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Capturing the most wanted taxa through cross-sample
correlations
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The Human Microbiome Project (HMP) identified the 16S rRNA gene sequences of 'most wanted' taxa
—prevalent in the healthy human microbiota but distant from previously known sequences. Since
2012, few of the corresponding genomes have been isolated and sequenced, and only through
advanced isolation techniques. We demonstrate that the genomes of the most wanted taxa can be
identified computationally through their correlation in abundance across multiple public metage-
nomic data sets. We link over 200 most wanted sequences with nearly complete genome sequences,
including half of the taxa identified as high-priority targets by the HMP. The genomes we identify have
strong similarity to genomes reconstructed through expensive isolation techniques, and provide a
more complete functional characterization of these organisms than can be extrapolated from their
16S rRNA gene. We also provide insights into the function of organisms for which 16S rRNA gene
signatures were recently reported to be associated with health and host genetic factors.
The ISME Journal (2016) 10, 2459–2467; doi:10.1038/ismej.2016.35; published online 4 March 2016

Introduction

The majority of organisms inhabiting our bodies and
our world cannot be readily cultured. As a result,
most microbial communities can only be explored
through culture-independent molecular techniques.
Among these, two major approaches dominate: PCR-
based amplification and sequencing of hypervariable
regions of the 16S rRNA gene, and random sequencing
of whole-community DNA. The former approach was
pioneered in the 1980s by Norm Pace (Olsen et al.,
1986), and has resulted in the creation of an
extensive catalog of 16S rRNA sequences comprising
today over two million distinct entries. These data
are widely available through three main databases:
RDP (Cole et al., 2009), Silva (Quast et al., 2013) and
Greengenes (DeSantis et al., 2006). The random
sequencing of community DNA is being increasingly
applied to the study of environmental (Tyson et al.,
2004; Rusch et al., 2007) and human-associated
microbial communities (Gill et al., 2006; Qin et al.,
2010; Human Microbiome Project C, 2012).

Unlike 16S rRNA-based studies, whole-community
metagenomic projects suffer from the relative dearth of

extensive and broad reference databases as the
genomic data in public databases (in terms of both
genes and genomes) is primarily derived from the
relatively small number of genomes that have been
grown in culture. The public data are also biased
in their phylogenetic distribution (Wu et al., 2009).
Recent studies have begun to develop new reference
catalogs based on the genes and genomes found
in environmental (Yooseph et al., 2007) and host-
associated (Qin et al., 2010; Human Microbiome
Project C, 2012) metagenomic data sets and have
already added millions of new genes to public
databases such as MG-RAST (Wilke et al., 2016)
and IMG/M (Markowitz et al., 2008). Missing from
these catalogs are reliable connections to the wealth
of information already accumulated in 16S rRNA
studies. Creating a link between 16S rRNA amplicon
studies and whole-community metagenomic data is
complicated by the fact that the 16S rRNA gene
is frequently misassembled or left unassembled even
in isolate genome assemblies, let alone metagenomic
mixtures. A testament to this difficulty are extensive
efforts undertaken during the past couple of years
to isolate or culture the organisms associated with
the ‘most wanted’ 16S rRNA gene sequences—
sequences without close relatives in public databases
yet found in high abundance in multiple samples
from the HMP project (Fodor et al., 2012). To date,
just two of these organisms have been isolated and
sequenced (Ma et al., 2014; Rettedal et al., 2014).
Here we demonstrate that in silico analyses of the
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abundance of genomic entities (genes and 16S rRNA
Operational Taxonomic Units (OTUs)) are effective
in identifying links between 16S rRNA sequences
and their genomic context. We specifically provide
a first link between metagenomic species developed
in the MetaHIT project (Qin et al., 2010) and the data
generated by the HMP project (Human Microbiome
Project C, 2012). This connection allows us to
provide reconstructions of genomes we postulate
to encode some of the ‘most wanted’ 16S rRNA gene
sequences identified by Fodor et al. (2012) in the
HMP data.

