time qPUR for SGR 811 811-F825 CUIGUU 011 D000 010TTO	
811-R899 CAGTIC	
Real-time qPCR for SGR 896 896-F702 GGAGIG 0000 D370 0000 D370 000000000000000000000000000000000000	CCGCGAGATCTTC This study
896-R770 TCGAGG	
Real-time dPCR for SGR 962 962-551F TUCUCU	CAACATCTACGACTT This study
962-627R GCGTTC	
Real-time dPCR for SGR 20/9 20/9-190F GCCACA	LAGGCCCATCTC This study
2079-245R AUCAGG	
Real-time qPCR for SGR 2488 2488-501F GTCCGG	CICGAICGICAAC This study
2488-582R GIGCIIO	GGCCGCGACGTA
Real-time qPCR for SGR 2594 2594-825F CGTCTTC	CGGCAIGGICAIG This study
2594-889R ATCTGCT	CGACGGGTTCCA
Real-time qPCR for SGR 32673267-F945CGTCGTC	CACGCTCTGGAA This study
3267-R1007 TCCTCA(GGACGGTCGAACAC
Real-time qPCR for SGR 44134413-140FTCGCCG	GGTACTTCTTCATC This study
4413-199R TGAGGC	GCAGCCGTACGT
Real-time qPCR for SGR 52955295-F189CAACGA	CTACCTGGGCATGA This study
5295-R253 GCAGGG	TGGAGGCGATCT
Real-time qPCR for SGR 6072 6072-F27 CACCGT	CCTGGAGTACTTCGA This study
6072-R99 GTCGGT	GGCGAACAGCTT
Real-time qPCR for SGR 61786178-F372CCGGGC	TCCGGTGATC This study
6178-R424 CGTCATC	GCCCCTCAGATG
Real-time qPCR for SGR 6367 6367-F142 GCGTTC	ACGTCCGTTTCC This study
6367-R198 GCTGCG	GGCGACACA
Real-time qPCR for SGR 6717 6717-864F CGCGCA	GTTCATCATGGAA This study
6717-922R TCATCAC	GTACTTGGGCATCTC
Real-time qPCR for SGR 6780 6780-F381 CGGCGT	CTCCGAGCAGAT This study
6780-R457 CGTTGT(GGTTGGCGATGAC

Abbreviation: qPCR, quantitative PCR.

tube was precipitated with an equal volume of isopropanol, and rinsed with 70% ethanol. The Isogen reagent treatment was repeated once more to prepare pure RNA and finally suspended with an appropriate volume of diethylpyrocarbonate-treated water.

Transcriptional analysis by real-time quantitative PCR

The total RNAs were prepared as described above. Contaminating DNA was removed by incubating each total RNA sample (1µg) with 1U of DNAse I (Invitrogen, Carlsbad, CA, USA) for 15 min at 25 °C. Reverse transcription

Table 2 Characterization of streptomycin resistance mutations of Streptomyces griseus

Streptomycin concentration ($\mu g m l^{-1}$) used for selection	Mutation in ^a		Amino opid	Frequency of	Minimum inhibitory	Ctrantomicin	Designation
	rsmG	rpsL	Amino acid substitution	the same mutation	concentration to streptomycin (μg ml ⁻¹) ^b	productivity $(\mu g m l^{-1})^c$	of mutant
d					70	65±6	
70	∆73G-76T		Frameshift	1/86	300	118±27	KO-1057
	Insertion of		Frameshift	1/86	300	117 ± 27	KO-1058
	AGCTC at 88						
	173T→C		Leu58→Pro	1/86	300	154 ± 30	KO-1059
	268G→C		$Gly90 \rightarrow Arg$	1/86	300	192±21	KO-1060
	Insertion of		Insertion of	1/86	300	124 ± 17	KO-1061
	CCA at 277		Pro at 93				
	280G→C		Ala94→Pro	1/86	300	144 ± 18	KO-1062
	331C→T		$Arg111 \rightarrow Trp$	1/86	300	124 ± 17	KO-1063
	332G→A		$Arg111 \rightarrow Gln$	1/86	300	130 ± 5	KO-1064
	∆389T-398G		Frameshift	1/86	300	139 ± 33	KO-1065
	Insertion of		Frameshift	1/86	300	121 ± 18	KO-1066
	G at 465						
	500A501G→C		Frameshift	1/86	300	151 ± 8	KO-1067
	Insertion of		Frameshift	1/86	300	164 ± 36	KO-1069
	G at 585						
	∆623T		Frameshift	1/86	300	125 ± 4	KO-1070
	ND ^e		ND	72/86	f	f	
100	$\Delta 260G-291G$		Frameshift	1/30	300	140 ± 8	KO-1050
	∆389T-398G		Frameshift	1/30	300	162 ± 17	KO-1051
	ND		ND	28/30	f	f	
500		262A→G	Lys88→Glu	4/59	2000	57±13	KO-1052~1055
		ND	ND	55/59	f	f	
1000		Insertion of	Insertion of Gly,	1/20	3000	29±7	KO-1056
		GGCGTGCGT	Val, Arg at 84				
		at 250					
		ND	ND	19/20	f	f	
2000		ND	ND	9/9	f	f	

Abbreviation: GYM, glucose-yeast extract-malt extract. ^aNumbered from the start codon of the open reading frame of *S. griseus*.

