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As sequencing technologies have advanced, the amount of information regarding the composition of
bacterial communities from various environments (for example, skin or soil) has grown exponentially.
To date, most work has focused on cataloging taxa present in samples and determining whether the
distribution of taxa shifts with exogenous covariates. However, important questions regarding how
taxa interact with each other and their environment remain open thus preventing in-depth ecological
understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming
more common within microbial ecology, but methods to infer ecological interactions from these
longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson
regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time
series; (2) constrains estimates to allow for the possibility of many more interactions than data; and
(3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut
microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of
the plant secondary compound oxalate over a period of 22 days to estimate interactions between
OTUs and their environment.
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Introduction

Methodological advances in DNA sequencing have
uncovered microbial diversity that extends far
beyond that which could be detected using tradi-
tional cell culture methods. Because of the ease and
inexpensive nature of new technologies, researchers
are collecting increasing amounts of data with regard
to various microbiomes (for example, skin, soil, gut),
a trend which will only increase with newly created
funding sources such as the recently announced U.S.
National Microbiome Initiative (The White House
Office of Science and Technology Policy, 2016). To
date, most studies center around identifying mem-
bers of the community using 16S rDNA sequencing
and using diversity measures and ordination techni-
ques to compare samples (Ramette, 2007; Cassman
et al., 2016). While such analyses yield a large
amount of information regarding where and when a

particular microbe might be found, they tell almost
nothing about why the microbe is there, how it
interacts with its environment (for example, other
microbes or hosts), and what functions it may be
providing toward—or detracting from—the overall
ecosystem-level services.

To address some of these central questions of
interactions and function, ecological and evolution-
ary theory developed for macro systems has begun to
be applied to microbial systems. For example,
microbiome data derived from 16S rDNA sequencing
has been used to estimate population dynamics of
microbial communities (Marino et al., 2014), to infer
how communities respond to perturbations (Stein
et al., 2013), and to assess important community
properties such as stability and resilience (Coyte
et al., 2015). Many of the ideas that are central to
microbial ecology and microbiome function are
inherently dynamic and as such require longitudinal
data from subjects.

Unfortunately, the staggering number of opera-
tional taxonomic units (OTUs) present in micro-
biomes prevents straightforward application of
traditional ecological modeling methods, so methods
to analyze the data have lagged behind collection.
Whereas a large macro ecological system may track
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up to one hundred species (Montoya and Solé, 2002),
microbial communities often have thousands of
OTUs, which provides a significant hurdle for
estimating the key interactions between microbes
and other microbes and their environment. Various
simplifications of data and models have been used to
deal with this issue; the most common of which are
to vastly reduce the size of the data by either
aggregating the data at certain taxonomic levels (for
example, treating Alphaproteobacteria as a model
factor; McGeachie et al., 2016) or by sub-setting the
data into a few taxa of interest because they are
believed to be important (Hunt et al., 2011), or both
(Olesen et al., 2016). Aggregation may be a particu-
larly problematic practice because of heterogeneity
within aggregated taxa. For example, estimating how
Alphaproteobacteria interact with Gammaproteobac-
teria is akin to estimating how all dicotyledonous
plants interact with monocotyledonous plants. Simi-
larly, while focusing on only a few taxa of interest
can make statistical inference techniques tractable,
interactions that may actually be driving the
dynamics may be left out of the model. Ecologically
important forces, such as trait-mediated indirect
interactions (Ridenhour and Nuismer, 2012; Berry
and Widder, 2014), may be missed in this type of
analysis.

Another recent method of analyzing microbiome
data to infer drivers of ecological dynamics is to
compare large-scale patterns. For example, Bashan
et al. (2016) used patterns of dissimilarity and
overlap between microbiomes to infer the degree to
which interactions within a microbial community
vary by environment; Bashan et al. refer to this as the
‘universality’ of microbial dynamics. While such
analyses are important for a high-level understand-
ing of dynamics, finer scale analyses are required to
tease apart the underlying ecological relationships
present in microbial systems. There are many
examples where interspecific interactions fluctuate
between antagonism and mutualism depending on
the context of the interaction (Ridenhour and
Nuismer, 2012), thus it seems ‘universality’ of
interactions would be an unlikely feature.

Ideally, we desire ecologically relevant methods
that are capable of utilizing all information gathered
from sequencing to robustly infer relationships
between OTUs and their environment. Methods for
model estimation using data where the number of
possible explanatory variables is larger than the
number of observations (p≫n) typically involve the
use of regularization (Tibshirani, 1996; Zou and
Hastie, 2005; Meinshausen and Bühlmann, 2010) to
eliminate potential explanatory variables and infer
robust, stable predictive models. These regulariza-
tion techniques have been successfully applied to
similar data for which this problem is common, such
as gene expression data and proteomics (Xing et al.,
2001). Furthermore, related techniques have been
applied to microbiome research. For example, Kurtz
et al. (2015) applied a form of a graphical lasso

procedure (sparse inverse covariance estimation;
Friedman et al., 2008) to relative abundance data
for entire microbiome samples. Although not experi-
mentally validated, their study demonstrates that
regularization techniques can be applied to 16S
sequencing data to infer ecological networks. Reg-
ularization methods can allow for the analysis of all
of the data, avoiding misleading interpretations
caused by aggregating data or arbitrarily studying
certain species within a microbial community.

