NOTE

A Novel Indole-diterpenoid, JBIR-03 with Anti-MRSA Activity from *Dichotomomyces cejpii* var. *cejpii* NBRC 103559

Masahiro Ogata, Jun-ya Ueda, Midori Hoshi, Junko Hashimoto, Takuji Nakashima, Kozue Anzai, Motoki Takagi, Kazuo Shin-ya

Received: July 20, 2007 / Accepted: September 19, 2007 © Japan Antibiotics Research Association

Abstract A new indole-diterpene, JBIR-03 (1), was isolated from the fungus *Dichotomomyces cejpii* var. *cejpii* NBRC 103559 and its structure was determined based on the spectroscopic data. **1** exhibited anti-MRSA (methicillinresistant *Staphylococcus aureus*) activity and antifungal activity against apple Valsa canker-causing fungus, *Valsa ceratosperma*, while it exhibited no toxicity towards human cancer cells.

Keywords JBIR-03, indole-diterpene, *Dichotomomyces cejpii*, MRSA, *Valsa ceratosperma*

Introduction

During the past decade, nosocomial infections caused by methicillin-resistant *Staphylococcus aureus* (MRSA) in hospitals have become a serious clinical problem [1]. Vancomycin has been used for the treatment of infections due to MRSA. However, vancomycin-resistant *S. aureus* has recently been isolated [2]. The emergence of vancomycin-resistant bacterial strains is a very serious public health problem. Therefore, a new anti-MRSA antibiotic is clinically of interest. On the other hand, Valsa

canker, caused by the fungus *Valsa ceratosperma* is a significant disease of apple in the Pacific Rim countries, including Japan, China, and Korea [3]. It is also found occasionally on pear and quince. In northern Japan, the disease is especially severe with more than 35% of orchards affected to some degree. However, information available to help with breeding against Valsa canker in apples is limited [4]. In our course of screening for anti-MRSA activity, we isolated a new indole-diterpenoid designated as JBIR-03 (1) from mycelium of *Dichotomomyces cejpii* var. *cejpii* NBRC 103559.

D. cejpii var. cejpii NBRC 103559 was cultured at 27°C for 14 days in 500-ml Erlenmeyer flasks each containing a solid medium consisting of 15 g oatmeal and 50 ml V8 Mix Juice (Campbell Soup Company). The mycelium

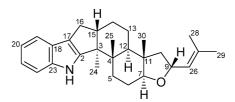


Fig. 1 Structure of JBIR-03 (1).

K. Shin-ya (Corresponding author): Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan, E-mail: k-shinya@aist.go.jp

M. Takagi (Corresponding author), J. Ueda, M. Hoshi, J. Hashimoto: Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan,

E-mail: motoki-takagi@aist.go.jp

M. Ogata: Department of Microbiology, Faculty of Pharmaceutical Sciences, Aomori University; 2-3-1 Koubata, Aomori-shi, Aomori, 030-0943, Japan

T. Nakashima, K. Anzai: NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan

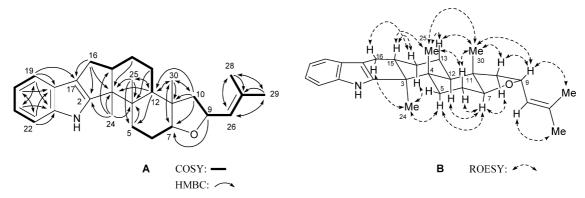
M. Ogata, J. Ueda: These authors contributed equally to this work.

