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Bacterial communities from Arctic seasonal sea ice
are more compositionally variable than those from
multi-year sea ice
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Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice
(MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and
the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited
number of studies comparing the bacterial communities from these two ice types. Here, we compare
the membership and composition of bacterial communities from FYI and MYI sampled north
of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated
by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level,
communities from MYI and FYI differed in both membership and composition. Communities from MYI
sites had consistent structure, with similar membership (presence/absence) and composition (OTU
abundance) independent of location and year of sample. By contrast, communities from FYI were
more variable. Although FYI bacterial communities from different locations and different years shared
similar membership, they varied significantly in composition. Should these findings apply to sea ice
across the Arctic, we predict increased compositional variability in sea ice bacterial communities
resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient
dynamics in the Arctic Ocean.
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Introduction

The Arctic Ocean has a vast sea ice cover, which
spans an average area of 15million km2 at its maximal
extent (Wadhams, 2000). Sea ice can be classified into
two main types: (A) seasonal ice, which forms during
the freeze-up period and undergoes complete melt
during the spring and summer, a.k.a. first-year ice
(FYI); and (B) perennial or multi-year ice (MYI), which
is ice that survives at least one melt season (Wadhams,
2000). MYI is typically much thicker than FYI;
especially along the northern coast of Canada and
Greenland where MYI is generally thicker than 3.5m
(Haas et al., 2006, 2010). Until recently, MYI
dominated the Arctic sea ice cover; however, the
proportion of MYI has dwindled from 470% of the
total sea ice cover to under 45% over the past three
decades (Serreze et al., 2007; Maslanik et al., 2011).

Furthermore, the remaining MYI tends to be younger
and therefore thinner (Maslanik et al., 2011). Thus,
Arctic perennial sea ice cover is not only shrinking
in extent, it is also losing volume. These trends
are expected to continue and it is conservatively
predicted that the Arctic Ocean will be largely ice free
during summer by the end of the 21st century (Boé
et al., 2009).

The loss of MYI has had a significant impact on
Arctic climate and ecosystems. Larger open water
areas in summer have contributed to the accelerated
warming in the Arctic and to potential changes in
atmospheric circulation (Overland et al., 2012).
Decline in summer sea ice has severely impacted
animals that are dependent on ice for feeding,
dispersal and mating (see review by Post et al.,
2013). Phytoplankton blooms in the Arctic Ocean
are normally associated with sea ice edge and retreat
areas, and are reliant on nutrient release from
melting sea ice. Over the past 15 years, massive
under ice phytoplankton blooms have occurred
frequently underneath pack ice in the western Arctic
Ocean (Arrigo et al., 2012; Lowry et al., 2014). These
recent massive under ice blooms are associated with

Correspondence: B Lanoil, Department Biological Sciences,
University of Alberta, CW405 Biological Sciences Building,
Edmonton, T6G2E9 Alberta, Canada.
E-mail: brian.lanoil@ualberta.ca
Received 5 July 2015; revised 8 October 2015; accepted
10 December 2015; published online 16 February 2016

The ISME Journal (2016) 10, 2543–2552
© 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16
www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2016.4
mailto:brian.lanoil@ualberta.ca
http://www.nature.com/ismej


the increase in a much thinner FYI cover, which
allows higher light penetration. Furthermore, it has
been suggested that sea ice algae productivity would
increase with the transition to FYI (Wassmann and
Reigstad, 2011). However a recent study suggests that
the productivity of thick MYI has been underesti-
mated and that loss of MYI will not result in increased
productivity in Arctic sea ice (Lange et al., 2015).

Arctic sea ice is a habitat for a diverse community
of microorganisms that primarily inhabit liquid brine
channels within the ice (Junge et al., 2001; Mock and
Thomas, 2005). The most recognizable feature of this
community is the diatom bloom in the bottom 5–10
cm of the ice during the spring and early summer
(Gosselin et al., 1997; McMinn and Hegseth, 2007;
McMinn et al., 2007). However, sea ice also
hosts diverse communities of heterotrophic bacteria.
Constituents of these communities are metabolically
active throughout the year, and are key regulators of the
spring Arctic Ocean diatom bloom through the
regeneration of nutrients via the microbial loop
(Poltermann, 2001; Junge et al., 2004, 2006; Deming,
2007). Moreover, during the polar winter, heterotrophic
production and growth fertilizes the ice in preparation
for the spring and summer bloom and supplies the ice
and underlying water column with a small but stable
subsidy of organic matter through secondary produc-
tion (Riedel et al., 2008; Wing et al., 2012).