Briefly, our approach relies on the signal provided
by the variation in the abundance of genomic entities
across multiple metagenomic samples, under the
assumption that genomic segments derived from
a same organism exhibit a strong correlation in their
abundance profiles. Such an approach has been
successfully used to summarize metagenomic cata-
logs into coabundance gene groups and metage-
nomic species (MGS)—clusters of genes with
correlated abundance profiles (Qin et al., 2012;
Le Chatelier et al., 2013; Nielsen et al., 2014). We
cannot, of course, exclude the confounding effect of
coassociations between unrelated organisms
(e.g., symbiotic relationships between bacteria);
however, we hypothesize that these correlations
are weaker than those between genomic elements
belonging to a same organism.

Materials and methods

Genus-level classification of OTUs
The databases SILVA, NCBI nt and NCBI WGS
(Whole-Genome Shotgun) were used to retrieve the
genus annotation for the OTU validation set. For the
most wanted OTUs, we also relied on the RDP
taxonomical annotation from Fodor et al. (2012).
A threshold of 98% identity and 98% alignment
coverage were used to define the genus annotation
level in the different databases. For the RDP annota-
tion, we only considered genera with classification
confidence ⩾80%, and discarded any assignments
that disagreed with the information from other
databases.

OTU data
The metadata and sequences for the most wanted OTUs
(priority group, max fraction body habitat, RDP assign-
ment and so on) were downloaded from the HMP
website at http://www.hmpdacc.org/most_wanted/.
The sequences and Qiime-processed (Caporaso et al.,
2010) abundance table for the HMP OTUs were
downloaded from http://hmpdacc.org/HMQCP/.

MGS genome metadata
The MGS metadata and sequences (genes, proteins,
draft genomes) were downloaded from https://www.
cbs.dtu.dk/projects/CAG/. Note that the MGS genomes

were reconstructed from metagenomic data using a
coabundance clustering approach similar to the
one described here. They were further refined
through sample-specific reassembly and the result-
ing assemblies were validated for completeness
and correctness. For more details see Nielsen et al.
(2014).

Comparison between the closest NCBI references and
MGS genomes
We compared the MGS draft genomes to genomes
from NCBI database using the dnadiff tool from the
mummer (Kurtz et al., 2004) package with default
parameters.

Functional annotation
A functional annotation of the MGS proteins to
the eggNOG groups (COG) was performed in two
steps. First, the MGS proteins were assigned to the
eggNOG 3.0 database with blastp (v.2.2.29+), using
an e-value threshold of 1E− 5. The first 20 hits for
each protein were then considered for pairwise
alignment to the MGS proteins using Clustal Omega
(Sievers et al., 2011). The sequence identity and
coverage was extracted from the alignment. Finally,
the COG was assigned from the hit that shared the
highest sequence identity and coverage.

The PICRUSt COG prediction was performed with
picrust-1.0.0 (Langille et al., 2013) according to the
authors’ recipe for metagenome prediction.

WGS mapping to genes
The reads of the 138 HMP samples were aligned
to the MGS gene catalog 3.9M from the paper by
Nielsen et al. (2014). The reads were mapped using
Bowtie (Langmead et al., 2009), by aligning the
first 35 nt of the read and allowing up to three
mismatches, and using the best-hit option.

Translation to MGS and downsizing procedure
Raw count data were preprocessed to remove
technical variability due to sequencing depth. We
performed a downsampling procedure for each of
the 138 samples by randomly selecting 15 million
mappable reads and aligning them back to
the reference catalog of 3.9 M genes (Nielsen
et al., 2014). The downsized data matrix was
further normalized and transformed in relative
abundance frequency using the RPKM+TC method.
Specifically, each count was divided by the
gene length and the total sum of the signal for
each sample.

Genes from each MGS were ordered by decreasing
connectivity (gene coabundance network based
on Spearman's correlation and a threshold of 0.7).
The 50 most connected genes were selected and
used to compute the mean tracer vector for each
MGS. This reduced data set was used for further
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analyses. These transformations were performed
using the momr package (Prifti and Le Chatelier,
2014).