Table 1 Physico-chemical properties of JBIR-03 (1)

A	C-1	
Appearance	Colorless needle	
MP	142.5~148.0°C	
$[\alpha]_{D}^{24.5}$	+46.2° (c 0.05, MeOH)	
HR-ESI-MS (m/z)		
found	404.2953 (M+H) ⁺	
calcd	404.2929	
UV λ_{\max} (MeOH) nm (log $arepsilon$)	229 (4.42), 280 (3.76)	
IR v_{max} (CHCl ₃) cm ⁻¹	3477	

(500 ml \times 8) was extracted with 80% Me₂CO. After concentration *in vacuo*, the residual concentrate was extracted with EtOAc (200 ml \times 3). After drying over Na₂SO₄, the organic layer was evaporated to dryness. The dried residue (0.48 g) was applied to normal-phase MPLC (Purif-Pack SI-60, Moritex) and developed with a *n*-hexane-EtOAc linear gradient system to yield an active fraction (40 \sim 55% EtOAc eluate). The active eluate was subjected to preparative reversed-phase HPLC (90% MeOH-H₂O, Senshu Pak PEGASIL ODS 20 i.d.× 150 mm) to yield 1 (1.0 mg; Rt, 14.5 minutes).

The physico-chemical properties of 1 are summarized in Table 1. 1 was obtained as colorless needles (MP 142.5~ 148.0°C) and its molecular formula was determined to be $C_{28}H_{37}NO$ by HR-ESI-MS. The IR (v_{max} 3477 cm⁻¹) and UV (λ_{max} 229, 280 nm) spectra of 1 suggested the presence of an indole moiety [5, 6]. The ¹H- and ¹³C-NMR spectra (Table 2) revealed the signals of ten sp^2 carbons (C-2, δ_C 151.9; C-17, $\delta_{\rm C}$ 117.8; C-18, $\delta_{\rm C}$ 126.0; C-19 $\delta_{\rm H}$ 7.28, $\delta_{\rm C}$ 118.6; C-20, $\delta_{\rm H}$ 6.92, $\delta_{\rm C}$ 119.6; C-21, $\delta_{\rm H}$ 6.95, $\delta_{\rm C}$ 120.7; C-22, $\delta_{\rm H}$ 7.28, $\delta_{\rm C}$ 112.6; C-23, $\delta_{\rm C}$ 141.8; C-26, $\delta_{\rm H}$ 5.32, $\delta_{\rm C}$ 127.7; C-27, $\delta_{\rm C}$ 135.7), two oxygenated carbons (C-7, $\delta_{\rm H}$ 3.30, $\delta_{\rm C}$ 87.4; C-9, $\delta_{\rm H}$ 4.90, $\delta_{\rm C}$ 75.1), two vinyl methyl groups (C-28, $\delta_{\rm H}$ 1.68, $\delta_{\rm C}$ 18.1; C-29, $\delta_{\rm H}$ 1.73, $\delta_{\rm H}$ 26.0), and three methyl groups (C-24, $\delta_{\rm H}$ 1.03, $\delta_{\rm C}$ 15.0; C-25, $\delta_{\rm H}$ 1.11, $\delta_{\rm C}$ 21.0; C-30, $\delta_{\rm H}$ 0.91, $\delta_{\rm C}$ 15.4). In the ¹H-¹H COSY spectrum of 1, spin couplings among aromatic protons 19-H ($\delta_{\rm H}$ 7.28), 20-H ($\delta_{\rm H}$ 6.92), 21-H ($\delta_{\rm H}$ 6.95) and 22-H ($\delta_{\rm H}$ 7.28) revealed the presence of a 1,2-disubstituted benzene ring. The sequence from 10-H ($\delta_{\rm H}$ 1.97, 1.25) through 9-H $(\delta_{\rm H}$ 4.90) to 26-H $(\delta_{\rm H}$ 5.32) which in turn allylic coupled to methyl protons 28-H ($\delta_{\rm H}$ 1.68) and 29-H ($\delta_{\rm H}$ 1.73) established a 4-methylpent-3-en-2-ol moiety. In the same manner, a pentane and a propan-1-ol moiety were recognized. In the HMBC spectrum of 1, the aromatic proton 19-H was peri coupled to aromatic quaternary carbon C-17 ($\delta_{\rm C}$ 117.8), which was further long-range coupled to methylene protons 16-H ($\delta_{\rm H}$ 2.61, 2.29). In addition, 16-H was long-range coupled to an aromatic carbon C-2 ($\delta_{\rm C}$ 151.9). Taking into consideration these correlations and UV absorption vide supra, a 2,3disubstituted indole residue was established. ¹H-¹³C longrange couplings between 16-H and C-3 ($\delta_{\rm C}$ 53.9), between a methyl proton 24-H ($\delta_{\rm H}$ 1.03) and C-2, C-3, C-4 ($\delta_{\rm C}$ 41.4) and C-15 ($\delta_{\rm C}$ 50.1), and between a methyl proton 25-H ($\delta_{\rm H}$ 1.11) and C-3, C-4, C-5 ($\delta_{\rm C}$ 34.4) and C-12 ($\delta_{\rm C}$ 47.6) elucidated the connectivity among these substructures as shown in Fig. 2A. Likewise, a methyl proton 30-H ($\delta_{\rm H}$ 0.91) to C-7 ($\delta_{\rm C}$ 87.4), C-10 ($\delta_{\rm C}$ 49.6), C-11 ($\delta_{\rm C}$ 46.1) and C-12 proved the tri-ring system. Finally, long-range couplings between the methylene proton 10-H and C-7, C-11 and C-12, and between an oxymethine proton 9-H $(\delta_{\rm H} 4.90)$ and C-7 established the tetrahydrofuran moiety. Thus, the planar structure of 1 was determined as shown in Fig. 2A.