The physical and chemical environment in MYI
and FYI is quite different and can therefore be viewed
as distinct microbial habitats. The decreased thickness
of FYI relative to MYI results in steeper gradients in
temperature, light, brine volume and salinity in FYI,
as well as increased light transmission to the under-
lying water (Eicken, 2008). Because of gravitational
drainage of brine and flushing of the ice with
freshwater from snowmelt during summer, MYI has
lower brine volumes and bulk salinity and therefore
has lower porosity than FYI (Wadhams, 2000; Eicken,
2008). MYI can also include layers of refrozen melt
pond ice and newly formed sea ice at the bottom that
are absent from FYI. These melt pond and newly
formed ice layers were recently reported to host
bacterial assemblages distinct from those in the older
ice layers (Hatam et al., 2014). Furthermore, though
MYI undergoes seasonal fluctuations in many chemi-
cal and physical parameters, it still provides a more
stable habitat than FYI due to the fact that it survives
for longer periods. The difference in age between MYI
and FYI was speculated to be a key factor in the
establishment and development of sea ice microbial
community (Rysgaard and Glud, 2004).

Here, we describe the first comparative study
of bacterial community structure and composition
of Arctic MYI and FYI using high throughput
sequencing. We found that MYI and FYI bacterial
communities collected over three field seasons from
the Lincoln Sea were distinct from each other and that
MYI bacterial community membership and composi-
tion was less variable than for FYI bacterial commu-
nities. These results indicate that the ongoing shift

from MYI to FYI will lead to shifts in the bacterial
community of the Arctic Ocean and to increased
variability in these communities, which potentially
impact the ecosystem functions they provide.

Materials and methods
Site description and sample collection
Samples for this study were taken from ten sites; five
land fast MYI sites and five adjacent land fast FYI sites
located off northern Ellesmere Island, Nunavut,
Canada (Supplementary Table S1). This geographical
location is characterized by dominance of consoli-
dated MYI flows with patches of first-year ice in-
between resulting from refrozen open leads. Sampling
was conducted during the beginning of May 2010,
2011 and 2012. All MYI samples were collected from
depressions in the ice sheet, indicating the presence of
a freshwater melt pond in summer. An accurate age of
the MYI was not determined; however, ice thickness
ranged from 250 to 260 cm, which is typical of MYI
and thicker than most FYI (Supplementary Table S1).
Furthermore, the bulk salinity profile showed low
overall salinity and an increase in salinity with
depth, which is characteristic of MYI (Supplementary
Figure S1). FYI samples were collected from level floes
identified from satellite radar images. For these sites,
cores ranged in thickness from 90 to 180 cm, which is
also characteristic of FYI (Supplementary Table S1).
Bulk salinity for FYI cores was higher overall than for
MYI and showed the characteristic ‘C’-shaped FYI
salinity profile with higher salinity values at the top
and bottom portions of the ice, and lower salinity in
the middle (Supplementary Figure S1).

For each site, duplicate ice cores were sampled 1m
apart using a KovacsMark II 9-cm-diameter corer (Kovacs
Enterprise, Roseburg, OR, USA) powered by a DeWalt
36V electric hand drill (DeWalt Industrial Tool Co.,
Vancouver, BC, Canada). Before drilling, the core barrel
was thoroughly rinsed with sterile deionized water (Milli-
Q Integral Water Purification System, EMD Millipore
Corporation, Billerica, MA, USA). Ice cores were imme-
diately sectioned on site at 30 cm intervals and placed in
polypropylene bags (ULINE, Edmonton, AB, Canada).
Cutting was done using a hand saw that was rinsed in
deionized water and wiped with an ethanol wipe.

At four sites, additional surface sea water samples
were collected (Supplementary Table S1). Duplicate
2-l water samples were pumped into polypropylene
bags from the coring hole using a manual peristaltic
pump (Cole Palmer, Montreal, QC, Canada). Both
water and ice samples were covered, chilled and
processed within 4 h of sampling.