Here, we present a novel method of analyzing 16S
sequencing data that utilizes untransformed count
data from the entire community and relies on
regularization to infer interactions and predict future
trajectories. We focus on applying this method to
time-series data, which is a rapidly expanding
microbiome research area and an area of special
need for such techniques. We emphasize however
that the methods presented here are not limited to
the analysis of time series and are broadly applicable
to related microbiome analyses. As an example of the
power of this technique, we apply the method to gut
microbiome data collected from Neotoma albigula
(white-throated woodrats) during an ~ 3 week feed-
ing trial in which the subjects were fed oxalate, a
plant secondary defensive compound.

Materials and methods

Modeling strategy
We used an ARIMA model with Poisson errors fit
with elastic-net regularization to estimate robust
predictive models of microbiome dynamics. ARIMA
models are commonly used in the analysis of time-
series data because they provide a flexible frame-
work that can accommodate many autocorrelation
structures, stationarity conditions, and seasonality
(Ives et al., 2003). The choice of Poisson distributed
errors is critical to avoid issues related to composi-
tional data: raw read counts and total read counts are
the data analyzed rather than transformed composi-
tional data. The Poisson distribution is a natural
choice for count data (Anders and Huber, 2010), and,
furthermore, by using the total read count as the
offset in a log-linked Poisson regression model, the
zeroes observed in the data are treated appropriately
and have consistent meaning across variable total
read counts. The resulting full model for a focal
OTU is

xtBPois mtð Þ
ln mt=Oð Þ ¼ ARIMAðp;d; qÞ )

¼ ARIMAðp;d; qÞ þ ln Oð Þ

ARIMAðp;d; qÞ ¼
Xpþd

i¼1

Xt�ifi þ
Xq
i¼0

yiEt�i

ð1Þ

where subscript t indicates the time of observation, x
is the observed number of reads for the focal OTU, μ
(to be fit by the model) is the mean of the
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observations x, O is the offset (for example, total
number of reads or number of reads of particular
taxon), X is the vector of predictor variables (that is,
other OTUs, covariates, etc), ε is the residual error,
and ϕ and θ are the estimated model parameters
(though we are principally interested in ϕ because
this vector contains the estimated interactions
between OTUs). In the ARIMA model, p, d and q
are non-negative integers that represent the number
of autoregressive terms, the degree of differencing,
and the number of moving average terms, respec-
tively. Note that the number of parameters in the full
model is (p+d)|X|+q; thus increasing either p or d
can have large effects on the number of parameters
estimated when the number of predictor variables (|
X|) is large.

The full model represents a flexible way to model
interactions between species that takes full advan-
tage of the data type and its time-series structure, but
would be highly overparameterized for nearly all
microbial community data because of the large
number of predictor OTUs. To ensure stability of
the community, it is commonly held that most
species interact strongly with relatively few other
species (May, 1972). Some propose exponential or
scale-free distributions to the number of edges in
interactions networks (Fernandez et al., 2015; Kurtz
et al., 2015). Regardless, the ecological expectation is
that a fully saturated model, such as the one above, is
not realistic. We therefore employ a regularization
algorithm to select robust interaction models that
have a minimal number of parameters. Elastic-net
regularization is a highly flexible and rapid algo-
rithm that penalizes both the ℓ1 and ℓ2 norms of the
parameter vectors (that is, lasso and ridge regression
respectively) (Tibshirani, 1996; Zou and Hastie,
2005; Draper and Pukelsheim, 2012). To estimate
the parameters /f̂; ŷS, the elastic-net algorithm
solves the equation

f̂; ŷ
D E

¼ argmin f;yh i

�1
T

XT
t¼1

l mtjxtð Þ þ l a8 f; yh i81 þ
1� a
2

8 f; yh i822
� �" #

ð2Þ

where l is the log-likelihood of the observed data
(xt) given the modeled mean (μt), λ∈ [0, ∞] controls
the strength of the elastic-net penalty (λ=0 is
equivalent to standard least squares regression),
and α∈ [0, 1] blends the penalty due to the ℓ1 and
ℓ2 norms (α=0 is ridge regression and α=1 is lasso
regression) (Tibshirani, 1996). Cross-validation tech-
niques are used to choose optimal values for these
parameters. The use of the elastic-net approach in
combination with a Poisson ARIMA model allows
the method to filter through large numbers of OTUs
and robustly model changes in a microbiome
over time.

