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Ecological dynamics and co-occurrence among
marine phytoplankton, bacteria and myoviruses
shows microdiversity matters

David M Needham, Rohan Sachdeva and Jed A Fuhrman
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

Numerous ecological processes, such as bacteriophage infection and phytoplankton–bacterial
interactions, often occur via strain-specific mechanisms. Therefore, studying the causes of microbial
dynamics should benefit from highly resolving taxonomic characterizations. We sampled daily to
weekly over 5 months following a phytoplankton bloom off Southern California and examined the
extent of microdiversity, that is, significant variation within 99% sequence similarity clusters,
operational taxonomic units (OTUs), of bacteria, archaea, phytoplankton chloroplasts (all via 16S or
intergenic spacer (ITS) sequences) and T4-like-myoviruses (via g23 major capsid protein gene
sequence). The extent of microdiversity varied between genes (ITS most, g23 least) and only
temporally common taxa were highly microdiverse. Overall, 60% of taxa exhibited microdiversity;
59% of these had subtypes that changed significantly as a proportion of the parent taxon, indicating
ecologically distinct taxa. Pairwise correlations between prokaryotes and myoviruses or phytoplank-
ton (for example, highly microdiverse Chrysochromulina sp.) improved when using single-base
variants. Correlations between myoviruses and SAR11 increased in number (172 vs 9, Spear-
man40.65) and became stronger (0.61 vs 0.58, t-test: Po0.001) when using SAR11 ITS single-base
variants vs OTUs. Whole-community correlation between SAR11 and myoviruses was much improved
when using ITS single-base variants vs OTUs, with Mantel rho= 0.49 vs 0.27; these results are
consistent with strain-specific interactions. Mantel correlations suggested 41 μm (attached/large)
prokaryotes are a major myovirus source. Consideration of microdiversity improved observation of
apparent host and virus networks, and provided insights into the ecological and evolutionary factors
influencing the success of lineages, with important implications to ecosystem resilience and
microbial function.
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Introduction

Microbial communities are diverse and dynamic,
and knowledge of the factors that control the success
of individual populations is important to under-
standing microbial influence on ecosystems and
biodiversity. Although some microbial community
variation is broadly predictable using coarse
phylogenetic characterization of microorganisms
(Fuhrman et al., 2006; Teeling et al., 2016), other
controlling factors, such as viral infection
(Rodriguez-Brito et al., 2010; Avrani et al., 2011;
Marston et al., 2012; Thingstad et al., 2014) and
phytoplankton–prokaryote associations (Amin et al.,
2015, 2012), may require more finely resolved
community characterizations. Significantly, we do
not know the relevant ecological and taxonomic

units that are useful for observing the dynamics of
‘populations’ in the environment, for example, do
16S ribosomal RNA (rRNA) sequences have the
required resolution (and at what sequence similarity
level) or are more highly resolving genes such as the
intergenic spacer (ITS) better (as commonly used to
distinguish different marine cyanobacteria (Rocap
et al., 2003)). To what extent should we expect the
necessary resolution to vary between different con-
trolling factors? These issues represent a subset of
the thorny but fundamental problems in microbiol-
ogy of knowing how resolving one needs to be in
order to understand microbial processes and inter-
actions. Although classical taxonomic terms like
genus, species, subspecies and strain are common in
the literature when referring to cultured organisms,
there are no well-accepted rules for translating these
names via sequence data from uncultured organisms
in nature. In any case, we usually do not even know
which level of resolution is most ecologically
relevant in the first place; too resolving may
differentiate taxa based on functionally irrelevant
variation and decrease predictive power to observe
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environmental and biological community covaria-
tion (Lu et al., 2016), whereas too coarse obscures
important variation relating to particular ecological
phenomena such as specific interactions. Dealing
with these issues is a challenging problem, and we
suggest that one of the best practical ways to do so
with the natural spectrum of actual microbial
variation is through empirical observations of nat-
ural dynamics, observing the relationships among
organisms and environmental variation through time
series measurements. Microbial communities in the
surface ocean have turnover times of a few days or
less (Fuhrman and Caron, 2016), therefore observing
their relationship may benefit from daily-to-weekly
resolution. Here, we examine the bacteria, archaea,
phytoplankton and viruses over a 5-month interval
following the decline of a phytoplankton bloom
through to oligotrophic summer conditions, at a
temporal resolution of days to weeks and at
phylogenetic resolution down to specific single
nucleotides of marker genes.

With recent advances in methodological and
sequencing technologies it is now possible to resolve
single-nucleotide variation within marker genes of
populations and communities (Eren et al., 2013,
2014; Tikhonov et al., 2015; Callahan et al., 2016).
Often these finely resolved taxa display distinct
ecological dynamics, suggesting they are function-
ally different in ecologically relevant ways (Eren
et al., 2013, 2014; Tikhonov et al., 2015). These
single-base pair differences are obscured by standard
16S rRNA sequence clustering techniques (for
example, Eren et al., 2014; Reveillaud et al., 2014;
Newton et al., 2015; Turlapati et al., 2015). Here we
examine the extent of significant sequence variations
within sequence clusters to help understand the
extent to which clusters appear to be made up of a
single genetic entity, that is, ‘clone-line’, which is a
consequence of the evolutionary and ecological
forces that dictate the success of taxa. In addition,
the amount of ‘intra-species’ variation is thought to
positively influence productivity and resilience of
lineages (Tesson et al., 2014; Sjöqvist and Kremp,
2016), so observing how the extent of microdiversity
varies between taxa will help understand the
ecological resilience of particular lineages.

Diversity and dynamics of bacterial, archaeal and
eukaryotic communities have often been character-
ized via the ‘universal’ SSU rRNA gene (16S for
prokaryotes, 18S for eukaryotes). The strength and
weakness of the SSU rRNA gene both derive from its
conservation: although it allows exploration of
nearly all cellular life, the resulting sequence
diversity often does not allow distinguishing known
species and strains. On the other hand, the 16S–23S
ITS region is highly variable in sequence and length;
however, ITS sequence length variability and diver-
sity hinders the ability to develop a universal, or
nearly universal assay, for high throughput sequen-
cing. However, the ITS can and has been utilized to
distinguish between taxa within a group such as the

cyanobacteria (Rocap et al., 2002) and the marine
SAR11 clade (García-Martínez and Rodríguez-
Valera, 2000; Rocap et al., 2003; Brown and
Fuhrman, 2005). Thus, to examine one group at a
resolution higher than 16S, even with single-
nucleotide resolution, we developed a novel ITS
sequence analysis to interrogate the sequence diver-
sity and dynamics of the most abundant microbial
lineage in the ocean, the SAR11 clade (Morris et al.,
2002).