Sample processing
To avoid contamination and dilution of samples, ice
samples were directly thawed at room temperature
in the dark, rather than isotonically (Kaartokallio
et al., 2005, 2008).
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Melted ice samples and sea water samples were
filtered individually through sterile 0.22μm pore size
polyethersulfone membrane filters (Pall, Mississauga,
ON, Canada). Between samples, glassware used for
filtration and sample measurements was sterilized using
10% household bleach solution followed by thorough
rinsing in sterile deionized water. Each filter was placed
in a microfuge tube, submerged in RNAlater solution
(Life Technologies, Burlington, ON, Canada), and stored
at −20 °C for later DNA extraction.

DNA extraction amplification and sequencing
DNA was extracted from preserved filters by bead
beating using the FastDNA SPIN Kit for Soil (MP
Biomedicals, Solon, OH, USA) as instructed by the
manufacturer. Filters from the two corresponding
30 cm sections of the duplicate ice cores were
combined before DNA extraction in order to ensure
sufficient DNA yield. DNA concentration was quan-
tified fluorometrically with SYBR Green (Life Tech-
nologies) in a NanoDrop3300 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) according to
the manufacturer’s instructions. DNA extraction
products from sections from the same core were
combined in equal concentrations before amplifica-
tion and sequencing. The V1-V3 regions of the
bacterial 16S rRNA gene were PCR amplified in
triplicate using 27 F-518R primers (Supplementary
Table S2), mixed in equal concentrations and
purified using Agencourt AMPure beads (Agencourt
Bioscience Corporation, MA, USA) as previously
described (Hatam et al., 2014). Molecular Research
LP (Shallowater, TX, USA) sequenced the resulting
products using FLX-Titanium amplicon pyrosequen-
cing on the the Genome Sequencer FLX System
(Roche, Branford, CT, USA) as previously described
(Dowd et al., 2008; Hatam et al., 2014). A list of all
primers and barcodes is provided in Supplementary
Table S2.

Pre-processing and quality control of raw sequences
All pre-processing and sequence quality control steps
were performed using Mothur v. 1.33.3 following the
Mothur 454 SOP for sff & flow files (http://www.
mothur.org/wiki/454_SOP access date 13 August
2014) (Schloss et al., 2009). In brief, raw flowgram
data were used to discard sequences not in the range
of 360–720 flows, as recommended (Quince et al.,
2011). Noise reduction was performed using the
Mothur implementation of the PyroNoise algorithm
which corrects PCR- and pyrosequencing-generated
errors (Quince et al., 2009; Schloss et al., 2011).
Sequences shorter than 200 base pairs (bp) or those
containing primer/barcode mismatches or homo-
polymers longer than 8 bp were discarded. The
remaining sequences, which were all 250–350 bp
long, were aligned against the SILVA reference data
set (version 110), and then pre-clustered for further
noise reduction as recommended (Pruesse et al., 2007;
Huse et al., 2010). Chimeras were detected and

removed using the Mothur implementation of
UCHIME (Edgar et al., 2011). Operational taxonomic
units (OTUs) were assigned using the average-
neighbor clustering algorithm for an OTU definition
of 97% similarity. Global singleton OTUs, represented
as just one sequence in the data set, were excluded;
and the remaining OTUs were assigned to taxonomic
classification using the Mothur implementation of the
Ribosomal Database Project classifier (train set 10)
with a 60% confidence threshold (RDP; http://rdp.
cme.msu.edu/). Using this threshold, we were able to
classify 75%, 85% and 82% of the sequences to below
the domain bacteria and 37%, 51% and 18% of the
sequences to the genus level in FYI, MYI and SW,
respectively. On basis of this classification, sequences
of mitochondrial, chloroplast, eukaryotic or unknown
origin (sequences that could not be classified at the
domain level) were removed from the data set. Pre-
analysis data clean-up processes eliminated ~30% of
the total raw sequences. The sequences were sub-
sampled to the smallest library size (n=1100 for
individual samples, n=8000 for merged FYI, MYI and
SW groups) to allow identical sampling efforts for
each sample before further analyses (Gihring et al.,
2012). Sequences are available from the National
Center for Biotechnology Information Sequence
Read Archive under bioproject PRJNA288609
biosamples SAMN04334613-SAMN04334626, SRA
accession SRP067418.