‘Validation set’ and ‘most wanted’ OTU abundance
table creation
V3–V5 16S rRNA abundance table and taxonomic
annotations were downloaded in a Qiime (Caporaso
et al., 2010)-formatted spreadsheet from: http://
downloads.hmpdacc.org/data/HMQCP/otu_table_psn_
v35.txt.gz.

The abundance table for the HMP most wanted
OTUs was generated by mapping the shotgun
sequences generated in the HMP project to the
consensus sequences of the OTUs using Bowtie
(Langmead et al., 2009) with parameters ‘–q–v 1–
k 1—suppress 1, 2, 4, 5, 6, 7, 8’. The resulting
alignments were converted into an abundance table
using custom software available from http://www.
cbcb.umd.edu/software/MGS_correlation/.

Correlation analysis for linking OTUs to MGS
sequences
Correlation analysis was performed in R using custom
software available from http://www.cbcb.umd.edu/soft
ware/MGS_correlation/. Briefly, abundance tables for
OTUs and MGSs were normalized by conversion
to ratios and were log-transformed to control varia-
tion and reduce the effect of extreme values.
A pseudocount of 1E−17 was added to avoid
underflow. For every MGS or most wanted OTU,
we identified the OTU or MGS, respectively, whose
abundance profile correlated best in terms of the
Pearson's correlation value. We used Pearson's
correlation to be consistent with the procedure used
to construct the MGS clusters. Initial benchmarks
using other measures of correlation revealed that the
choice of measure did not significantly impact the
results (data not shown). We focused our analysis on
MGSs and OTUs that had positive counts in more
than 10 samples (out of the 138 samples analyzed) to
avoid spurious associations.

Linking most wanted OTU and MGS genomes to
association studies
The most wanted 16S rRNA sequences were aligned
with BLAST against the Greengenes OTUs from the
study by Goodrich et al. (2014) and were defined as
similar only when the corresponding sequences
shared more than 98% identity over 100% of the
length of the most wanted sequence.

The MGS genomes were linked to gene clusters
associated with health conditions by aligning the
genes clusters to the MGS genes, and were defined as
similar when at least 70% of the genes from a cluster
matched the same MGS.

Results

We derived a gene abundance table by mapping the
shotgun reads from 138 stool samples sequenced
in the HMP project (Human Microbiome Project C,
2012) to the 3.9M gene catalog constructed in the
MetaHIT project (Qin et al., 2010). These gene-level
abundances were used to estimate the abundance
of 741 MGS. We similarly derived abundance tables
for 45 411 OTUs generated by the HMP from the
V3–V5 hypervariable region of the 16S rRNA gene.
We then identified correspondences between the
metagenomic species and 16S rRNA OTUs by
computing the correlation between the correspond-
ing abundance profiles. We focused on the MGS
correlated to 1468 OTUs (‘most wanted’ OTUs)
representing 16S rRNA gene sequences that were
poorly characterized in public databases, but
prevalent in the HMP human samples (Fodor et al.,
2012). While the original paper referred to only a
subset of high-priority OTUs as ‘most wanted’,
for simplicity we will refer to all the sequences
described by Fodor et al. (2012) as the most
wanted set.

Validation of our approach using taxonomically
characterized OTUs
To validate our approach, parametrize it and evaluate
its overall effectiveness, we used the full set of 45 411
OTUs generated by the HMP from the V3–V5
hypervariable region of the 16S rRNA gene and
a subset of 387 high-quality MGS sequences. For
each of the MGS sequences, we selected the best
correlated OTU and estimated the accuracy of the
association by comparing the genus-level annotation of
the MGS and the OTU. Of the 387 best correlated
OTUs, 104 had been annotated at the genus level,
and 81 of these (78%) matched the genus-level
taxonomic annotation of the corresponding MGS
(see Supplementary Table 1, sheet OTU validation
set). Manual inspection of the differences reveals that
the majority of the disagreements involve OTUs
assigned to members of the Lachnospiraceae family
(Supplementary Figure 1), organisms that often con-
found automatic classification (Patil et al., 2012). Many
of the discrepancies may, thus, be artifactual.
A Pearson's correlation coefficient cutoff of 0.650 was
selected to balance the tradeoff between accuracy and
error, in terms of the agreement between the genus
labels of the MGS and OTUs as exemplified in
Supplementary Figure 1.