Unlike cellular communities, viruses contain no
universal gene. However, the major capsid protein
gene, (g23), of T4-like-myovirus superfamily has
often been used to study viral dynamics as they are
abundant in the ocean (Breitbart et al., 2002; Filée
et al., 2005; Yooseph et al., 2007) and infect a variety
of marine bacteria including cyanobacteria (Sullivan
et al., 2003; Marston and Amrich, 2009; Ignacio-
Espinoza and Sullivan, 2012), SAR11 (Zhao et al.,
2013) and gammaproteobacteria (Nolan et al., 2006;
Petrov et al., 2010). A recent report suggests that
marine Thaumarchaea may also be infected by these
myoviruses (Labonté et al., 2015). As assessed by
molecular fingerprinting studies of g23, the T4-like-
myovirus community composition can be relatively
stable over days to weeks, for example, during
summer (Needham et al., 2013), but with seasonally
distinctive communities over months to years (Chow
and Fuhrman, 2012; Pagarete et al., 2013; Goldsmith
et al., 2015).

Here we report on our application of the high-
resolution sequence analyses to the 16S rRNA of
bacteria, archaea, 16S chloroplast sequences of eukar-
yotic phytoplankton, ITS of SAR11 and g23 sequen-
cing of T4-like-myoviruses during and following a
marine spring phytoplankton bloom. Such blooms,
representing somewhat predictable and large ecologi-
cal disturbance, happen annually over much of the
world ocean and are particularly important events to
study to more fully understand global nutrient and
energy cycles (Ducklow et al., 2001; Teeling et al.,
2012, 2016). We use mock communities generated
from environmental sequence clones to examine the
precision and accuracy of the 16S and g23 assays and
to validate the application of the high-resolution
sequencing analysis methods. From environmental
sequences, we assess the extent that 99% sequence
clusters, operational taxonomic units (OTUs) can be
‘decomposed’ (that is, broken into finer resolved taxa),
and the extent to which these finer resolved taxa are
ecologically distinct. We then examine the ecological
dynamics of these finely resolved taxa and the extent
that fine resolution improves observation of apparent
ecological associations.

Materials and methods
Sampling and processing
Seawater was collected and filtered from the top
meter at the San Pedro Ocean Time-series (33°33’ N,
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118°24’ W) between March 12 and September 28,
2011, at a daily-to-weekly resolution as previously
described (Needham and Fuhrman, 2016). Methods
and data for the physical, chemical and seawater size
fractionation for community composition, and 16S
PCR amplification have been previously described
and are published (Needham and Fuhrman, 2016).
We studied two size fractions, calling the organisms
caught on the Gelman type A/E glass filter (approx-
imate pore size 1 μm) ‘large and/or attached,’ and
those passing that filter and caught on the 0.22 μm
pore size Durapore filter ‘small and free-living.’

g23 and SAR11 sequencing assays
To amplify and sequence the g23 major capsid protein
gene on the IlluminaMiSeq platform, PCRwas performed
first with g23 primers, T4-SuperF1 (5ʹ-GAYHTIKSIGGIG-
TICARCCIATG-3ʹ) and T4-SuperR1 (5ʹ-GCIYKIARRT-
CYTGIGCIARYTC-3ʹ) (Chow and Fuhrman, 2012),
followed by additional rounds of PCR with Illumina
sequencing adapters (Supplementary Methods).

To design primers specific for SAR11 ITS, poten-
tial ITS sequences were selected from Sanger
metagenomic reads from the Global Ocean Survey
(GOS) (Venter et al., 2004; Rusch et al., 2007) and the
Gulf of Maine (GoMA) (Tully et al., 2011). This was
done by searching for the ‘universal’ SSU rRNA gene
primer 1492R (5ʹ-TACGGCTACCTTGTTACGAC
TT-3ʹ) against the GOS and GoMA metagenomes
using BLASTn (Altschul et al., 1990) (word size = 7)
and retaining reads with o2 mismatches. These
sequences were classified by BLASTn search against
the SILVA database and sequences classified as
members of the SAR11 clade were used to identify
a marine SAR11 group-specific primer. The forward
primer ‘SAR11_ITS_F1’ (5ʹ-CCGTCCKCRYTTCTBTT-
3ʹ) is located about 45 bases within the ITS sequence of
SAR11 (near the 16S end) and reverse primer
‘SAR11_23S_R1’ (5ʹ-WBWGTGCCDAGGCATYC-3ʹ) is
located about 45 bases inside the 23S ribosomal
subunit, resulting in an in silico length range of
367–447 bp (see Supplementary Methods for PCR
cycling conditions).

Mock community generation
16S ‘even’ (10 clones, 10% each) and ‘staggered’
(range 0.01–35%) mock communities were generated
by mixing 16S environmental clone sequences at
known concentrations, as previously described
(Parada et al., 2016). Similarly, we generated an ‘even’
T4-like-myovirus mock communities from San Pedro
Ocean Time-series environmental g23 sequence clones
(Chow and Fuhrman, 2012; Supplementary Methods).

Sequence analysis
All sequence analysis commands and steps are
available via Figshare (https://doi.org/10.6084/m9.
figshare.4546813) and see Supplementary Methods.
Briefly, g23 and SAR11 ITS sequences were trimmed

via Trimmomatic (Bolger et al., 2014) merged length
in USEARCH7 with fastq_mergepairs (Edgar, 2013).
g23 sequences that had stop codons or unidentified
residues in all translation frames were removed (Rice
et al., 2000). For SAR11 ITS and g23 sequences,
chimeras were detected de novo via identify_chimer-
ic_seqs.py within QIIME (Caporaso et al., 2010) with
USEARCH61 (settings: usearch61_minh 0.05,
usearch 61_mindiffs 1, usearch 61_xn 2) and
removed. Ninety nine percent DNA sequence simi-
larity OTU clusters were generated with pick_otus.
py in QIIME with UCLUST.