^bDetermined after 5 days of incubation on GYM medium.

^cStrains were grown in SPY medium at 25 °C for 3 days.

^dWild-type strain.

eMutations were not detected in either rsmG or rpsL gene.

fNot determined.

reaction was carried out using a high-capacity RNA-to-cDNA Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's instructions. The samples were diluted with an appropriate volume of water and analyzed using the 7300 real-time quantitative PCR (qPCR) system and Power SYBR Green PCR master mix (Applied Biosystems). Each transcriptional assay was normalized to the corresponding transcriptional level of the *hrdB* gene encoding the principal sigma factor. Primers used for real-time qPCR are listed in Table 1. All reactions were performed under the following conditions: 2 min at 50 °C, 10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C for denaturing, 30 s at 60 °C for annealing and 30 s at 72 °C for extension.

RESULTS AND DISCUSSION

Isolation and characterization of streptomycin-resistant mutants

In various actinomycetes, high-level resistance to streptomycin is often due to mutations in *rpsL*, which encodes the ribosomal protein S12, whereas low-level resistance is due to mutations in *rsmG*, which encodes a 16S rRNA methyltransferase.^{5,6} Unlike other *Streptomyces* spp. (MIC to streptomycin, 0.2–2 µg ml⁻¹), the streptomycin producer *S. griseus* IFO13189 showed a relatively high level of resistance (MIC=70 µg ml⁻¹). We isolated a total of 204 resistant mutant strains that had developed spontaneously on GYM agar plates containing various concentrations (70–2000 μ g ml⁻¹) of streptomycin. Of these mutants, 15 had mutations in the *rsmG* gene and were characterized by the frequent appearance of deletion or insertion mutations that resulted in frameshift, and five carried mutations in *rpsL*, including the K88E mutation and novel insertion mutation (Table 2). These results were in contrast with those of previous studies in other *Streptomyces* spp, in which >50% of resistant strains were due to mutations in *rpsL* or *rsmG*.⁶ This observation suggested that *S. griseus* harbors a wide range of resistance systems, in addition to inactivation of streptomycin by streptomycin-6-phosphotransferase, to survive in the presence of its own antibiotic, streptomycin. The *rsmG* mutants showed impaired ability to form aerial mycelia, and were somewhat deficient in sporulation.

We reported previously that, in the *rsmG* mutant background, *rpsL* mutants with high-level streptomycin resistance emerge at a frequency 200-fold greater than that in the wild-type strain of *S. coelicolor*, and this elevated frequency in the emergence of high-level streptomycin resistance was facilitated by a mutation pattern in *rpsL* more varied than that obtained by selection of the wild-type strain.^{5,6} Similarly,

Gene ^a	Product	Secondary metabolite biosynthetic gene cluster		
metK	S-adenosylmethionine synthetase	b		
adpA	Transcriptional regulator	b		
strR	Streptomycin biosynthesis operon regulator	Streptomycin		
strB1	Scyllo-inosamine-4-phosphate amidinotransferase	Streptomycin		
strD	Putative glucose-1-phosphate thymidylyltransferase	Streptomycin		
strF	StrF protein	Streptomycin		
SGR281	Hypothetical protein	PKS–NRPS hybrid (SGR278–SGR283)		
SGR443	Putative ABC transporter ATPase and permease component	NRPS for siderophore (SGR443–SGR455)		
SGR593	Hypothetical protein	NRPS (SGR574–SGR593)		
SGR604	Putative enediyne biosynthesis protein	Enediyne PKS (SGR604–SGR611)		
SGR811	Putative oxidoreductase	PKS-NRPS hybrid (SGR810–SGR815)		
SGR896	Putative O-methyltransferase	NRPS (SGR895–SGR901)		
SGR962	Putative squalene-hopene cyclase	Hopanoid (SGR962-SGR966)		
SGR2079	Putative terpene cyclase	Terpene (SGR2079)		
SGR2488	Putative dehydrogenase	Type I PKS, NRPS (SGR2482–SGR2489)		
SGR2594	Putative integral membrane ion antiporter	NRPS (SGR2586-SGR2598)		
SGR3267	Putative cytochrome P450	Type II PKS, NRPS (SGR3239–SGR3288)		
SGR4413	Putative lantibiotic biosynthesis protein	Lantibiotic (SGR4408–SGR4421)		
SGR5295	5-Aminolevulinate synthase	Unknown (SGR5285–SGR5295)		
SGR6072	Putative ketosteroid isomerase	Type I PKS (SGR6071–SGR6083)		
SGR6178	Putative thioesterase	Type I PKS (SGR6177–SGR6183)		
SGR6367	Putative oxidoreductase	Type I PKS (SGR6360–SGR6387)		
SGR6717	Putative ABC transporter ATPase and permease component	NRPS for siderophore (SGR6709–SGR6717)		
SGR6780	Putative malonyl-CoA: ACP transacylase	Type I PKS, PKS–NRPS hybrid (SGR6776–SGR6786)		