Application of model to oxalate degradation in N.
albigula
We used the modeling strategy described above to
estimate microbial community dynamics from 16S
rDNA time-series data collected from the white-
throated woodrat, N. albigula (Miller et al., 2016).
These animals were experimentally fed varying
amounts of oxalate, a naturally occurring plant
secondary compound that has been demonstrated
to have toxic effects on a broad range of herbivores
(for example, insects, mammals) (Allison et al., 1985;
Dearing et al., 2005). Plants create crystalline
structures known as raphides when a surplus of
calcium oxalate is present; these crystals are needle-
shaped and physically damage the intestinal tract of
herbivores. This physical damage may also facilitate
delivery of other toxins (for example, proteases)
through the wall of the digestive tract (Miller et al.,
2000; Franceschi and Nakata, 2005). Direct mortality,
decay of the mouth and gastrointestinal tract, gastric
hemorrhaging, and diarrhea have all been observed
in mammals that consume large quantities of oxalate
(Miller et al., 2014). Of human relevance, many
kidney stones form from calcium oxalate, which may
arise due to oxalate rich diets; the pain associated
with passing kidney stones at least partly stems from
similar needlelike structures (Miller et al., 2000;
Franceschi and Nakata, 2005).

N. albigula rely on cacti, particularly Opuntia, for
their diet (Justice, 1985; Miller et al., 2014), which
are known to have high concentrations of calcium
oxalate (Shirley and Schmidt-Nielsen, 1967). Mam-
mals however are not known to have any mechan-
isms for metabolizing this toxic compound but are
known to harbor bacteria capable of the task within
the gut (Hodgkinson, 1977; Allison et al., 1985;
Turroni et al., 2007). Prior studies of white-throated
woodrats have shown that the microbiota of their gut
has numerous oxalate degrading taxa including—but
not limited to—Oxalobacter formigenes, Lactobacil-
lus, Bifidobacterium, Streptococcus, and Enterococ-
cus (Allison et al., 1985; Jones and Megarrity, 1986;
Kageyama et al., 1999; Hokama et al., 2000; Sundset
et al., 2010). O. formigenes has been of particular
interest within the gut community because it is
known to require oxalate as a carbon and energy
source (Allison et al., 1985). It has been hypothe-
sized that the specialization of and coevolution with
the gut microbiome is the reason N. albigula is able
to consume levels of oxalate that would be lethal for
many other mammals and digest ⩾ 90% of this
defensive compound (Shirley and Schmidt-Nielsen,
1967; James and Butcher, 1972; Justice, 1985; Palgi
et al., 2008).

Feeding trials
We collected gut microbiome data from six wild-
caught N. albigula trapped at Castle Valley, Utah in
October 2012. Animals were transported back to the
University of Utah Department of Biology Animal
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Facility and held in captivity for six months before
experimentation. During this time, animals were fed
a high-fiber rabbit chow (Teklad formula 2031;
Harlan, Denver, CO, USA), which contained a base-
line amount of oxalate.

Once the trial began, oxalate concentrations within
the animals’ food were incrementally increased for
17 days and then dropped to the initial level for an
additional five days. The amount of oxalate con-
sumed and excreted was measured for each woodrat.
Fecal pellets were collected and then underwent
high-throughput 16S rDNA amplicon sequencing to
determine the OTUs present in guts of the animals.
OTU read counts from the cleaned and processed
data were then analyzed using the model described
above. A general overview of the workflow for the
analyses is provided in Figure 1.

To quantify the effect of oxalate on the gut
microbiota, a custom 0.2% oxalate diet was formu-
lated (Harlan, Denver, CO, USA) and mixed with
high-fiber rabbit chow in a 3:1 ratio to give a 0.05%
baseline oxalate feeding level. Additional concentra-
tions of 0.5%, 1%, 1.5% and 3% by dry weight were
achieved by adding sodium oxalate (Fisher Scien-
tific, Pittsburgh, PA, USA) directly to the diet. The
oxalate diets were given to animals in sequence for
three days each, with the exception of the 0.05%
oxalate diet, which was given for five days both at
the beginning and the end of the diet trial. This
schedule produced observations on day 5 (t0), 8 (t1),
11 (t2), 14 (t3), 17 (t4) and 22 (t5). Food and water were
given ad libitum in metabolic cages, which were
used to separate and collect urine and feces from
each individual animal. Oxalate consumed was
quantified from food intake and oxalate concentra-
tion, while oxalate excreted was quantified from

urine and feces. These metrics were used to quantify
total oxalate degradation, which was defined as the
difference between oxalate consumed and oxalate
excreted.

To track changes to the gut microbiota, feces were
collected from each animal on the last day of each
dietary period, thus maximizing the effect of the
specified oxalate concentration on the gut micro-
biota. Feces were collected from the top of the 50ml
conical tube to ensure minimal exposure to aerobic
conditions, and immediately frozen at − 80 °C until
DNA extraction. DNA extractions were performed
with the QIAamp DNA stool minikit (Qiagen,
Germantown, MD, USA). Microbial inventories were
generated by amplifying the V4 region of the 16S
rDNA gene with primers 515F and 806R (Caporaso
et al., 2012) on an Illumina MiSeq at Argonne
National Laboratory (Chicago, IL, USA).

