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Archaea and bacteria mediate the effects of native
species root loss on fungi during plant invasion
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Although invasive plants can drive ecosystem change, little is known about the directional nature of
belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used
detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland
along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between
smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined
(1) aboveground versus belowground influences of smooth brome on soil microbial communities,
(2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities,
and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil
horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but
not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial–
fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome
increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon,
which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the
key bacterial OTUs mediated changes in the fungi’s response to invasion. Overall, native root
diversity loss and bacterial mediation were more important drivers of fungal composition than were
the direct effects of increases in smooth brome. Critically, native plant species displacement and root
loss appeared to be the most important driver of fungal composition during invasion. This causal web
likely gives rise to the plant–fungi feedbacks, which are an essential factor determining plant diversity
in invaded grassland ecosystems.
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Introduction

Invasive plant species are important drivers of
ecosystem change through their influence on below-
ground microbial communities (van der Putten et al.,
2001). Soil microbial interactions are critical deter-
minants of aboveground diversity (Klironomos,
2002), yet little is known about how invasion alters
the directional nature of interactions among micro-
bial groups (although see Schröter et al., 2004;
Scherber et al., 2010). For example, the switch from
negative plant–soil microbial feedbacks in native
habitats to positive feedbacks in invaded habitats
may be crucial for invasive plant success (Callaway
et al., 2004; Diez et al., 2010). How this switch
occurs is still open to debate; however, it is likely
linked to aboveground carbon supply (Bradley et al.,
2006) or changes in the composition and structure of
soil microbial communities and altered nutrient

cycling (Elgersma et al., 2011; Shannon-Firestone
et al., 2015).

Several recent studies suggest that plant invasion
success is linked to suppression and/or promotion of
microbial species (Bever et al., 2012; van der Putten
et al., 2013). For example, plant invasion may
selectively suppress dominant bacterial species,
allowing for rare and/or ammonia-oxidizing bacteria
(AOB) to increase in relative abundance, which in
turn has an impact on nitrogen cycling (Ehrenfeld,
2010; Piper et al., 2015a). However, plant effects are
not constant among plant species. In particular, some
invasive species may decrease fungal abundance
(Vogelsang and Bever, 2009), thus increasing the
bacteria to fungi ratio in the soil; other species may
increase particular fungal groups (Kourtev et al.,
2002). Temporal lags between invasion and accu-
mulation of species-specific pathogens in the soil
may also allow invasive plants to flourish at the
expense of native species (Klironomos, 2002),
although in some instances pathogenic fungi may
prevent invasion (Reinhart et al., 2005). Despite the
clear importance of plant–microbial interactions
during invasion, the causal chain linking changes
in aboveground to belowground diversity and the
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evolution of plant–microbial feedbacks is not clear.
Some authors suggest that plant effects are dam-
pened as they percolate through soil trophic levels
(Scherber et al., 2010), whereas others suggest that
plant effects are limited to specialist microbial
groups (van der Putten et al., 2007).

Fungal communities are critical in any considera-
tion of plant–soil feedbacks, as fungi appear to
determine vegetation composition through structur-
ing plant–plant interactions (Bennett and Cahill,
2016) and plant abundance (Reinhart et al., 2005).
However it is not clear how directional relationships
among fungi, bacteria and archaea evolve during
invasion. Fungi may metabolize root exudates, and
those metabolites then drive bacterial community
composition (Millard and Singh, 2009) or, alterna-
tively, bacteria can suppress fungal pathogens
(Kobayashi and Crouch, 2009). Relative to bacteria,
much less is known about the relationship of archaea
with other microbes. We know archaea are common,
although not major, inhabitants of roots (Buée
et al., 2009, although see Simon et al., 2000 for an
exception), and in some instances fungi may reduce
ammonia-oxidizing archaea and AOB abundance via
plant root pathways (Chen et al., 2013), although
often there is no relationship between archaeal and
fungal diversity at broad spatial scales (Prober et al.,
2015). This is likely because archaea, unlike fungi,
typically respond more to soil and environmental
properties than to plant cover (Nielsen et al., 2010).
Thus, from a plant–microbe perspective we may
conceptualize microbial community responses to
plants at a field scale as a gradient, where fungi
respond mainly to vegetation and only slightly to
soil, bacteria respond strongly to both vegetation and
soil, and archaea respond mainly to soil and not to
vegetation. However, there is still considerable
uncertainty in how the structure of intermicrobe
interactions changes in communities undergoing
plant invasion.