Community analysis
Mothur v. 1.33.3 was used for all community analyses
and statistics as previously described (Schloss et al.,
2009). Alpha diversity was estimated using the Chao1
and ACE non-parametric richness estimators, recipro-
cal Simpson’s diversity index (invsimpson) and
Shannon diversity index (Shannon, 1947; Simpson,
1949; Chao, 1984; Chao and Shen, 2003). Community
evenness was estimated using HEIP (Heip, 1974).
Coverage was calculated as the ratio between
observed and estimated richness. On the basis of this
calculation, all our samples showed ~90% coverage,
which indicates a good sampling effort (Figure 1).
Furthermore, rarefaction curves for both individual
and merged samples (that is, 8000 and 1100
sequences) approached an asymptote, further indicat-
ing a high level of coverage of the bacterial commu-
nity diversity (Supplementary Figures S2A and B).
Yue and Clayton’s theta measure of dissimilarity (θyc)
and Jaccard’s dissimilarity coefficient (J-class) were
used to compare the composition (that is, dissimilarity
of communities based on OTU relative proportion)
and membership (that is, similarity of communities
based on shared OTUs), respectively, of the
different communities in an OTU-based, phylogeny-
independent manner (Jaccard, 1912; Yue and Clayton,
2005). PCoA (principal coordinates analysis) was used
to ordinate the different samples in multidimensional
space, based on the distance matrices generated by
θyc and J-class. The non-parametric analysis of
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molecular variance (AMOVA) was used to test the
significance of the grouping based on the PCoA
ordination: statistical significance of grouping was
tested for P⩽0.05 with Bonferroni correction accord-
ing to the number of groups tested (Excoffier et al.,
1992; Anderson, 2001; Martin, 2002). Mothur v 1.33.3
was used to visualize shared observed richness using
Venn diagrams (Schloss et al., 2009). Mathlab v 7.13
was used to plot PCoAs. A neighbor joining phyloge-
netic tree of representative OTU sequences was
constructed for core members of each sample type,
that is OTUs found in all MYI, in all SW or in all FYI
samples using MAFFT version 7 (http://mafft.cbrc.jp/
alignment/server/). Tree visualization and the addi-
tion of OTU abundance to each branch were done in R
version 3.1.1 (http://www.r-project.org) with the
phyloseq package (McMurdie and Holmes, 2013).
Sequences of these OTUs were deposited to the NCBI
sequence repository under accession numbers
(KU308473-KU3085).

Of the OTUs that were part of the core membership,
those found exclusively in all MYI were further
identified using the nucleotide BLAST search tool
(BLASTn) against the NCBI non-redundant (nr) data-
base with the exclusion of model and uncultured
organisms to identify the closest cultured relative. On
the basis of this classification, the hypothetical ecologi-
cal function of the OTU was assumed. We also used a
similar BLASTn search but including uncultured
bacteria to identify the environments the most similar
sequences originated from. For both BLASTn searches,
a maximum expect value of e−90 was accepted.

Results

Salinity profiles for the sites in this study were done
in 10-cm intervals and were taken from Lange et al.
(2015) (Supplementary Figure S1). For each site,
mean Chla concentrations as well as snow and
ice depth, previously reported by Lange et al. (2015),
are also reported in Supplementary Table S1. No
statistical differences in these parameters were found
between FYI and MYI (Lange et al., 2015).

Communities from FYI have higher taxon richness and
diversity than MYI
Taxon richness in FYI (observed and estimated;
Figure 1a) and diversity (Figure 1b) in FYI were
significantly higher than for MYI and SW (repeated
measure ANOVA, Po0.05). Although observed and
estimated OTU richness for bacterial communities
from MYI were lowest of all three sample types,
overall diversity was higher for MYI than for SW
(Figure 1b). The discrepancy between OTU richness
and overall diversity is because OTUs were more
unevenly distributed in SW (HEIP evenness 0.186)
than FYI (HEIP evenness 0.233) or MYI (HEIP
evenness 0.282).