The ARIMA(1,0,0) model applied to these data
requires pairs of consecutive time points. Thus, for
these observations there are five pairs of consecutive
time points for the six animals giving a total of 30
pairs of consecutive time points. Sequence data from
4 of the 36 observations were not obtained because
they had fewer than 10 000 total sequence reads,
leaving a total of 23 pairs of consecutive time points
for the 6 animals. The accession number for the raw
data, submitted to the Sequence Read Archive, is
SRR5249829.

Data processing
Sequence data were processed and demultiplexed in
QIIME (Caporaso et al., 2010) using the default
quality control parameters. Sequences were binned
into OTUs with a de novo picking strategy using
UCLUST (Edgar, 2010) at a minimum sequence
identity of 97%. Chimeras were removed with
ChimeraSlayer (Haas et al., 2011) along with
sequences identified as chloroplasts or
mitochondria.

Computational details
All statistical analyses were performed using R
v3.2.2 (R Core Team, 2014) with glmnet v2.0-2
(Friedman et al., 2010), and all R scripts are available
in the Supplementary Information. Before beginning
the analyses, we eliminated any OTUs in the data for
which there were a small number (o6) of average
reads per sample because they lacked sufficient data
for statistical analysis. Eliminating these unanalyz-
able OTUs resulted in 90% reduction in the number
of OTUs giving a microbial community with 624
OTUs for modeling. The rationale for this cleaning is
that there must be enough data for an OTU to
successfully run a statistical model; if there is too
little variation among samples for an OTU, then
fitting the statistical model will fail as there is no
information.

Figure 1 The general workflow for analyzing 16S rDNA data
using a regularized ARIMA model with Poisson errors. The first
several steps are the typical sequencing and bioinformatic
practices where sequences are obtained and cleaned using
programs such as QIIME. An additional step of dropping
particularly low read count OTUs may be necessary to avoid
problems with the statistical analyses reporting errors. Afterward,
the cleaned data are passed to the regularization algorithm to fit an
appropriate ARIMA model. The final step is to analyze the
estimated interaction network (for example, heatmaps, networks,
summary statistics) to interpret the models returned from the
analysis.
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The glmnet function in the glmnet package has a
number of options for performing model regulariza-
tion. The most important parameters are λ and α
which control the penalization. To find an optimal
combination of these parameters, we used the built
in cross-validation function provided in the glmnet
package (‘cv.glmnet’) to loop across various levels of
λ (100 values by default). We simultaneously looped
across levels of α ranging from 0.5 to 1.0 in steps of
0.1. Because the cross-validation step performs
K-fold cross-validation, the data folds are random;
we therefore ran 500 replicates per α level to get the
average cross-validated deviance for a particular α, λ
combination. The best model was chosen for each α
level, and the final model was chosen by utilizing
AIC values and comparing between those best
models. Other methods exist for choosing this
parameter combination (see the c060 R package by,
Sill et al., 2014 for an example of another method),
but testing various algorithms is beyond the scope of
this article. Other than the choice of λ and α, default
parameter settings were passed to glmnet, with the
exception of the ‘grouped=FALSE’ argument to
ensure enough observations per fold in the default
10-fold cross-validation scheme. We verified the
ability of this approach to reliably estimate model
structure and parameters by testing the method in
synthetic data (Supplementary Information). Gener-
ally, we found the method to be quite robust, with
the caveat that underpowered studies may suffer
lower sensitivity in detecting interactions.

We performed two different variants of the model.
The first of these was a model in which oxalate
consumption was forced to be a variable within the
model (that is, oxalate consumption was a parameter
that was not subject to the regularization penalties).
The justification behind forcing this variable is that
the experiment was designed to detect the influence
of oxalate on the gut microbiome of the subjects. For
comparison purposes, a second model was run
where oxalate consumption was part of the regular-
ization scheme and thus could either remain in, or be
left out of, the final model chosen by the
glmnet algorithm. These two models represent
common research scenarios: determining effects of
a particular factor that was experimentally manipu-
lated and ‘natural’ experiments where potential
covariates change in an uncontrolled manner.

Post-analysis cleaning of models for interpretation
purposes was minimal. Models having a pseudo-R2

o0.02 were discarded from the results; doing so
eliminated models for 154 OTUs. Effect sizes were
determined by multiplying the mean OTU read
counts by the corresponding estimated parameter
ðb̂Þ. Estimated observation rates were calculated
using the predict function in R. The Greengenes
bacterial taxonomy database ‘gg_13_5_taxonomy’
was searched to identify the phylogenetic related-
ness of taxa identified in this study. The R package
ape v3.5 (Paradis et al., 2004) was used to parse and
plot the reduced Greengenes phylogeny.