16S sequence analysis was similar to that above (and
was previously fully described (Needham and Fuhrman,
2016)); see Supplementary Methods for details.

Decomposition of 99% OTUs
We used minimum entropy decomposition (MED)
(Eren et al., 2014) to decompose (that is, split into
single-base variants) 99% OTUs that exceeding a
threshold of 0.4% (relative abundance) on average or
2.5% on any day of the time series. MED utilizes
sequence alignment positions of high variation,
higher than background sequence variation, to
partition sequences into homogenous types that can
be differentiated from close relatives by as little as a
single-specific base. Although MED was designed to
partition the full data set at once, we performed the
analysis on individual OTUs because we were
interested, specifically, in the amount of variation
obscured by standard cluster OTUs; our approach is
similar to the related Oligotyping approach, which is
the predecessor of the MED program (Eren et al.,
2013). All of the sequences from each of these 99%
OTUs (103–105 sequences each) were aligned with
MAFFT v7.123b (–retree 1 –maxiterate 0 –nofft
–parttree) (Katoh et al., 2002) and then we deter-
mined Shannon entropy (a metric that assigns a
value to a string of characters based on the amount of
variation observed (Eren et al., 2014)). We used the
16S mock communities, made from cloned environ-
mental sequences, to validate the OTU sequence
decomposition approach that we used. Sequence
variations from the pure clones, from a combination
of PCR, cloning and sequencing error, were generally
minor and randomly distributed throughout the
alignments (Supplementary Figures 2 and 3). We
used this variation within what should have been
identical sequences in the 16S mock community to
assign a threshold for determining significant
sequence variations at specific positions in environ-
mental sequences. We did this by observing the
Shannon entropy associated with each position in
the alignments of the 25 clones retrieved after
sequencing. Shannon entropy is zero for a position
that always has the same base, 1.0 for a position that
has 50% each of two bases and a maximum of 2.0
with 25% each of all four bases. The threshold value
we used to distinguish ‘real’ variants from back-
ground, 0.25 (~1 base different every 24 bases within
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a single alignment position), is above the maximum
background variation value observed in the 16S
mock communities (0.24) and 13× higher than
the average of ‘background’ Shannon entropy
(0.019 ±0.019 s.d.) sequence variation, and about
3× the default used in the MED program (Eren et al.,
2014). Many of the 16S mock community sequence
clusters, when observed in the environmental sam-
ples, had numerous wild relatives with positions
of high entropy and were thus decomposed into
multiple amplicon sequence variants (ASVs)
(Supplementary Figure 2). The alignments of envir-
onmental sequences that had entropy at sites 40.25
were decomposed based on those positions,
and decomposition continued until all positions
had entropy o0.25. The following additional thresh-
olds were also set to reduce the likelihood of
erroneous sequences being considered ASVs: the
minimum number of the most abundant sequence
within each ASV must exceed 50 and if ASVs did not
exceed 1% of the parent 99% OTU's composition, on
average, they were removed from analysis.

For the analyses where we investigated preva-
lence, abundance and taxonomic patterns related to
microdiversity, we randomly subsampled the
sequences from each OTU 10 times to the minimum
number of sequences observed for any OTU in the
16S chloroplast, 16S prokaryote or g23 data sets (that
is, relative abundance threshold of 0.4% on average
or above 2.5% on any day of the time series, as
previously described). The minimum sequences for
the different data sets were 724 for prokaryote 16S,
979 for chloroplast 16S and 1085 for g23. The
minimum number of sequences for a SAR11 ITS
OTU was 4288, but to be comparable to the others we
subsampled the SAR11 ITS data to 1000 reads. As an
extra test to examine the prevalence and micro-
diversity, we also subsampled to 2500 sequences for
each OTU (a threshold not met by 5, 13 and 8 OTUs
from the prokaryote, phytoplankton and g23
sequences, respectively, so these were removed for
this analysis). Then, each subset was decomposed
with MED as defined above. The average of the 10
replicate sequence sets for each OTU is reported,
with s.e.m.

Sequence identification

16S sequence classification. Ninety nine percent
sequence similarity OTU clusters were taxonomi-
cally classified via UCLUST assignment against the
SILVA and Greengenes databases, as well as
BLASTn search against the NCBI database, as
previously described (Needham and Fuhrman,
2016). g23 sequences were classified using BLASTx
(minimum e-value, 0.01) against viral proteins from
genomes downloaded from NCBI in March 2015.
Sequences obtained from the SAR11 ITS sequencing
assay were classified by BLASTn search against both
NCBI RefSeq genomic sequences (downloaded

December 2016), and a custom ITS database that
included environmental SAR11 16S-ITS-23S clone
sequences (Brown and Fuhrman, 2005; Brown et al.,
2005), metagenomic reads (Brown et al., 2012) and
SAR11 S4 sequences from SILVA119.

Statistical analyses
All commands used for statistical analyses are avail-
able via Figshare (https://doi.org/10.6084/m9.figshare.
4546813). We identified monotonic increases and
decreases of OTUs and ASVs using the Mann–Kendall
test within the ‘Kendall’ package in R (R Core Team,
2015). To calculate the estimated abundances of the
various ASVs we multiplied the fraction of the ASV
within an OTU by the overall parent OTU relative
abundances for each day. For example, in a given
sample, if an ASV is 50% of the parent and the
parent was 5% of the whole community, then we used
2.5%. Pairwise correlations between estimated abun-
dance of ASVs and OTUs were then determined via
Spearman correlations (Po0.001, Qo0.001) as imple-
mented in the local similarity analysis program
(Xia et al., 2013, 2011) on the types that were present
40.05% (relative abundance) on average and on
at least 25% of sample dates. We used local
similarity analysis ‘mixed’ method for determining
the correlation significance, which determines
P-values based on permutations only for correla-
tions with explicitly determined P-valueso0.05
(Xia et al., 2013, 2011). False discovery rate,
Q-values (o0.001), were used to account for multiple
testing (Storey & Tibshirani 2003).