Linking the ‘most wanted’ OTUs to genes and genomes
The ‘most wanted’ OTUs identified by Fodor et al.
(2012) are 16S rRNA sequences that are prevalent
and abundant within the HMP samples but for
which the corresponding genomes have yet to be
sequenced. For each of the OTUs reported by Fodor
et al. (2012) we retrieved the MGS sequence to which
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it best correlates in abundance, using a Pearson's
correlation coefficient cutoff of 0.65 determined as
described above. Among the 1468 OTUs, 201 (14%)
could be associated to an MGS, thereby providing
for the first time a genomic context for these OTU
sequences. Of note, the majority (80%) of the ‘most
wanted’ OTUs that were assigned to an MGS by
our coabundance method were primarily found in
stool samples—unsurprising given that the MGS
genomes were all reconstructed from stool. Another
15% were abundant in oral samples consistent with
the well-documented transit of oral microbes
through the digestive tract (Segata et al., 2012).
Among the stool OTUs considered ‘high priority’ by
Fodor et al. (2012), we were able to identify a
corresponding MGS for half (23 out of 45, see
Table 1).

In our selection procedure we only retained
the most highly correlated MGS for each 'most
wanted' OTU. The second best hit generally exhib-
ited a lower correlation value, dropping from
a median of 0.75 for the best hit to just 0.61 (below
our correlation cutoff) for the second hit (see
Supplementary Figure 2). For 134 OTUs (66%
of the total set), both the first and second hits
exceeded the 0.65 correlation cutoff. Genus-level
annotations were only available for the MGS asso-
ciated with 116 of these OTUs. In the vast majority
of these cases (102/116, 88%), the genus-level
annotations of the first and best hit was the same.
The majority of the 14 disagreements in taxonomic
placement between the first and second hits were
between the genus Faecalibacterium and genera
Eubacterium or Ruminococcus, disagreements that
are likely due to the inconsistent taxonomic labels
assigned to organisms within the Clostridiales order
(see Supplementary Table S4).

To further validate the specificity of the
approach, we attempted to identify fragments
of the 16S rRNA gene within each MGS and
compare them with the sequence of the 'most
wanted' OTU. Owing to the difficulty inherent in
assembling the 16S rRNA gene, we could only
identify it in 19 of the MGS identified by our
procedure, and in 18 cases, the metagenomically
derived 16S rRNA sequence matched closely the
OTU sequence associated with the corresponding
MGS (see Supplementary Document 1, Section 1c).
Furthermore, we note that 67 out of the 104 MGS
sequences retrieved by correlation with the 'most
wanted' OTUs (64%) could be correlated with both
a 'most wanted' OTU and an OTU from the full
HMP set (OTUs used in the validation described
above). In 40 out of these cases (59% of
the ambiguous cases and 38% of the MGS), an
OTU from the full OTU set had a higher correlation
value than the 'most wanted' OTU linked with the
MGS. Having multiple OTUs match a same MGS is
not surprising, given that the 16S rRNA gene is
a multicopy gene. To verify whether the two OTUs
assigned to a same MGS are related, we focused on

the 28 'most wanted' OTUs corresponding to
the V3–V5 hypervariable regions of the 16S rRNA
sequence and compared them with the matching
sequence from the full OTU set. Among these pairs,
21 (75%) matched each other with497.5% identity as
determined by BLAST (see Supplementary Table 1
and Supplementary Document 1, Section 1d).