Results

The experimental setup allowed us to examine how
the gut microbiome of six woodrats changed over a
three-week period with varying levels of oxalate
consumption. We wished to infer both how OTUs
within the microbial community interacted with
each other, as well as to estimate how OTUs were
affected by oxalate concentration. To do so, we used
an ARIMA(1,0,0) (that is, an AR(1)) model structure
to limit the complexity of the model given the
limited number of samples. We also included
exogenous covariates for the amount of oxalate
consumed and subject effects in the design matrix,
bringing the total number of potential explanatory
variables to 631.

We will focus on the results of the model where
oxalate consumption was forced into the AR(1)
model and highlight differences between it and the
‘unforced’ model. The use of elastic-net regulariza-
tion easily accommodated our analysis, which
included 624 OTUs and 7 other potential covariates
(in other trials—not shown here—the method has
worked for data sets containing thousands of
covariates). We applied the AR(1) model to 626
dependent variables (624 OTUs, oxalate digested,
and oxalate excreted). Of these, analyses of 40 OTUs
failed due to their patterns of presence/absence
(typically OTUs only observed in one woodrat), thus
we obtained model fits for 586 of the dependent
variables. Of 586×631= 369 766 potential para-
meters, the elastic-net algorithm selected models
that had a total of 2886 parameters (~1%); the
unforced model produced 1826 parameters in com-
parison. Of the 586 dependent variables, 280 had a
model that included additional variables from the
minimal model consisting of only an intercept and
oxalate consumed (295 for the unforced model).
Thus, the regularization procedure produced models
where there were relatively few predicted interac-
tions between OTUs within the gut microbiome (that
is, a sparse interaction matrix). As mentioned above,
154 models with low pseudo-R2 values were elimi-
nated before further analysis; only 12 of the 154 were
models consisting of something other than the forced
intercept and oxalate consumed terms (that is,
models that had interactions between species) leav-
ing 268 models for the network analysis.

The estimated network of interactions between
species fits the ‘small-world’ network paradigm that
has been observed in many other non-microbial
communities (Watts and Strogatz, 1998; Montoya
and Solé, 2002). Supplementary Figure 4 shows the
in- and out-degree distributions for the predicted
interaction network (that is, the number of covariates
affecting and affected by an OTU, respectively).
These distributions fall in between what would be
expected in a scale-free network and a random
network. The average path length in the estimated
network is L=0.441, whereas a similar random
network would have an average path length of
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Lrandom≈0.222. The average clustering coefficient
(transitivity) of the estimated interaction network is
C=0.285 which compares to Crandom≈0.038 in the
random network. Therefore, our network fits the
definition of a small world where LSW⩾ Lrandom and
CSW≫Crandom (Jordano et al., 2003). Path lengths and
clustering coefficients were calculated using
weighted edges based on the estimated strength of
an interaction (that is, b̂); using unweighted edges
does not qualitatively change the interpretation of
the network. Small-world patterns of interaction are
hypothesized to add stability to the community as a
whole (that is, small neighborhoods/clusters of
species may fail or fluctuate without much effect
on the whole community) (May, 1972; Polis, 1998
McCann, 2000). This network structure also implies
that a few species (‘hubs’) interact with many others
and are critical to stability, thus fitting the keystone
species concept (Faust and Raes, 2012). However,
other research provides counterarguments to the
hypothesis that more structured, small-world net-
works increase stability (Sinha, 2005).

We assessed the fit of models using a pseudo-R2

metric based on the percentage of the deviance
explained by the model (Cameron and Windmeijer,
1997). Figure 2 shows the distribution of pseudo-R2

values for the fitted models. Models with a high
pseudo-R2 predict the dynamics of a particular OTU
better than models with relatively lower pseudo-R2

(Figures 2 and 3). A broad range of values were
returned that spanned all possible values (that is, 0 to
1). Importantly, we found that the pseudo-R2 values
did not depend on the α parameter of the elastic-net
regularization, which influences the number of
parameters (that is, interactions with other OTUs)
in the model (Figure 2). The dynamic patterns
predicted by the model match expectations based
on previous work on the effects of oxalate on the gut

microbiome (Miller et al., 2014, 2016). For example,
Oxalobacter were predicted to increase with increas-
ing oxalate consumption over the first 5 weeks and
then decrease after test subjects were no longer fed
oxalate.

Oxalate consumption clearly has a broad range of
effects on bacteria in the N. albigula gut (Tables 1
and 2). Figure 4 shows the distribution of these
effects across all OTUs, as well as the effects on
oxalate excreted and digested. For the unforced
model, only 10 OTUs were predicted to be affected
by oxalate consumption. The results of the analysis
of the woodrat data support previous findings with
respect to the consumption of oxalate (Miller et al.,
2014, 2016). For example, we found that increased
consumption of oxalate leads to increased numbers
of Oxalobacter, Oxalobacteraceae, and Clostridiales
within the gut (Table 2). These taxa are known
degraders of oxalate (Miller et al., 2014). However,

Figure 2 Distribution of pseudo-R2 values and their relationship
to the elastic-net mixing parameter α from the models fit for
woodrat gut microbiome data. The left panel shows that the
method returned a fairly uniform distribution of values, that is, we
observed the full spectrum of poorly fitting models to very good
models. The mixing parameter α alters the regularization penalty
to favor either more small parameters (low α) or fewer large
parameters (large α) in the model. The dotted red line shows the
smoothed mean of the pseudo-R2 values across α-levels; the blue
line shows the result of fitting a third order polynomial using
linear regression (R2 = 0.2382, Po0.001). The relationship between
α (roughly, the number of parameters) and the pseudo-R2 for the
AR(1) models had a positive first-order term indicating better
model fits were achieved for models with fewer parameters; this
observed trend however peaked at α≈0.86 and then reversed.