FYI bacterial communities have unique, MYI-like and
SW-like components
Communities from all sample types showed a high
number of OTUs not found in the other sample types
(that is, unique OTUs); however, FYI and SW
communities had more unique OTUs (47.5% and
48%, respectively) than MYI communities (36%
unique OTUs) (Figure 2). MYI bacterial communities
shared twice the fraction of OTUs with FYI (59%)
as with SW (30%) (Figure 2); FYI bacterial commu-
nities share similar proportions of their OTUs with
MYI and SW communities (36% and 32%, respec-
tively; Figure 2). Furthermore, 33% of OTUs from
MYI are shared exclusively with FYI, which is
eight times higher than the fraction MYI shares
exclusively with SW (Figure 2). This differential
stands in contrast to communities from FYI, which
share similar fractions of their OTUs exclusively
with both MYI and SW (20% and 16%, respectively;
Figure 2). Thus, FYI and SW bacterial communities
are more similar to each other than MYI and SW.

Composition of major class-level groups shows minimal
differences between ice types or sea water
The majority of OTUs from both ice types could be
classified into class-level taxonomic groups; those that
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were not are represented at the phylum level
(Figure 3). Most of the class-/phylum-level groups
were similar between the two ice types (Figure 3). The
predominant class-level groups in both FYI and MYI
communities were Alphaproteobacteria (~10% in FYI
and ~15% in MYI), Gammaproteobacteria (~15% in
both sample types), Flavobacteria (~10% in both
sample types) and the class-level group Actinobac-
teriawithin the phylum Actinobacteria (~10% in both
sample types) (Figure 3). Class-level groups represent-
ing less than 1% of the total sequences were grouped
together as ‘Other’. The class-level group Opitutae
represented a fraction greater than 1% of the
sequences only in MYI communities (Figure 3).

At the class/phylum level, ice communities were
minimally different from SW communities. Within
the major class-/phylum-level groups, only sequences
closely related to the class Sphingobacteria and
unclassified Bacteroidetes had relative abundance
greater than 1% in ice and lower than 1% in SW
(Figure 3). Sequences classified as closely related to the
phylum-level group Firmicutes appeared only in SW
(albeit with relative abundance lower than 1%; data
not shown) and not in ice.

MYI and FYI have distinct membership, but not
composition
Despite the high similarity in the composition of
FYI, MYI and SW bacterial communities at higher
taxonomic levels, examination of the community
membership and compositions at finer scales show
significant differences. The J-class index of dissim-
ilarities between memberships of different commu-
nities showed clustering of the samples to three
statistically significant groups (max pair-wise P-value
Po0.004) based on sample type (that is, FYI, MYI and
SW; Figure 4a). An alternate dissimilarity measure,
Yue and Clayton’s θ measure of dissimilarity (θyc),
which accounts for relative abundance of taxa and

thus measures composition, also showed three statis-
tically significant groups (max pair-wise P-value
Po0.01; Figure 4b); however, the membership of
these groups was not determined by sample type.
although the SW and MYI mostly maintained their
grouping, FYI samples grouped with either SW or
MYI samples: two of the FYI samples formed a cluster
with four of the five MYI samples; one FYI sample
grouped with the SW samples, and two FYI samples
grouped with the remaining MYI sample. The
difference between clustering by membership and
composition indicates that the FYI bacterial commu-
nities share mainly low abundance OTUs, while MYI
and SW share both low and high abundance OTUs.
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Communities from MYI have a broader core
membership than FYI
To further investigate the core OTUs of the bacterial
communities from different sample types, we com-
pared the number of OTUs that are found in all MYI
samples, all SW samples and those that are found in
all FYI samples (Figure 5). Note that these OTUs are
not necessarily exclusive to one sample type, but are
found in all samples of that type. All MYI samples
shared 20 OTUs, representing ~ 5% of the observed
OTUs in MYI; these core MYI OTUs accounted for an
average of ~ 25% of the total sequences from MYI
samples (Figure 5). Similarly, all SW samples shared

34 OTUs, representing ~ 8% of the observed OTUs
for SW; these core SW OTUs accounted for an
average of ~ 55% of the total sequences from SW
samples (Figure 5). In contrast, all FYI samples
shared only seven OTUs, representing ~ 1% of
observed OTUs for FYI; these core FYI OTUs
accounted for 11% of the total sequences from FYI
samples (Figure 5). Furthermore, of those seven core
FYI OTUs, four were also shared with all of the MYI
samples and two with all of the SW samples,
meaning only one OTU was shared between all FYI
samples exclusively. In contrast, many more OTUs
were shared between all MYI samples exclusively or
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all SW samples exclusively (15 and 32, respectively;
Figure 5, Supplementary Figure S3).