Genomes identified through correlation are highly
concordant with sequences derived through advanced
culturing techniques
Several organisms related to most wanted OTUs
were recently isolated and sequenced through
advanced experimental technologies: (i) Ruminococca-
ceae bacterium LM158 (also called microfluidicus 1),
isolated from a healthy American patient’s cecum
through a gene-targeted microfluidic cultivation
approach (Ma et al., 2014), (ii) Oscillibacter-like
P2C1 isolate, sequenced from a healthy Danish
patient’s stool through a multiplex phenotyping
cultivation approach (Rettedal et al., 2014). These
bacteria were selected by the authors of the
respective studies due to the proximity of their 16S
rRNA with the Oscillibacter genus, which is pre-
valent among the most wanted OTU sequences.
Among these, otu_138_V3V5 shares 99.5%
identity with the 16S rRNA sequence of the
Ruminococcaceae bacterium LM158 and Oscillibac-
ter-like P2C1 isolate. We found otu_138_V3V5 to be
strongly correlated with the metagenomic species
MGS121 (Pearson's correlation =0.84), a genome

Table 1 Summary of ‘most wanted’ OTUs and correspondence
with MGS stratified by body site and importancea

Priority level as
defined by Fodor
et al. (2012)

Dominant
human
body
habitat

Number of
‘most

wanted’
OTUs

‘Most wanted’
OTUs with a

corresponding MGS

High priority Total 119 24 (20.17%)
Stool 45 23 (51.11%)
Oral 64 1 (0.02%)
Other 10 0

Medium priority Total 338 49 (14.5%)
Stool 127 42 (33.07%)
Oral 176 5 (2.84%)
Other 35 2 (5.71%)

Low priority Total 1011 128 (12.66%)
Stool 313 96 (30.67%)
Oral 445 24 (5.39%)
Other 253 8 (3.16%)

Abbreviations: HMP, Human Microbiome Project; MGS, metagenomic
species; OTU, Operational Taxonomic Unit.
aImportance is defined by Fodor et al. (2012). ‘High priority’: o90%
identity to either the GOLD-Human or HMP strains database. ‘Medium
priority’: HMP OTUs with 490% identity and o98% identity to
GOLD-Human or HMP strains database were assigned to a ‘Medium
priority’ group. ‘Low priority’: HMP OTUs with 498% identity to
either the GOLD-Human or HMP strains database.
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reconstructed from the MetaHIT sample V1.UC8-0
obtained from the stool of a healthy Spanish patient.
To further explore the relation between these
bacteria, we compared the functional composition
of MGS121 V1.UC8-0 to the recently sequenced
Ruminococcaceae bacterium LM158 and P2C1 iso-
lates, as well as to the PICRUSt (Langille et al., 2013)
prediction of the functional composition of
otu_138_V3V5 based on the sequence of the OTU
alone (Figure 1).

The genome retrieved through our correlation-based
approach, MGS121, shares most of the functional
content with the two genomes reconstructed through
complex isolation/culturing techniques (Figure 1). The
PICRUSt prediction based on the sequence of the most
wanted OTU only recovers a small fraction of the
functional profile of this genome, highlighting the
limits of prediction based on 16S rRNA sequences for
organisms poorly represented in public genome
database.

To further demonstrate that the bioinformatically
identified genome sequences capture valuable biologi-
cal information, we compared the MGS sequences we
found to be associated with the most wanted OTUs to
related genome sequences from public databases.
Specifically, we identified 58 genomes containing
16S rRNA genes highly similar to those of ‘most
wanted’ OTUs (with ⩾98% identity over 100% length,
see Supplementary Table 2). These 58 genomes
were mainly isolated and sequenced by the HMP
project and through another advanced culturing
technique called culturomics (Lagier et al., 2012)
On average, when excluding five genomes from the
Lachnospiraceae family, the MGS sequences shared
high similarity (95.39% identity) to the publicly
available sequences over a significant fraction of
their length (83.76%). The accuracy was much
worse for five genomes from the Lachnospiraceae
family with 60.40% identity over just 25.64% of the
length, likely due to insufficient resolution of
the 16S rRNA gene sequence but we cannot exclude

inherent limitations of our method within certain
difficult taxonomic groups.