Figure 3 Predicted (lines) and measured (points) OTU observa-
tion rates in the woodrat gut microbiome over the 22-day feeding
the trial for three representative OTUs. Colors indicate different
test subjects; some lines are incomplete because only points where
data were available for the subject for t−1 and t are plotted (that is,
those data to which an AR(1) model could be applied; this is why
t0 is omitted). Note that each panel shows a single OTU from the
family S24-7, not the aggregation of all OTUs within S24-7 (that is,
each is a separate OTU given a ‘de novo’ label). The panels from
upper to lower are ordered by decreasing pseudo-R2 with values of
0.99, 0.54 and 0.22, respectively. See Methods for detailed
observation times.
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we also found that other OTUs—such as some
members of the families S24-7, Helicobacter, and
Lachnospiraceae—are more positively affected by
oxalate consumption than these well-known oxalate
degraders (Tables 1 and 2). One possible explanation
is that these taxa have uncharacterized oxalate
degrading capacity or homologs of oxalyl-CoA
decarboxylase (Sahin, 2003; Werther et al., 2010).
Even in strains isolated from N. albigula, Miller
et al., (2014) find species that can degrade oxalate
in vitro may lack the oxalyl-CoA decarboxylase gene.
Another explanation for why the effect of oxalate
consumption may have been overlooked may be due
to grouping OTUs together within particular taxo-
nomic IDs. For example, while multiple OTUs

within the family S24-7 are strongly positively
affected by oxalate consumption, several are also
strongly negatively affected (Table 1); thus, the mean
effect of oxalate consumption on S24-7 is lower than
that of other OTUs (Table 2) and would be over-
looked in studies that aggregate OTUs. For compara-
tive purposes, aggregated effect sizes between
unique taxonomic groupings are plotted in Figure 5.

Our results corroborate empirical work showing
sparse distributions of oxalate degrading capacity
among bacterial phylogenies, even at the species or
strain level (Turroni et al., 2010; Ren et al., 2011;
Miller et al., 2014; Ormerod et al., 2016). For
example, our results suggest that S24-7 strains can
be positively or negatively affected by oxalate.
Ormerod et al. show by using genome sequencing
that oxalate degradation pathways are present in
only 19 of 30 S24-7 (renamed Ca. Homeothermaceae)
isolates from human, mouse, koala, and guinea pig
samples (Ormerod et al., 2016). The presence of
these pathways does not correlate with host taxon-
omy, but rather, both oxalate degraders and non-
degraders are present in all host types.

Discussion

We have presented a method for the analysis of
microbial community data that leverages the power
of regularization techniques to infer ecological
interactions and predict dynamics based on OTU-
level 16S rDNA read counts and applied the method
to time-series microbiome data from an oxalate
feeding trial in woodrats. This modeling strategy
for 16S rDNA amplicon data provides a flexible and
relatively computationally inexpensive method for
researchers to estimate the strength of ecological
interactions in microbial communities. By modeling
read count data directly and using elastic-net
regularization to select and stabilize the model, the
method overcomes many common challenges in
analyzing microbiome data.

Table 1 OTUs strongly influenced by oxalate consumption

Negative effects Positive effects

Taxonomic ID b̂C2O2�
4

Taxonomic ID b̂C2O2�
4

Ruminococcus −3.66 S24-7 10.38
Coprococcus −2.96 S24-7 5.23
Lachnospiraceae −2.89 RF32 3.50
S24-7 −2.51 Clostridiales 2.45
S24-7 −2.49 S24-7 2.38
Ruminococcaceae −2.37 Helicobacter 2.35
S24-7 −2.24 S24-7 2.20
S24-7 −1.71 S24-7 1.94
S24-7 −1.71 S24-7 1.93
Lachnospiraceae −1.69 Lachnospiraceae 1.65
Ruminococcaceae −1.49 Clostridiales 1.63
S24-7 −1.48 Clostridiales 1.60
S24-7 −1.37 Clostridiales 1.59
Enterobacteraceae −1.35 Clostridiales 1.59
S24-7 −1.34 Ruminococcus 1.57

For the forced model, the effect of oxalate consumed on the rate of
observation for an OTU (b̂C2O2�

4
) in the gut microbiome was estimated

for every OTU. This table shows the top and bottom 2.5% of those
estimates and the effected OTU. Note that taxonomic ID is the lowest
taxonomic designation returned for a particular OTU; thus, repeats of
particular IDs (for example, Lachnospiraceae) reflect different OTUs
within the particular ID.