Network visualizations of correlation matrices
were generated in Cytoscape_v3.0.1 (Shannon
et al., 2003). Mantel tests were performed in R via
the Vegan package on only fully overlapping set of
data, that is, if a sample date did not have a value for
all types of data, that sample date was removed. The
total number of dates for Mantel tests was 32.

The sequence alignment for heatmap phylogeny
was generated via default MUSCLE v3.8.31 (Edgar,
2004) settings with 100 iterations, and consensus
phylogeny was generated via PhyML (Guindon and
Gascuel, 2003) with 100 bootstraps. To calculate the
nonsynonymous to synonymous mutation ratio
(dN/dS) for each g23 OTU, ASVs for each OTU were
translated in frame 1 using transeq, aligned with
MAFFT v7.123b, and converted to codon alignments
using tranalign in EMBOSS 6.6.0.0 (Rice et al., 2000).
dN/dS ratios were then generated using KaKs_
Calculator 2.0 (-c 11 -m MS Po0.05) using codon
alignments (Wang et al., 2010).

Nucleotide sequence accession numbers
Sequences from this study are available via EMBL
project numbers PRJEB14228 (major capsid protein
g23), PRJEB12108 (SAR11 ITS) and PRJEB10834
(SSU rRNA).
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Results

Assessment of sequence analysis methods
To assess the precision and accuracy of the 16S and
g23 PCR-to-analysis pipeline, we analyzed mock
communities of environmental sequence clones
pooled in known proportions. The staggered 16S
community (25 clones, abundance range 0.1–33%)
had an r2 of expected vs observed of 0.97
(Supplementary Figure 2), similarly high to the
0.95 previously reported (Parada et al., 2016). We
used the 16S mock communities (which should have
identical sequences within each OTU) to distinguish
what we consider significant specific sequence
variations vs background sequence and PCR error
within each OTU. We set the threshold for calling
‘real’ native sequence variants higher than the
observed variation in any of the mock community
clones, and 13× the average background variation
level (see Materials and methods section). For the
g23 mock community (9 OTUs, 11% each, which
ranged in length from 276 to 387 bp (mean length
349 ± 30 (s.d.)), the observed abundances ranged
from 4 to 20% (Supplementary Figures 4a–c) and
resulted in a single ASV for each clone (with one
exception, possibly due to an early PCR error). There
was a weak negative correlation between g23
sequence length and observed relative abundance
in the even g23 mock community (Supplementary
Figure 4d). Thus, while we had no mock community
for SAR11 ITS sequences, we expect that length, in

addition to primer bias, may play a small role in
determining the relative abundance of SAR11 ITS
(and g23) sequences observed (Supplementary
Figure 4d).

Diversity and microdiversity within microbial
communities
The sequences from the novel SAR11 ITS sequen-
cing assay, in general, had high similarity to
previously published genome and metagenomic
SAR11 sequences (Supplementary Figure 5) and
the g23 sequences, while often very divergent
from published genome sequences, were predomi-
nantly identifiable as capsid protein sequences
(Supplementary Figure 6). We clustered the 16S,
SAR11 ITS and g23 data sets at a relatively highly
resolved threshold of 99% similarity as a starting
point for investigating finer-scale sequence resolu-
tion. Because high-resolution sequence analyses
depend on high coverage to separate actual sequence
differences from sequencing errors, we focused on
the decomposition of OTUs on the taxa that were
‘abundant’ (40.4% on average or 42.5% on at least
1 day). The percentage of OTUs that decomposed
into at least two ASVs varied between the different
genes: SAR11 ITS most (100%), 16S rRNA second
(59%) and g23 least (49%) (overall mean: 60%;
Table 1). Likewise, the average number of ASVs per
OTU varied between the different genes with the

Table 1 Summary of OTU decomposition of 16S bacteria, archaea, chloroplasts of phytoplankton, g23 of T4-like-myoviruses and SAR11
ITS OTUs

OTU taxon and gene used Decomposed
OTUs/total

ASVs per
OTU

Number of ASVs whose pro-
portions vary non-randomly

over time (Po0.001,
Po0.005)

Number OTUs with 41 ASV
observed as ‘most abundant’
(within an OTU) on some day

during study

Bacteria and Archaea 16S 52/78 2.9 20, 21 21
Actinobacteria 0/2 1 NA, NA NA
Bacteroidetes 20/30 2.2 9, 12 8
Cyanobacteria 2/3 3.7 1, 2 2
Euryarchaeota 4/4 3 3, 3 4
Planctomycetes 1/1 3 0, 0 0
Proteobacteria 22/28 4.2 11, 14 7
Unassigned 1/4 1.3 1, 1 0
Verrucomicrobia 2/6 1.3 1, 1 0

Phytoplankton chloroplast 16S 32/64 2.5 16, 25 26
Prasino-clade 7 0/1 1 NA NA
Chlorophyta 2/8 1.4 1, 2 0
Cryptophyta 2/3 2.0 1, 1 2
Haptophyceae 16/26 3.5 8, 12 13
Stramenopiles 12/26 2.1 6, 10 11

T4-like-viruses g23 35/72 1.9 11,15 7
SAR11 via ITS 26/26 12.4 24, 25 19
SAR11 via 16S 4/4 7 3, 4 0
Total 145/240 3.5 71, 86 80

Abbreviations: ASV, amplicon sequence variant; ITS, intergenic spacer sequence; NA, not applicable.
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ITS, 16S and g23 being decomposed into an average
of 12.4, 2.7 and 1.9 ASVs, respectively (Table 1). For
the g23 sequences, 18 out of 21 of OTUs with 42
ASVs resulted in synonymous mutations, that is,
indicative of purifying selection (Supplementary
Table 1).