A link between 16S rRNA and whole-metagenome-
based microbiota-wide association studies
A recent study (Goodrich et al., 2014) identified
several 16S rRNA OTUs that are strongly associated
with host genetic factors in United Kingdom and other
countries. Several of the most wanted OTUs
for which we could identify a corresponding MGS
are highly similar to these sequences (Figure 2). We
analyzed the MGS sequences that we could associate
with these OTUs across several whole-metagenome
studies, including two studies linking the richness of
the gut microbiome with healthy outcomes in terms of
metabolism within patients in Denmark and France
(Cotillard et al., 2013; Le Chatelier et al., 2013), and
a study of the gut microbiome in liver cirrhosis in
China (Qin et al., 2014). Across all these studies, a
large number of MGS correlated to a ‘most wanted
OTU’ were observed as significantly associated with
health in at least one study (see Materials and methods
and Supplementary Table 3). Several of the
MGS sequences were found to be associated with
health in multiple studies or across multiple cohorts
(Figure 2), including MGS121 that we discussed
above.

A functional analysis of the MGS sequences we
identified as correlated with these OTUs reveals
several insights into their possible role within the gut
ecosystem. All of the genomic sequences contain genes
related to anaerobic cellular processes—unsurprising
given that the healthy gut is believed to be populated
by strictly anaerobic organisms, with the ecological
balance shifting towards facultative anaerobes in
disease (Walker and Lawley, 2013). Several organisms
appear able to produce cobalamin (MGS74, MGS110,
MGS121, MGS147, see Supplementary Figure 3) and
butyrate (MGS159, MGS110, MGS49, MGS131), func-
tions that are believed to be important contributions of
the gut microbiota to human health. The human body
cannot synthesize cobalamin, which is primarily
contributed by the gut microflora, whereas butyrate is
an important nutrient for human intestinal cells and it
is believed to have a role in human health (Kau et al.,
2011; Flint et al., 2015). One of the organisms found
most associated with host genetic factors by Goodrich
et al. (2014), prokMSA OTU 176318 linked by us to
MGS159, appears to be involved in butyrate produc-
tion and also contains genes related to nisin resistance.
Nisin is a broad-spectrum bacteriocin produced by
lactic acid bacteria, and likely has a role in the
probiotic properties of these organisms (Pessione,
2012). The fact that OTU176318/MGS159 is resistant
to nisin may be consistent with it being associated with
a healthy gut.

The above-mentioned MGS121 contains a γ-amino-
butyrate permease, possibly indicating this organism
may be able to synthesize or metabolize this com-
pound. The biosynthesis of γ-aminobutyrate also

Figure 1 Comparison of functional content of genomes recon-
structed by us, isolated through advanced culturing techniques
and PICRUSt predictions. Numbers represent COG functional
categories shared between MGS121—genome identified by our
correlation-based approach; Ruminococcaceae bacterium LM158
and Oscillibacter-like P2C1 isolate—genomes isolated through
advanced experimental techniques; and the PICRUSt prediction
based on the sequence of otu_138_V3V5.
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has relevance to human health as this compound has
beneficial properties—it has been shown to control
blood pressure and appetite, and has also been
implicated in the purported connection between the
gut microbiota and the host central nervous system
(Hemarajata and Versalovic, 2013). Finally, MGS131
appears to contain multiple genes from the VanB
vancomycin resistance operon suggesting the possibi-
lity of using targeted culturing approaches for isolating
this organism, similar to the approach used to isolate
the P2C1 strain discussed above (Rettedal et al., 2014).

Discussion

The increased availability of metagenomic data sets
spanning hundreds of samples provides an

unprecedented opportunity for the development of
novel comparative methodologies. Nielsen et al.
(2014) have recently shown that the abundance
profile of metagenomic genes across multiple
samples can be used to organize the data into
metagenomic units, representing clusters of
covarying genes. Here we have leveraged this
information to provide a first correspondence
between 16S rRNA-based and whole-metagenome
surveys of the gut microflora, as well as to link the
information constructed in the European MetaHIT
project with that generated in the US NIH-led HMP
project.