Table 2 Predicted effects of oxalate aggregated at different taxonomic divisions.

Negative aggregate effects Positive aggregate effects

Taxonomic ID E½b̂C2O2�
4
� Division NOTU Taxonomic ID E½b̂C2O2�

4
� Division NOTU

Enterobacteraceae −1.35 Family 1 Helicobacter 2.35 genus 1
Prevotella −0.79 Genus 2 Pediococcus 1.47 genus 1
Clostridium −0.67 Genus 1 CF231 0.97 genus 2
Anaerostipes −0.66 Genus 1 Treponema 0.93 genus 2
Lachnospira −0.56 Genus 1 Rikenella 0.85 genus 1
Coriobacteriaceae −0.33 Family 1 Unassigned 0.74 11
Coprococcus −0.31 Genus 6 Oscillospira 0.66 genus 17
Desulfovibrio −0.04 Genus 4 RF32 0.66 order 4
ML615J-28 −0.02 Order 1 Odoribacter 0.62 genus 3
Ruminococcus flavefaciens 0.03 Species 10 Oxalobacter 0.61 genus 1

The usual practice in microbiome research is to aggregate data at various, convenient taxonomic levels. We therefore averaged our model results
across all OTUs belonging to the same taxonomic ID to get the expected effect for that group, E½b̂C2O2�

4
�. (Note that these are not nested; for example,

Oxalobacter is not part of the mean for Oxalobacteraceae.) Comparing these values to those in Table 1 shows how strain level information can be
lost when aggregating OTUs.
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The vast diversity of taxa that occurs in most
microbiomes (Shade et al., 2014; Coyte et al., 2015)
poses an enormous challenge in studying ecological
dynamics of these systems. Computational barriers
make it impossible to apply many traditional
methods of statistical analysis to such large, complex
systems. In order to make analyses tractable,
researchers typically reduce the number of OTUs
being studied to just a handful that are of interest
(Buffie et al., 2015) or to those with the largest
relative abundance (Vahjen et al., 2011; Marino
et al., 2014). Both of these options may provide
answers that are biased a priori. By limiting the
study to OTUs of interest, it is impossible to discover
new roles for microbes within communities because
‘uninteresting’ OTUs would never be studied. Simi-
larly, by only analyzing the numerically dominant
species, important roles of microbes whose

abundance falls below the cutoff will not be
investigated; it is well-known from community
ecology that keystone species for communities need
not be numerically dominant species (Shade et al.,
2014). Regularization combined with appropriate
mathematical models provides a framework to
analyze the entirety of the data, rather than arbi-
trarily selecting OTUs of interest.

Typically, amplicon data are transformed to
represent relative abundances within a community
by dividing the number of reads by the total number
of reads in the sample (Human Microbiome Project
Consortium, 2012); this normalization leads to
numerous statistical complications, the two most
prominent being altering the correlation structure of
the data and censoring of the data at some arbitrary
level (Hinkle and Rayens, 1995; Egozcue et al., 2003;
van den Boogaart and Tolosana-Delgado, 2008; Li,
2015). Compositional data, data whose sum is forced
to be one, have a different correlation structure
which can mask the true nature of the interactions
between species (Lin et al., 2014). For example, if
one OTU's relative abundance increases, it is
impossible to distinguish a hypothesis of a true
increase in absolute abundance from a hypothesis of
a net decrease in absolute abundance of the other
members of the community. Various transformations
(for example, isometric log-ratio, centered log-ratio)
have been applied to correct for this, but, while
they provide improvements, complete resolution
of this forced correlation structure by transformation
is unlikely (Egozcue et al., 2003). Using Poisson
regression ameliorates—but does not completely
alleviate—the inherent correlation structure of com-
positional data; more complex methods using,
for example, multinomial or multivariate Poisson-
log normal distributions could entirely correct
for the correlation structure (Aitchison and Ho,
1989).

An additional complexity for relative abundance
data relates to what a zero relative abundance
actually means. For example, if one sample had
100 total reads while another had 1000 total reads,
then a zero from the first sample represents o0.01
compared with o0.001 for the second. Issues
regarding the analysis of censored data are well
documented (Hinkle and Rayens, 1995; Egozcue
et al., 2003; Li, 2015), and methods are available to
correct these issues (Freeman and Modarres, 2002;
Lin et al., 2014); the methods however are often
computationally expensive (for example, bootstrap-
ping models over imputed values) which is proble-
matic given the already large size and complexity of
the analyses, and may never fully resolve the
censoring issues. Modeling the read count data
directly—as suggested herein—rather than data that
has been normalized to relative abundance over-
comes these statistical issues.