The closest relatives of the 15 OTUs exclusive to all
MYI samples with NCBI BLAST were found primarily
in cold environments (marine, freshwater or terres-
trial) (Supplementary Table S3). Four of these OTUs
belong to the Rhodobacteraceae family with two of the
four in the genera Loktanella and Roseobacter. Both of
these genera are known to have a role in the
degradation of dimethylsulfoniopropionate originating
from marine algae (Gonzalez et al., 1999; Moran et al.,
2007). Other OTUs were members of the genus
Glacicola (Supplementary Table S3) known for their
role in hydrolyzing complex organic carbon molecules
such as cellulose and chitin originating from algae
(Qin et al., 2014). An OTU related to Psychroflexus
torques, which is known to associate with ice algae
(Bowman et al., 1998) and may oxidize dimethylsul-
foniopropionate, was also exclusive to the core MYI
group. One of the OTUs was closely related to
Glacicola nitratireducens (Supplementary Table S3),
which is involved in the nitrogen cycle through
denitrification (Qin et al., 2014). The fact that these
Glacicola sequences are found in high abundance in
all MYI samples may explain a previous observation
that denitrification occurs much more strongly in MYI
than in FYI (Rysgaard et al., 2008). Psychroflexus
torques may also contribute to the primary productiv-
ity of sea ice via proteorodopsin-mediated carbon
fixation and the secretion of extracellular polysacchar-
ides (Feng et al., 2013). Taken together, the groups
found exclusively in the MYI core community are cold
adapted organisms that consume algal products and
transform nitrogen and carbon within the ice.

Discussion

Class-level taxonomic groups from the bacterial com-
munities in our sea ice samples are similar to groups
previously shown to dominate sea ice in both polar
and sub-polar seas. Most of the OTUs that were present
in all sea ice samples in our study were most similar to
previously identified sea ice bacteria from the Arctic,
Antarctic and the Baltic Sea (Figure 5) (Junge et al.,
2001; Petri and Imhoff, 2001; Brinkmeyer et al., 2003;
Bowman et al., 2012; Eronen-Rasimus et al., 2014;
Han et al., 2014; Hatam et al., 2014). Furthermore, MYI
bacterial communities from the sites we sampled had
comparable OTU richness and diversity values to those
shown in previous studies of sea ice bacterial commu-
nities (Bowman et al., 2012; Hatam et al., 2014). It is
worth noting that communities from FYI showed the
highest OTU richness and overall diversity by a large
margin. This is the first study to use high throughput
sequencing of 16S rRNA genes with Arctic FYI
bacterial communities; therefore, there is no point of
reference to compare our values with that geographical
location. However, our diversity indices were compar-
able to those recently published for Antarctic seasonal
pack ice (Torstensson et al., 2015).

Although our study had a modest geographic
scope, focusing exclusively on land fast ice from
the Lincoln Sea, our richness and diversity trends
were similar to studies conducted in summer pack
ice (Bowman et al., 2012; Han et al., 2014).
Furthermore, the OTU composition from our ice
samples was similar to these studies at the class level
and lower (if the sequences could be resolved
to lower taxonomic levels). Thus, although land fast
ice is more affected by riverine input and sediment
upwelling than pack ice (Wadhams, 2000), our
findings may be broadly applicable to both types
of ice and the Arctic as a whole.

If we define ‘core community’ as OTUs found
in all samples of a sample type, then the FYI core
community is not robust, that is, there are few OTUs
shared among all FYI and they represent a small
fraction of the total FYI sequences. Therefore, the
ancillary community, that is, those OTUs found in
some but not in all of the FYI samples determine the
similarity to other sample types based on community
composition. In other words, based on composition,
FYI does not have a clear core community; rather,
it is a composite community that is more similar
to either MYI or SW.