study

^aGene names are obtained from the reference Ohnishi *et al.*⁴

^bThese are not the secondary metabolite biosynthetic gene cluster.

S. griseus rsmG mutant, KO-1050, generated the mutants resistant to high-level streptomycin (1000 μ g ml⁻¹) at high frequency. However, no *rpsL* mutants were detected among the 30 resistant mutants tested, again characterizing the specific feature of *S. griseus*.

Effects of *rsmG* and *rpsL* mutations on streptomycin production

Mutations in *rsmG* were effective in enhancing streptomycin production, leading to a two- to threefold increase in streptomycin production, whereas *rpsL* K88E mutation and *rpsL* insertion mutation were not effective (Table 2). In addition, the mutants with no mutations in either *rsmG* or *rpsL* (that is, ND mutants) showed the impaired ability to produce streptomycin, as examined with 12 ND mutants (data not shown). In *S. coelicolor*, enhanced expression of the *metK* gene encoding *S*-adenosylmethionine synthetase corresponds to the enhanced production of streptomycin and actinorhodin caused by *rsmG* mutations.^{5,12} Moreover, addition of *S*-adenosylmethionine causes overproduction of streptomycin in *S. griseus*, accompanied by enhanced transcription of *adpA* and *strR*.^{13,14} We analyzed transcription of *metK*, *adpA* and *strR*, together with several genes involved in biosynthesis of streptomycin (*strB1*, *strF* and *strD*) (Table 3).

As expected, the *rsmG* mutant, but not the *rpsL* K88E mutant, exhibited elevated levels of *metK*, *strR*, *strB1*, *strF* and *strD* expression compared with the wild-type strain at late growth phase (36 h) (Figure 1), thus underlying the enhanced production of streptomycin in the *rsmG* mutant. StrR is a regulator of the streptomycin biosynthesis operon¹⁵ and AdpA acts as a central transcriptional regulator in the A-factor regulatory cascade of *S. griseus*.¹⁶ Although the elevated levels of *metK* and *strR* expression account well for the marked enhancement of biosynthetic gene expression (*strB1*, *strD* and *strF*), it is not yet clear why *adpA* gene expression was not activated in the *rsmG* mutant.

Effects of *rsmG* mutation on transcription of secondary metabolite– biosynthetic gene clusters

A recent study in our laboratory indicated that certain mutations in *rpoB* (encoding RNA polymerase β-subunit) or *rpsL* genes can activate 'silent' genes of actinomycetes, leading to the discovery of novel antibacterial agents.¹⁷ The activation of silent genes by generating rpoB H437D or rpoB H437L mutations in Streptomyces sp. 631689 was attributed, at least partly, to the increased affinity of the mutant RNA polymerase for promoters.¹⁷ Thus, we analyzed the expression of secondary metabolite-biosynthetic gene clusters in the S. griseus rsmG mutant, KO-1050. A total of 18 genes belonging to 18 secondary metabolite-biosynthetic gene clusters (Table 3) were subjected to transcriptional analysis by real-time qPCR, and the results indicated that the levels of expression of these genes are quite low (1/10-1/1000 compared with that of strB1), thus representing silent or poorly expressed genes. Strikingly, analysis of cells harvested at late growth phase (36 h) indicated that the rsmG mutation affected not only streptomycin biosynthesis but also the expression of other secondary metabolite-biosynthetic genes, although the effects were not dramatic (Figure 2). Enhancement of expression was pronounced in SGR3267 (putative cytochrome P450 involved in Type II polyketide synthases or non-ribosomal peptide synthetases) and SGR962 (putative squalenehopene cyclase involved in hopanoid synthesis). By contrast, the *rpsL* K88E mutant, KO-1052, did not show any enhanced expression of those genes (data not shown).