While we have chosen to model only the linear
(first-order) terms as an AR(1) model for the woodrat
gut microbiome, the ARIMA model can be modified

Figure 4 Distributions of oxalate effect sizes (b̂C2O2�
4
). The top

panel shows the distribution of effect sizes for all OTUs for which
a model was successfully fit in the woodrat gut microbiome study.
The middle panel shows the distribution of estimated effect sizes
for the 36 OTUs whose lowest taxonomic designation was
Ruminococcaceae; the dotted vertical (red) line is the mean of
those estimated effects. The bottom panel shows the distribution
of mean effect sizes (E½b̂C2O2�

4
�) for the 38 unique taxonomic IDs to

which the OTUs were assigned (see Table 2 for extreme values
related to the bottom panel).
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to accommodate complex dynamics (for example,
seasonality) in a system by adjusting p, d, or q. If data
quantity and quality is sufficient, more complex
ARIMA models may provide better predictions of
future dynamics, though interpretation of the inter-
action parameters becomes more difficult as the
complexity of the model increases. Higher order
terms that test for complex interactions (such a trait-
mediated indirect interactions) could also be
included with the caveat that altering the structure
of the ARIMA or the order of the predictor terms can
greatly increase the number of parameters, thus
exacerbating the problem that the number of possible
parameters is far greater than the number of
observations. As a whole, the study of microbiome
dynamics needs continued advances in modeling
strategies to successfully understand the eco-
evolutionary complexity of microbial communities,
where higher order interactions are likely to be the
rule rather than the exception.

Other recent methods such as LIMITS and
MDSINE can be used to estimate a Lotka-Volterra

model of microbial dynamics (Fisher and Mehta,
2014; Bucci et al., 2016). The method presented here
shares some similarities to these approaches: Any
method to estimate microbial interactions and
dynamics will require (1) an underlying model (for
example, ARIMA or generalized Lotka-Volterra) and
(2) regularization (for example, ridge, lasso or elastic-
net) to correct for the p≫n problem. In contrast, the
proposed underlying ARIMA model is able to
accommodate a wider range of complex dynamics
and error structure. However, coefficients from
higher order ARIMA models may be harder to
interpret biologically.

It is important to realize that, while the methods
presented here can be adapted to address many
questions, the quality and amount of data collected
strongly influences the quality of the results. For
example, Kurtz et al. (2015) examined the ability to
recover certain synthetic network types (for example,
scale-free versus clustered networks) from different
regularization algorithms and show how the ability
to recover edges (interactions) in the network is

Figure 5 Mean pairwise effect sizes of interacting factors. The direction of the interactions is such that the factors on the horizontal axis
affect the variables on the vertical axis (which are arranged by taxonomic classification per the Greengenes database). The scaled colors
indicate the magnitude and direction of the interaction between the two variables.
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dependent on the number of samples, a point shared
in our analysis of simulated data (Supplementary
Information). Our analysis of simulated data also
shows that a threshold can be applied to the
magnitude of inferred interactions to potentially
improve the sensitivity and specificity of edge
detection for underpowered studies. In addition to
the number of samples, the degree to which samples
vary greatly influences the amount of information
they contain regarding dynamics; collecting samples
at a time resolution sufficient to capture the variation
will yield the most information. Similarly, measure-
ments must capture the key drivers of the dynamics;
if unmeasured variables such as diet or environ-
mental conditions strongly influence the microbial
dynamics and these factors are not included in the
model, estimates of interactions may be misleading.
Beyond issues concerning data quality and quantity,
tuning the model and algorithm parameters (for
example, see the method of cross-validation in
Computational Details) has important consequences
for the resulting inference. Thus, as with any
statistical analysis, it is important to examine
diagnostic outputs of the models to ascertain proper
performance of the method.

The combination of using an (elastic-net) regular-
ized ARIMA model with Poisson errors tackles many
issues facing the analysis of microbiome time-series
data and is flexible enough to be adapted to other
types of analyses. For example, while we have
chosen to use Poisson distributed errors it would
be easy to switch this distribution to others that are
commonly used for count data, such as either the
quasipoisson or negative binomial distribution to
handle overdispersion in amplicon counts (though
the point estimates for the parameters are nearly
identical for the Poisson, quasipoisson, and negative
binomial models). As demonstrated in the oxalate
analysis, if the experimental design is such that it is
logical to force the inclusion of certain variable(s),
this can be done within the regularization algorithm;
the same can be said for inclusion or exclusion of an
intercept term in the model. The general method of
using regularization along with Poisson errors can be
applied to more basic microbiome analyses as well.
For example, to ask the question of which OTUs
might contribute to a particular observation of
interest (for example, which OTUs in the gut
microbiome are predictive of obesity), the ARIMA
equations present above could be replaced by the
familiar regression equation y=Xβ.

As the amount of information related to the
ecology and evolution of microbial communities
increases, scalable methods of statistical analysis
such as the method presented here will be required
to make sense of data. By utilizing regularization and
a model with error structure designed for count data,
this method overcomes many obstacles to interpret-
ing microbiome dynamics, providing a needed
framework to address important eco-evolutionary
questions regarding microbial communities.
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