In contrast, our results show that bacterial commu-
nities from MYI have low sample-to-sample variability
in both community membership and composition.
Sample grouping was independent of site and year of
sampling, indicating a high level of stability of these
communities. Their common structure may be the
consequence of selection processes resulting from
formation and maturation of MYI, including transition
fromwater to ice, freeze and thaw cycles, flushing of the
ice with melt water, brine drainage and the formation of
different layers within the ice depending on the original
water source (Mock and Thomas, 2005). The low
variability and high stability of the MYI bacterial
communities is further supported by the high number
of OTUs shared by all MYI samples as compared with
the low number of OTUs shared by all FYI samples.
However, larger sampling efforts across the Arctic are
needed to determine whether this observation can be
generalized.

One possible explanation for the clustering of FYI
based on membership is that the less abundant,
unique (that is, found in at least one FYI sample but
not in other sample types) OTUs in FYI are transient
and not well adapted to life in sea ice, and thus are not
found in MYI. These unique OTUs could originate
from non-sea water sources such as sediment or the
aeolian deposition of particles (Bunch and Harland,
1990; Reimnitz et al., 1992; Laurion et al., 1995),
a possibility supported by the presence of members
of the genera Arthrobacter and Solirubrobacter and
the Phylum Chloroflexie. These taxa are primarily
found in terrestrial and sediment environments and
are only found in the FYI samples, not MYI or SW.
Alternatively, these OTUs unique to FYI could
be present at very low abundance in sea water, but
are preferentially scavenged during FYI formation
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(Garrison et al., 1983; Gradinger and Ikävalko, 1998;
Weissenberger and Grossmann, 1998). In this case,
bacterial communities from FYI samples group with
either SW or MYI based on composition because the
most abundant OTUs either originate from SW or are
well adapted to survival in sea ice conditions, and are
therefore abundant in MYI as well. Thus, the transi-
tion fromMYI to FYI will result in a more variable and
unstable microbial community in Arctic sea ice.

The core OTUs for the MYI bacterial communities
are primarily specialized psychrophiles, with relatives
found in both cold marine sediments and cold fresh-
water environments (Supplementary Table S3). Pro-
minent members of the core MYI OTUs seem to be
specialized in exploiting the ice algal bloom via the
oxidation of dimethylsulfoniopropionate or the break-
down of complex organic carbon molecules synthe-
sized by ice algae (Supplementary Table S3). We
interpret these findings to indicate an MYI core
community acclimated to cold environments and
ready to exploit the ice algal bloom, with implications
for the nitrogen, sulfur and carbon cycles. Thus, these
biogeochemical cycles might be impacted with the
disappearance of MYI and its stable community. Such
losses may lead to changes in nutrient dynamics in sea
ice and the Arctic Ocean, such as decreased denitri-
fication in the ice and increased export of organic
carbon from the ice (due to lower efficiency of carbon
utilization), which in turn may increase nutrient export
to the water column and sediments. However, it is
unclear whether the increased variability of the FYI
community composition might mask such impacts.

Conclusions

To the best of our knowledge, this is the first study
comparing the composition of bacterial communities
from MYI and FYI using high throughput sequen-
cing. Though of modest scale both geographically
and seasonally, our data suggest two distinct phases
in the development of bacterial community compo-
sition in the sea ice cover of the Lincoln Sea. The
first phase is a transient FYI community, with
distinct membership but not composition that may
reflect the stochastic incorporation of bacteria into
the growing ice. The second phase is a mature MYI
community with a broad base of shared members
found in high relative abundance. As the Arctic
warms and MYI transitions to FYI, our results
indicate that there will be a shift from a highly
stable sea ice bacterial community toward one that is
more variable in its composition. Due to the high
degree of functional redundancy found in bacterial
communities, it is unclear what effect the shift
in community structure will have on the ecology of
the Arctic Ocean. However, we predict that the
variability and instability at the compositional level
translates to similar variability and instability at the
functional level and may decrease the ability of these
communities to adapt to the effects of environmental

disturbance and may change nutrient dynamics in
the Arctic Ocean.
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