To try to explain the differing amounts of micro-
diversity within the OTUs, we examined whether
temporal ubiquity, or prevalence, was related to the
amount of microdiversity. To control for the fact that
more abundant taxa have a greater chance to display
rare variants (and thus exceed the minimum thresh-
old for calling new ASVs), we subsampled the
prokaryotic, chloroplast and g23 data sets to the
minimum number of sequences present within an
OTU for each data set (724, 979, 1085, respectively).
For all groups studied, we observed that OTUs with
the highest microdiversity occurred in taxa that were
highly prevalent (present every day) although some
prevalent taxa had little microdiversity (Figure 1). In
this subsampled data set, the majority of taxa below
0.7 prevalence had only one ASV, with a maximum
of 2. Above 0.7 prevalence, a larger fraction have 2
and some have three or more (up to 6) ASVs. When
the OTUs are subsampled to higher numbers of
sequences (2500), though a few rare OTUs have been
excluded, the overall trend holds (Supplementary
Figure 7). The data suggest that it is necessary to be
prevalent (temporally common) in order to have high
microdiversity, but other factors could limit the
microdiversity even for the most prevalent taxa.
Showing that microdiversity is not related to
abundance alone, when plotted vs OTU abundance,
microdiversity was highest for intermediate, not the
highest abundance taxa (Figure 1; Supplementary
Figure 7). Taxonomy was also a poor predictor of

microdiversity as the amount of microdiversity
varied within lineages (Supplementary Figures 7
and 8; Table 1; Supplementary Table 3).

To assess potential ecological differences between
ASVs, we looked for evidence that the ASVs changed
in relative proportions over time. To increase the
observational power for this analyses we used all the
sequences, not just the random subsets. Overall, 59%
of the taxa that contained 41 ASV had at least one
ASV which significantly changed monotonically as a
proportion of the parent OTU over the 5 months of
study (Mann–Kendall test, Po0.005) (Table 1).
Furthermore, most decomposed taxa had more than
one ASV, which became (at some date) most
abundant within an OTU: phytoplankton, prokar-
yotes and T4-like-myoviruses had 26, 21 and 7,
respectively (Table 1). 19 SAR11 ITS OTUs had more
than one ASV that became most abundant, but no
SAR11 16S OTUs had more than 1 most abundant
ASV. Furthermore, many OTUs had three or more
ASVs that became over 50% of an OTU over the
5 months of study, including eight phytoplankton
OTUs (Figure 2), three prokaryotic OTUs in both size
fractions (Figure 3) and eight prokaryotic OTUs in
either size fraction (Supplementary Figure 9). Ten
SAR11 ITS OTUs had multiple ASVs that became
most abundant within their respective OTU. In
contrast, the g23 data set had no OTUs that had
three or more ASVs become most abundant, but
seven with more than one (Supplementary
Figure 10). Notably, there was a remarkably large
number (430) of co-occurring and dynamic
ASVs in the haptophyte genus Chrysochromulina
(Supplementary Figure 11). We also noted that when
an organism peaked in abundance, it generally
tended to be strongly dominated by a single ASV

Figure 1 Number of ASVs associated with OTUs of various temporal ubiquity for (a) prokaryotes (b) phytoplankton via chloroplasts and
(c) T4-like-myoviruses. Each data set was subsampled 10 times to the minimum number of sequences observed for a given OTU within the
data set, and the average number of ASVs per OTU is shown along with the s.e.m. ASV data for prokaryotes include reads from both 1–80
and 0.22–1 μm size fractions. Occurrence for prokaryotes can be in either small and free-living or large and particle-attached size fractions.
Data are plotted with a slight vertical jitter to help with over-plotted points. One chloroplast OTU was omitted (fraction dates
observed=0.95) because no ASV exceeded the minimum number of sequences required to be considered (that is, the OTU was very
microdiverse). Inset graphs show relationship between ASV and relative abundance of each OTU, showing the patterns in the large graphs
are not due to OTU abundance.
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(Figures 2 and 3, exceptions include the diatom
Thalassiosira in Figure 2), and in some cases
different ASVs peaked in different months (for
example, diatom Guinardia and haptophyte Phaeo-
cystis, Figure 2), indicating ecological differences.

Overall dynamics of T4-like-myovirus ASVs
The relative abundance of T4-like-myovirus ASVs
(ASV proportion of OTU× abundance of parent
OTU) was highly dynamic from day-to-day during
the initial decline of the phytoplankton bloom, with
9 different viral taxa that became most abundant over
18 nearly consecutive days of sampling (Figure 4a).
Over the full 5 months, 40 sampling point, time
series (Figure 4b), 17 different ASVs became most
abundant. However, among the abundant T4-like-
myovirus OTUs (41% on average), the ASVs, where
observed, tended to vary relatively little within

OTUs, thus the dynamics of OTUs largely dictated
the observed dynamics for these abundant T4-like-
myoviruses (Figure 4c). The high variability of T4-
like-myovirus taxa, especially during the initial
bloom decline, is comparable to that observed in
the large or particle-attached prokaryotic commu-
nity, but greater than the small and free-living
prokaryotic community where a single SAR11 OTU
was most abundant on 30 of 39 sampling dates
(Needham and Fuhrman, 2016).

SAR11 dynamics via 16S and ITS sequencing
The SAR11 clade had a large amount of sub-OTU
microdiversity, with 28 16S ASVs (7 per OTU) and
322 ITS ASVs (12.4 per ITS OTU). Overall, the total
SAR11 relative abundance tended to dictate the
relative abundances of the SAR11 16S and
ITS ASVs (ASV proportion of OTU× abundance of