CONCLUDING REMARKS

We showed that *rsmG* mutation is effective not only for enhancement of streptomycin production but also for activation of silent or poorly expressed genes in *S. griseus*. Although a biochemical approach (for example, measurement of *in vitro* protein synthesis activity) was not

Figure 1 Transcriptional analysis of *adpA*, *metK*, *strB*, *strD* and *strF* by real-time quantitative PCR (qPCR). The RNAs were extracted from cells of wild-type (13189), *rsmG* (KO-1050) and *rpsL* K88E (KO-1052) mutant strains grown to early growth phase (9 h), mid growth phase (24 h) or late growth phase (36 h) in SPY medium. Total RNA preparation and real-time qPCR were performed as described in Materials and Methods. The error bars indicate the standard deviations of the means of three or more samples.

Figure 2 Transcriptional analysis of the genes involved in the secondary metabolite-biosynthetic gene clusters. The RNAs were extracted from cells of wild-type (13189) and *rsmG* (KO-1050) mutant strains grown to late growth phase (36 h). Total RNA preparation and real-time quantitative PCR was performed as described in Materials and Methods. Error bars indicate the standard deviations of the means of three or more samples.

employed in the present study, it is possible that the expression of pathway-specific regulatory genes is governed by higher-order regulatory proteins and expression of such higher-order regulatory proteins may be significantly affected under conditions associated with enhanced *metK* expression in mutants. The present method, together with other methods reported recently,^{6,7,17–20} may be useful for activating silent genes, eventually leading to the discovery of novel antibacterial agents.

ACKNOWLEDGEMENTS

This work was supported by grants to KO (Effective Promotion of Joint Research of Special Coordination Funds) from the Ministry of Education, Culture, Sports and Technology of the Japanese Government.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

1 Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

- 2 Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
- 3 Ikeda, H. *et al.* Complete genome sequence and comparative analysis of the industrial microorganism *Streptomyces avermitilis. Nat. Biotechnol.* **21**, 526–531 (2003).
- 4 Ohnishi, Y. et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060 (2008).
- 5 Nishimura, K., Hosaka, T., Tokuyama, S., Okamoto, S. & Ochi, K. Mutations in *rsmG*, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **189**, 3876–3883 (2007).
- 6 Tanaka, Y. et al. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Appl. Environ. Microbiol. 75, 4919–4922 (2009).
- 7 Wang, G., Hosaka, T. & Ochi, K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl. Environ. Microbiol. 74, 2834–2840 (2008).
- 8 Ochi, K. From microbial differentiation to ribosome engineering. *Biosci. Biotechnol. Biochem.* **71**, 1373–1386 (2007).
- 9 Tamehiro, N. et al. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl. Environ. Microbiol. 69, 6412–6417 (2003).
- 10 Beltrametti, F., Rossi, R., Selva, E. & Marinelli, F. Antibiotic production improvement in the rare actinomycete *Planobispora rosea* by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and to rifamycin. *J. Ind. Microbiol. Biotechnol.* **33**, 283–288 (2006).
- 11 Ochi, K. Metabolic initiation of differentiation and secondary metabolism by *Streptomyces griseus*: significance of the stringent response (ppGpp) and GTP content in relation to A factor. *J. Bacteriol.* **169**, 3608–3616 (1987).
- 12 Okamoto, S., Lezhava, A., Hosaka, T., Okamoto Hosoya, Y. & Ochi, K. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **185**, 601–609 (2003).
- 13 Saito, N., Kurosawa, K., Xu, J., Okamoto, S. & Ochi, K. Effect of S-adenosylmethionine on antibiotic production in *Streptomyces griseus* and *Streptomyces griseoflavus*. *Actinomycetologica* **17**, 47–49 (2003).
- 14 Shin, S. K., Xu, D., Kwon, H. J. & Suh, J. W. S-adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in *Streptomyces griseus*. *FEMS Microbiol. Lett.* **259**, 53–59 (2006).
- 15 Retzlaff, L. & Distler, J. The regulator of streptomycin gene expression, StrR, of *Streptomyces griseus* is a DNA binding activator protein with multiple recognition sites. *Mol. Microbiol.* **18**, 151–162 (1995).
- 16 Ohnishi, Y., Yamazaki, H., Kato, J. Y., Tomono, A. & Horinouchi, S. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in *Streptomyces griseus. Biosci. Biotechnol. Biochem.* **69**, 431–439 (2005).
- 17 Hosaka, T. et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat. Biotechnol. 27, 462–464 (2009).
- 18 Rigali, S. *et al.* Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by *Streptomyces. EMBO Rep.* 9, 670–675 (2008).
- 19 Carata, E. et al. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (*rif*) mutants affected in erythromycin production. *Microb. Cell. Fact.* **8**, 18 (2009).
- 20 Tala, A. *et al.* Activation of dormant bacterial genes by *Nonomuraea* sp. strain ATCC 39727 mutant-type RNA polymerase. *J. Bacteriol.* **191**, 805–814 (2009).