When applied to a collection of 16S rRNA OTUs
determined by the HMP to be ‘most wanted’ because
of their high prevalence in the HMP samples and
their relative absence from public databases, our

Figure 2 Phylogenetic tree (constructed with FastTree with default parameters) containing OTUs and MGS found to be significantly
associated with health and host genetics. The colors refer to different association studies: (circles) Le Chatelier et al. (2013), (triangles)
Cotillard et al. (2013), (crosses) Qin et al. (2014), (stars) Goodrich et al. (2014). The integer ID followed by taxonomical annotation are the
Greengenes prokMSA IDs reported in the Goodrich et al. (2014) study. The closest NCBI references were added in the tree to provide a
taxonomic context.
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method was able to identify corresponding MGS
sequences for a large number of OTUs, including
roughly half of the high-priority organisms from the
human stool. We are thus able to provide a first
genomic and functional context for a number of
‘most wanted’ organisms, complementing current
efforts aimed at isolating and sequencing these
organisms through costly culture and single-cell-
based experimental strategies. Comparison of the
genomes we identified through correlation with
experimentally derived genomes reveals high
sequence identity and concordance in predicted
function.

Analysis of several of the most wanted OTUs
across multiple association studies, based on
both 16S rRNA and whole-metagenome sequen-
cing, found these organisms to be consistently
associated with health—unsurprising given that
the HMP project focused on healthy individuals.
Many of these organisms are prevalent across
studies and continents, yet most have yet to be
isolated and sequenced. These findings suggest
the need for a better characterization of the
organisms found in the healthy human micro-
biome, some of which may be important for
maintaining health.

These results indicate that valuable biological
insights can be obtained through data integration
across multiple experimental platforms, despite
experimental limitations such as PCR amplification
biases and other technical challenges (both experi-
mental and bioinformatic). At the same time, our
study was hampered by ambiguous and incorrect
taxonomic labels in public databases, particularly
within the Lachnospiraceae family, underscoring the
need for further development and refinement of
taxonomic databases, particularly keeping in mind
the need of large-scale automated computational
analyses of the data.

Despite our initial success, it is important to
also note several limitations of the approach used.
As already mentioned, spurious correlations may
occur between 16S rRNA gene sequences, and,
thus, the results we obtain are simply hypotheses
to be further explored rather than the absolute
truth. We also note that for a same 'most wanted'
OTUs we could often identify multiple MGS
sequences with a correlation value higher than
our selected cutoff of 0.65. In the vast majority of
cases, the multiple hits had the same genus-level
taxonomic classification. This observation may
imply that multiple closely related organisms
inhabiting the same ecological niche have similar
abundance profiles. As such, these organisms are
difficult to distinguish from each other by coabun-
dance methods and may confound our approach.
Larger numbers of phenotypically different sam-
ples will likely reduce this confounding effect as
different organisms, even if closely related, will
respond differently to environmental parameters.
We also recommend that in such situations

researchers pursue in further validation experi-
ments not just the best hit, but all the MGS
sufficiently well correlated with an OTU.

Furthermore, it is important to note that the MGS
genomes we linked to the 'most wanted' 16S rRNA
gene sequences were themselves reconstructed
through coabundance techniques and likely cap-
ture just the core genome of the corresponding
organisms. The accessory genes within the pangen-
ome frequently have patterns of abundance differ-
ent from those of the core genome, and may
not, thus, be detected through coabundance-based
approaches. As such, they represent just a partial
reconstruction of the 'most wanted' genomes.
Nonetheless, the availability of even a partial
genomic reconstruction is valuable. This sequence
can be used to design probes for the targeted
capture of DNA from the organism of interest,
and the genes contained within can provide
insights into possible strategies for isolating the
corresponding organism (e.g., by supplementing
growth media with necessary nutrients or by
inhibition of competing organisms through anti-
biotic treatment).

Our study and parallel efforts in the community
(Carr et al., 2013; Alneberg et al., 2014) reveal
the tremendous power provided by cross-sample
analyses. The information contained in the abun-
dance profiles of genes and genomic entities across
multiple samples with differing characteristics
can be viewed as a proxy for the phenotypic
properties of individual organisms, information
that can currently only be determined for cultur-
able organisms. We note that this is one example
where metagenomic experiments comprising mul-
tiple samples provide more information than tradi-
tional genomic studies on isolate genomes, and
hope our work will spur the development of new
approaches that can leverage such data in the
characterization of the majority of microorganisms
that cannot be currently isolated and grown in
culture.
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