Figure 2 Dynamics of phytoplankton OTUs, which had42 ASVs that became more than 50% of the sequences of a given OTU for at least
one date (in which OTU abundance was 40.1%). The red, blue, green, purple or gold segments of bargraphs represent the proportion that
each ASVmade up of an OTU on a given day. That is, if a ‘red’ ASV is made up of 25% of the sequences of the OTU on a given day, the red
bar is 25%. The black line represents the relative abundance over time of each OTU as a proportion of the whole community; the colored
lines (which correspond to the colors of the bar segments) are the estimated relative abundance of each ASV as a proportion of the whole
community of chloroplast sequences (that is, ASV proportion of OTU *OTU relative abundance of all chloroplast sequences). Only the top
five most abundant ASVs estimated abundances, that is, lines, are shown for each OTU. All ASVs proportions making up41% on average
of an OTU, but not in the top five, are shown as individual gray bar segments (for example, at the top left of the ‘Thalassiosira oceanica a’
panel). The letter following the taxon name corresponds to the average abundance of the taxa relative to other OTUs taxa with that name (a,
most abundant; b, second most abundant and so on).
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parent SAR11 OTU× total SAR11 relative abundance
via 16S) (Figures 5a and b; Supplementary
Figure 12). However, the estimated abundances of
the ASVs did vary from one another (Table 1;
Figures 5a and b), with the variation being much
more considerable for the ITS data, including a
change in the most abundant ASV during the March
phytoplankton bloom decline, which was not
observed in the 16S data (Figures 5a and b). In both
16S and ITS, the dominant ASV decreased as a
proportion of total SAR11 toward the summer,
whereas a variety of ASVs, from the dominant OTU
and others tended to increase (Figures 5a and b;
Supplementary Figure 12). On the other hand,
SAR11 S4 peaked in April (Supplementary
Figure 12), briefly becoming the most abundant
SAR11 ITS ASV then decreasing rapidly, coincident
with an overall decrease in SAR11 abundance.

Correlations among viruses and cellular communities
Overall, the best predictor of the T4-like-virus
community composition (as assessed via the Mantel
statistic) was the composition of the large or particle-
attached prokaryotic community, followed by (suc-
cessively) the small and free-living prokaryotic

community, SAR11 ITS via ASVs community, and
physical and chemical (environmental) conditions
(Supplementary Table 2). Consideration of ASVs,
rather than OTUs, often only marginally improved
Mantel test Rho values (strength of community
correlation), except in the case of SAR11 taxa, where
the correlations of viruses to SAR11 ITS ASVs was
much stronger than to SAR11 16S OTUs, 16S ASVs or
ITS OTUs (0.49 vs 0.27 for SAR11 ITS ASVs to virus
ASVs vs SAR11 ITS OTUs to myoviral OTUs)
(Supplementary Table 2).

Beyond the whole-community level, pairwise
correlations of ASVs revealed that many T4-like-
myoviruses that were abundant during the initial
bloom decline were positively correlated over the
full-time series with a small, but diverse set of
potential hosts, including SAR92, Flavobacteria
(genera: Polaribacter and Formosa), and a Verruco-
microbium taxon (genus: Persicirhabdus) (Spearman
correlation 40.85, Po0.001; Figure 6a). Many strong
positive pairwise associations to phage were also
observed among T4-like ASVs that were abundant
late in spring or summer, including Synechoccocus
and Prochlorococcus. Many associations between
viruses, prokaryotes and phytoplankton (Spearman’s
correlation 4|0.85|) were consistent whether or

Figure 3 Dynamics of bacterial OTUs which had 42 ASVs that became more than 50% of the sequences for a given OTU for at least one
date in both size fractions (not necessarily on the same day), in which OTU abundance was 40.1%. As in Figure 2, the black line
represents the total abundance over time of each OTU; the colored lines (corresponding to bar segments) are the estimated relative
abundance of each ASV (that is, ASV proportion of OTU *OTU relative abundance). Only the top five most abundant ASVs estimated
abundances, that is, lines, are shown for each OTU. All ASVs proportions making up 41% on average of an OTU, but not in the top five,
are shown as individual gray bar segments. The letter following the taxon name corresponds to the average abundance of the taxon relative
to other taxa with that name (a, most abundant; b, second most abundant and so on).
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not ASVs were considered, but the networks were
much more sparse for the OTU networks (Figure 6b),
with notable absences of some positive correlations
such as T4-like phage to Synechococcus and
Flavobacteria (Formosa), and Chrysochromulina
to UCYN-A. This correlation to the UCYN-A ASV
(an important symbiotic diazotroph (Thompson
et al., 2012)) was unexpected because we previously
reported OTU level and slightly lower correlations
to three taxa: Mesopedinella, Prasino-clade-7, and
also the known host, Braarudosphaera bigelowii,
not Chrysochromulina (Needham and Fuhrman,
2016).

Overall, correlations between myoviruses and
SAR11 were not as high as the best correlations
between myoviruses and individual, non-SAR11
prokaryotic taxa. However, there were many sig-
nificant correlations (Po0.001, r40.7) between
SAR11 ITS ASVs and myovirus ASVs and the

average positive pairwise correlation between
SAR11 taxa and myovirus taxa was higher with
consideration of ASVs rather than OTUs (0.61 vs
0.58, Welch’s t-test, Po0.001) and the total number
of correlations was much higher (Figure 7c). Like the
other virus-to-bacteria correlations, most of these
highly correlated taxa peaked either in March or
summer (Figure 7; Supplementary Figure 12).

Discussion

We hypothesized that ecological interpretation of
in situ dynamics of microbial population interac-
tions would benefit from highly resolving sequence
analytical methods as it is well known that ecologi-
cally distinctive microbial species are found within
typical 97 or even 99% similarity clusters by 16S
rRNA (Rocap et al., 2002; Eren et al., 2013; Tikhonov

Fraction of g23 sequences

Figure 4 Dynamics and underlying diversity of T4-like-myovirus ASVs from San Pedro Ocean Time-series March–August 2011.
(a) Dynamics of all T4-like-virus ASVs that were most abundant for at least 1 day during 12 March–1 April, along with chlorophyll
concentration as the gray background (values along the secondary y-axis) and (b) for all ASVs that were41% on average over the full-time
series. (c) Underlying Shannon entropy and (d) dynamics are shown for three g23 OTUs (41% on average) that showed significant
changes in abundance of ASVs as proportion of the parent OTU during the time series (Mann–Kendall test, o0.005). For d, as in Figures 2
and 3, the black line represents the total abundance over time of each OTU; the colored lines (corresponding to bar segments) are the
estimated relative abundance of each ASV (that is, ASV proportion of OTU *OTU relative abundance). g23 OTUs that had more than one
ASV become most abundant are shown in Supplementary Figure 10. T4-like-myovirus OTUs did not have high sequence similarities to
cultured representatives, so were assigned generic names (a, most abundant on average; b, second most abundant and so on).
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et al., 2015) and that such ecological interactions,
such as between host and viruses, can be strain
specific. By applying such methods, where we
resolved finely as single-base variations in the ITS
region, we found what appeared to be ecologically
relevant patterns of phytoplankton, bacterial,
archaeal and viral taxa, but the extent of micro-
diversity varied from taxon-to-taxon, with the more
common taxa tending to have more microdiversity.
In many cases, the patterns corresponded to dis-
tinctive temporal patterns and an improvement in
detection of correlations between viruses and potential
hosts, consistent with narrow host ranges of viruses.
This was particularly true for the SAR11 clade, where
ITS-based ASVs correlated best to viruses (Figure 7d;
Supplementary Table 2). Further, our high-resolution
analysis revealed a stronger Mantel correlation between
myovirus community composition and particle
attached or large prokaryotes (o1 μm) compared to
free-living small prokaryotes. This is consistent with
the hypothesis that particle attached or large bacteria
are a major source of free viruses (Riemann and Gros
sart, 2008; Bettarel et al., 2015).