The relative configuration was assigned on the basis of coupling constants and the analysis of a ROESY experiment measured in pyridine- d_5 . The large coupling constants for $J_{6H.7H}$ (11.7 Hz) and $J_{14H.15H}$ (10.5 Hz) suggested that 7-H and 15-H are in axial location. The ROESY correlations (Fig. 2B) between 7-H, 5- α H, 10- α H and 12-H, and between 24-H, 5- α H, 14- α H and 16- α H indicated these protons located the same direction. The ROESY correlations between 25-H, 6- β H, 13- β H, 15-H and 30-H, between 10- β H, 9-H and 30-H, and between 9-H and 30-H also revealed that 6- β H, 9-H, 10- β H, 13- β H, 15-H, 4-Me (25-H) and 11-Me (30-H) are in β -orientation. Thus, the structure of 1 was established as shown in Fig. 1. The structure of 1 resembled those of emindole SB [5] and paspaline [6], which were reported as indoloditerpenes except for the tetrahydrofuran moiety. Although lots of indolediterpenes such as emindole SB [5], paspaline [6], petromindole [7] and paxilline [8] were reported, the terminal ring system of these compounds commonly consisted of a 6-membered ring such as pyran. In contrast, the structure of 1 possessing the terminal ring system that consists of a 5-membered ring such as furan in this series of nodulisporic acids [9] is very rare.

1 was examined for antimicrobial activities against *S. aureus* N315, MRSA (*S. aureus* N315 Δ I-HR), *Bacillus subtilis* JCM2499, *Pseudomonas aeruginosa* JCM5962, *Escherichia coli* IID 5208 and *V. ceratosperma* which is resistant to known antifungal compound such as griseofulvin. 1 inhibited the growth of Gram-positive and Gram-negative bacteria at concentrations of 32 and 64 μ g/ml, respectively. 1 also inhibited the growth of *V. ceratosperma* with an MIC value of 128 μ g/ml. To the contrary, 1 did not show any cytotoxic activity against a human HT-1080 fibrosarcoma cell line at a concentration of 100 μ M.

Table 2 ¹³C (150 MHz)- and ¹H (600 MHz)-NMR data for **1**

	¹³ C ^a	¹ H ^a	¹ H ^b
2	151.9		
3	53.9		
4	41.4		
5 34.4	34.4	1.94 (m)	1.88 (m)
		1.87 (m)	1.79 (m)
6 23.	23.5	1.88 (m)	1.82 (m)
		1.78 (m)	1.74 (m)
7	87.4	3.30 (m)	3.28 (dd, 11.7, 1.8)
9	75.1	4.90 (m)	4.94 (q, 8.2)
10 49.6	49.6	1.97 (dd, 11.5, 7.1)	1.88 (ddd, 11.2, 6.7, 2.1)
		1.25 (m)	1.17 (m)
11	46.1		
12	47.6	1.74 (m)	1.78 (m)
13	26.4	1.58 (m)	1.53 (br q, 12.5)
	1.53 (m)	1.41 (m)	
14 26.3	26.3	1.75 (m)	1.75 (m)
		1.67 (m)	1.64 (m)
15	50.1	2.75 (br q, 10.5)	2.79 (m)
16	28.3	2.61 (dd, 12.9, 6.5)	2.76 (m)
		2.29 (dd, 12.9, 10.9)	2.45 (t, 10.6)
17	117.8		
18	126.0		
19	118.6	7.28 (br d, 7.9)	7.55 (m)
20	119.6	6.92 (brt, 7.5)	7.21 (td, 7.6, 1.5)
21	120.7	6.95 (brt, 7.5)	7.25 (td, 7.9, 1.5)
22	112.6	7.28 (br d, 7.9)	7.70 (br d, 7.6)
23	141.8		
24	15.0	1.03 (s)	1.11 (s)
25	21.0	1.11 (s)	1.38 (m)
26	127.7	5.32 (dd, 8.8, 1.0)	5.51 (dd, 8.5, 1.2)
27	135.7		
28	18.1	1.68 (s)	1.69 (s)
29	26.0	1.73 (s)	1.62 (s)
30	15.4	0.91 (s)	0.89 (s)

 $^{^{\}rm a}$ Measured in methnol- $d_{\rm 4}$ including 4.0% CDCl $_{\rm 3}$. $^{\rm b}$ Measured in pyridine- $d_{\rm 5}$.

Fig. 2 Key correlations in ¹H-¹H COSY (solid line) and HMBC (solid arrow, A), and ROESY experiments (dashed arrow, B) of **1**.

Acknowledgement This work was supported by a grant from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References

- Livermore DM. β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8: 557–584 (1995)
- Centers for Disease Control and Prevention. Staphylococcus aureus resistant to vancomycin-United States, 2002. Morb Mortal Wkly Rep 51: 565–567 (2002)
- 3. Sakuma T. Valsa canker. *In* Compendium of Apple and Pear Diseases. *Ed.*, A. L. Jones, H. S. Aldwinckle, pp. 39–40, APS Press, St. Paul (1990)
- Abe K, Kotoda N, Kato H, Soejima J. Resistance sources to Valsa canker (*Valsa ceratosperma*) in a germplasm collection of diverse Malus species. Plant Breeding 4: 449–453 (2007)
- 5. Nozawa K, Yuyama M, Nakajima, S, Kawai K, Udagawa S.

- Studies on fungal products. part 19. Isolation and structure of a novel indoloditerpene, emindole SA, from *Emericella striata*. J Chem Soc, Perkin Trans 1: 2155–2160 (1988)
- Fehr T, Acklin W. Die Ioslierung zweier neuartiger Indol-Derivate aus dem Mycel von Claviceps paspali Stevens et Hall. Helv Chim Acta 49: 1907–1910 (1966)
- Ooike M, Nozawa K, Udagawa S, Kawai K. Structures of a new type of indoloditerpene, petromindole, and a new asterriquinone derivative, PM-53, from the ascostromata of Petromyces muricatus. Chem Pharm Bull 45: 1694–1696 (1997)
- 8. Springer JP, Clardy J, Wells JM, Cole RJ, Kirksey JW. The structure of paxilline, a tremorgenic metabolite of *Penicillium paxilli* Bainier. Tetrahedron Lett 16: 2531–2534 (1975)
- Singh SB, Ondeyka JG, Jayasuriya H, Zink DL, Ha SN, Dahl-Roshak A, Greene J, Kim JA, Smith MM, Shoop W, Tkacz JS. Nodulisporic acids D~F: Structure, biological activities, and biogenetic relationships. J Nat Prod 67: 1496–1506 (2004)