Extent of microdiversity
Our study used three genes, the 16S rRNA gene of
bacteria, archaea and phytoplankton chloroplasts,

g23 major capsid protein genes of T4-like-
myoviruses viruses and ITS of SAR11 to examine
the extent of microdiversity throughout the micro-
bial community during and after a marine phyto-
plankton bloom, enabling assessment of the extent
and ecological relevance of the microdiversity.
About 60% of sequence cluster OTUs (99% sequence
similarity clusters) had significant sequence variation
within them (ASVs); within about 59% of those OTUs
were ASVs with distinctive time-based pattern of
abundance that suggest the sequence variation is
ecologically relevant. We consider these taxa to be
ecologically distinctive units, not neutral variants,
because population sizes of bacterial lineages in the
ocean are so large that we do not expect founder
effects or genetic drift to have any effect at these time
and spatial scales (Luo et al., 2014). Accordingly,
changes in the relative abundance of variants are
considered to be the result of selection.

The extent of microdiversity varied across taxa
and we found the highest microdiversity was
associated with the most temporally ubiquitous
parent taxon, and less associated with taxonomy
(for 16S OTUs) or abundance. Low microdiversity
was found both in prevalent taxa and rare taxa. Thus
it appears from the 99% OTUs that the more the
ephemeral the taxon, the more likely we would
observe them to have little microdiversity, even

Figure 5 Dynamics of SAR11 (a) 16S and (b) ITS OTUs, and ASVs March–September 2011. The black line represents the overall relative
abundance of SAR11 (all SAR11 OTUs cumulatively). Lines represent the ASV relative abundances (cumulative SAR11 16S relative
abundance *ASV relative abundance) over time. Only the top five most abundant ASVs are shown. Note the y-axis on the left of each panel
corresponds to the SAR11 total abundance and the y-axis on the right corresponds to ASV relative abundance. SAR11 16S taxonomy is
from the SILVA taxonomy and the ITS taxonomy comes from Brown et al. (2012). The letter (16S) and number (ITS) following the last
underscore in the taxon name correspond to the average abundance of the taxon relative to other OTUs with the same taxon name.
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when accounting for abundance of the taxon (by sub-
sampling). Without exhaustive sequencing effort,
rare variants will always be missed, especially
considering our conservative approach to calling
ASVs (requiring at least 50 sequences across all
samples); thus the taxa we observed as single ASVs
could have rare variants.

As we need to focus our analysis on OTUs with
enough sequence reads to discriminate between
significant base changes vs errors, we have fewer
intermediate and low abundance taxa for comparison.

In any case, it appears that there is not a strong linear
relationship between microdiversity and prevalence.
The data suggest that it is necessary to be prevalent
(temporally common) in order to have high micro-
diversity, but other factors could limit the microdi-
versity even for the most prevalent taxa.

SAR11 microdiversity was very high, especially
when assayed by the ITS sequencing assay, with 322
ASVs occurring among the dominant OTUs (n=26)
that we investigated for microdiversity. This amount
of marine microbial diversity is not surprising, as a

Figure 6 Pairwise correlation networks show correlations (Spearman 40.85, Po0.001) between prokaryotes and phytoplankton or T4-like-
myoviruses for (a) ASVs and (b) OTUs over the full-time series. Slightly lower correlations are shown between (c) phytoplankton and prokaryotes
ASVs (Spearman40.8, Po0.001) and (d) OTUs over the full-time series. In each network, gray-filled circles represent phytoplankton, gray filled-
squares represent bacteria from the 1-80µm size fraction, unfilled squares represent bacteria from 0.2-1µm size fraction, and 'V' symbols
represents T4-like-viruses. Thick outline surrounding nodes indicates the node that represents the dynamics of a taxon within the large or
particle-attached fraction. The size of the symbols represents the average relative abundance of each taxon. Solid and dashed lines represent
positive and negative, respectively, correlations between the connected nodes. As in Figures 2 and 3, the letters following taxon name correspond
to the average abundance of the taxon relative to other OTUs with the same name. The number following these letters (a and c) corresponds to the
average abundance of the ASV within a given OTU. A full color version of this figure is available at the The ISME Journal online.
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previous study of 139 cloned SAR11 ITS sequences
reported that no two were identical (Brown and
Fuhrman, 2005). More recently, Kashtan et al. (2014)
concluded Prochlorococcus is made of hundreds of
co-occurring distinct lineages, each millions of
years old, based on analysis of 100 s of single
Prochlorococcus cells, which showed extensive
genomic variations that were also reflected in small
variations in ITS sequences. The genomic changes
were often associated with transporters and cell
surface biosynthesis or modification. These cell
surface variations could result in the success or
failure of attachment, and thus infection, by viruses,
and may alter grazing susceptibility. By analogy, we
expect that the SAR11 ITS ASVs may be from
organisms with differing surface properties, and this
may partly explain better correlations to viruses at
the ITS ASV level.

Compared to the bacterial subtypes, the T4-like-
myovirus subtypes were less likely to vary signifi-
cantly over time as a proportion of their parent
OTUs. For the g23 OTUs where g23 ASVs did not
vary significantly as a proportion of their parent
OTU, it is likely that these taxa infect the same hosts
during this period of study. On the other hand, g23
ASVs that vary significantly as a proportion of the
parent OTU may infect different taxa within lineages
or with varying levels of efficiency (Holmfeldt et al.,
2014; Howard-Varona et al., 2016).

Ecological implications
The extent of microdiversity within the various
lineages allows inference of ecological and evolu-
tionary forces that play roles in shaping the function,
lifestyle and diversity of lineages, which has

Figure 7 Correlation network between T4-like-myovirus ASV and (a) SAR11 ITS ASVs and (b) SAR11 ITS OTUs showing many more
and higher correlations at the ASV level. (c) The total number of significant positive correlations (Po0.001, Qo0.001) between SAR11
(ITS and 16S) OTUs and ASVs to virus OTUs and ASVs. All SAR11 data from 0.22 to 1 μm size fraction. As in Figure 5, ITS taxonomy
comes from Brown et al. (2012) and the number following the first underscore in the taxon names, corresponds to the average abundance
of the taxon relative to other OTUs with the same taxon name. The value following these numbers (a), corresponds to the average
abundance of the ASV within a given OTU.
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important ecological implications. Our data show
that the highest microdiversity consistently occurred
among the most prevalent taxa, even though other
prevalent taxa might have lower or no observed
microdiversity. In contrast, the rarely occurring taxa
generally had lesser or no observed microdiversity.

The common taxa, such as SAR11, SAR116 and
Actinobacteria, maintain their moderately high
abundance as primarily free-living plankton year
round and therefore experience few, if any, bottle-
necks. The sets of conditions that these lineages
prefer are apparently nearly ubiquitous, but the
contrast in the amounts of diversity within these
common taxa (Actinobacteria being markedly lower)
may reflect the influence of viral defense or the
result of individual SAR11 variant taxa being highly
specialized for very specific but stable niches. For a
given population, one mode of defense to viruses is
the presence of many subtypes (as we observed in
SAR11 and SAR116) such that strain-specific viral
infection of a single sub-type will not result in
decimation of the whole population, as has been
suggested for Prochlorococcus (Avrani et al., 2011;
Kashtan et al., 2014). These slight changes would
probably have competitive trade-offs, and the
lineages with the most competitive strains have been
modeled to become most abundant under this
scenario (Thingstad et al., 2014). In contrast, some
common lineages have fewer co-existing close
relatives (for example, OCS 155 Actinobacteria).
One explanation for how taxa may have relatively
little microdiversity is a recent genetic sweep,
whereby an adaptive trait evolved within a strain
and other similar strains have been outcompeted
(Acinas et al., 2004; Polz et al., 2006). Whether or not
these taxa with low microdiversity utilize a different
mode of defense that enables them to maintain their
abundance or if their population-level diversity is
just not evident in the 16S sequences remains to be
seen (note that many SAR11 subtypes required ITS-
level resolution to resolve). Functionally, the high
diversity in the SAR11 clade and SAR116 clade may
correspond to flexibility in terms of usable substrates
and/or preferred substrate concentration ranges
within the lineage. Thus, the ecosystem functions
performed by these highly microdiverse taxa may
have greater resilience to changes or disturbances
(Roger et al., 2012; Sjöqvist and Kremp, 2016).

The rare taxa with relatively less microdiversity
include organisms such as ‘copiotrophs,’ that are
successful in short-lived, nutrient-rich conditions
such as phytoplankton blooms. This may be the result
of clonal expansion from a small seed population and/
or gene exchange when growing in close proximity to
each other, for example, when growing on or near
nutrient sources, such as live or decaying phytoplank-
ton. The success of these lineages is probably dictated
by exploitation of relatively narrow niches or sets of
environmental conditions.

Although space limitations prevent interpretation
of the many particular microbial associations we

observed (Figure 7), we note that these results can
point to focused hypotheses about numerous possi-
ble microbe–microbe interactions such as viral
infection, parasitism, nutrient exchange or specific
symbioses.

There are limited data on what percent identity
constitutes a single virus population, but a recent
report regarding one marine cyanobacterial host
suggested 495% average nucleotide identity overall
(Deng et al., 2014). Unfortunately, there are no high
sequence similarity matches (not even at 480%
amino-acid identity) among the T4-like-myovirus
taxa that we investigated, compared to cultivated
phages, including the only known T4-like-myovirus
infecting a member of the SAR11 cluster. Furthermore,
the extent of cross-infectivity is unclear, and myo-
viruses in particular are reported to have a relatively
broad host range (Sullivan et al., 2003). However
among these g23 sequences from viruses with
unknown hosts, we note that unlike the monthly scale
bacteria–virus and bacteria–protist networks pre-
viously reported from San Pedro Ocean Time-series
that had only 2–17% negative associations (Chow
et al., 2014), these higher resolution (time and
phylogeny) networks show a much larger fraction
(33–44%) of negative associations. This may be
because at monthly scales the viruses primarily follow
host abundances, but daily scales and high resolution
better permit observation of predator–prey cycles.

We conclude that using highly resolving methods
improves observation of ecological dynamics, and
more so for common taxa than ephemeral taxa. Thus,
for ecological studies, it is better to be ‘too’
taxonomically resolving and maintain the ability to
post hoc merge taxa with ecological similar coherent
patterns (Preheim et al., 2013) than it is to not be able
to resolve taxa with different ecologically distinct
niches. However, this merging may be difficult
because two taxa that are correlated over one time
period, or set of conditions, may not be necessarily
correlated over another set of conditions (Fuhrman
et al., 2015). Rather than being too resolving, marker
genes analyses probably often obscure important
variation, regardless of the resolution used (Kashtan
et al., 2014). And higher resolution also allows more
accurate detection of dispersal. Genomic characteriza-
tions should, theoretically, be an improvement over
marker genes, but given the difficulty in assembling
close relatives from community sequencing data and
the depth required to genomically track hundreds of
types (Brown, 2015), it may be some time before we
are able to observe the dynamics of many closely
related host and virus populations via shotgun
metagenomics. Traditionally, sequence clusters have
been used to approximate microbial ‘species’; how-
ever, our results show these classical OTU-based
‘species’ represent anything from highly microdiverse
clusters to clusters with no apparent significant
sequence variation. These factors likely contribute to
the ephemerality, resilience, function and biodiversity
of microbial lineages.
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