Smooth brome (Bromus inermis Leyss) invasion
lowers plant species diversity in both mixed-grass
prairie (Fink and Wilson, 2011) and fescue grass-
lands (Wilson and Pinno, 2013). This invasion alters
soil conditions (that is, increased nitrogen availabil-
ity; Piper et al., 2015b), thereby initiating a cascade
of soil community changes, including the suppres-
sion of dominant members of the bacterial commu-
nity (Piper et al., 2015a). However, no one has
conclusively identified an above- or belowground
mechanism linking brome invasion to bacterial
diversity. Rather, structural equation models (SEM)
have indicated that an unknown direct pathway
driven by smooth brome abundance is responsible
for the changes in bacterial diversity (Piper et al.,
2015a). One hypothesis is that the unknown mechan-
ism may result from the interactions between
bacterial and fungal communities (Frey-Klett et al.,
2011). These bacterial–fungal interactions could be
specific pathogen interactions (for example, as out-
lined in van der Putten et al., 2007); however, there

is some evidence that more general links between the
fungal and bacterial communities may have a major
role in structuring microbial communities (for
example, Siciliano et al., 2014).

Here we present a model to study interkingdom
interactions and responses to plant invasion in a
smooth brome-invaded fescue grassland. Using
samples from the smooth brome invasion gradient,
we assessed how the structure of the aboveground
plant and its root communities interact with below-
ground archaea, bacteria and fungi to influence
soil ecosystem composition. We hypothesized that
smooth brome-structured fungi via roots (cf. Johnson
et al., 2004) and that, in turn, the fungi affected other
microbes. To address this hypothesis, we asked a
series of linked questions: (1) does the influence
of invasive smooth brome on soil microbial commu-
nities differ between aboveground litter and below-
ground root effects? (2) What is the relative
importance of direct versus microbe-mediated
impacts of invasive smooth brome on soil fungal
communities? (3) Can we determine the directional
nature of the web of roots, litter, archaea, bacteria
and fungi interactions across A and B horizons of
soils in invaded and non-invaded sites?

Materials and methods

Study area
The field site is a 14.6 ha native fescue prairie
undergoing invasion by smooth brome, ~ 120 km
south of Saskatoon, Saskatchewan, Canada (51°12′N,
107°17′W). The site is near the border of the moist
mixed and mixed prairie ecoregions and within
the Orthic Dark Brown Chernozemic soil order (Soil
Classification Working Group, 1998). The grasses
Festuca hallii and several species of Hesperostipa,
Elymus and Pascopyrum dominate the native prairie
at this site. Smooth brome is invading the site from
disturbed edges (primarily roads), and many invaded
patches can be found in the interior of the site (Piper
et al., 2015a, b). At the time of sampling there were
no cattle grazing on the site or other management
practices applied. The mean annual temperature is
3.5 °C, and 376.9 mm of precipitation falls each year
(Rock Point weather station, ~ 7 km from the field
site, Environment Canada, 2016).

Sample collection
We collected plant and soil samples from a broad
range of smooth brome cover classes (Piper et al.,
2015a, b). A total of sixty 50 ×50 cm plots were
established in a stratified random manner. To ensure
even sampling across the full range of the brome
invasion (0, 40–50, 51–85 and 485%), each plot
had 14–16 samples in each of four classes of smooth
brome shoot abundance. Sampling locations were
determined using the random point generator in
ArcMap (ESRI, Redlands, CA, USA). Within each
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plot, we assessed plant species cover and gathered
grass, forb, shrub and litter biomass. Smooth brome
biomass was collected separately from other grass
species.

Biomass samples were dried for 2 days at 60 °C
and weighed. We measured the depth of the A
horizon (defined as mineral soil with less than 17%
organic carbon) using changes in soil color and
texture (Soil Classification Working Group, 1998).
Using an AMS soil corer (AMS, Inc., American Falls,
ID), we extracted two 5-cm-diameter soil cores from
the top 5 cm of each of the A and B horizons at each
plot. To minimize cross contamination, A and B
horizon samples were collected and analyzed sepa-
rately because (1) soil horizons are created by
fundamentally different soil-forming processes, and
(2) ammonia-oxidizing microbes respond differently
to smooth brome abundance in each horizon (Soil
Classification Working Group, 1998; Piper et al.,
2015b). The two soil cores from each horizon were
then combined, resulting in one composite soil core
from each horizon at each plot. These samples were
frozen at –20 °C until they could be analyzed.

To characterize roots, we used a recently devel-
oped assay capable of identifying and quantifying
plant roots from DNA extracts of mixed-species root
samples (Hiiesalu et al., 2012; Lamb et al., 2016;
see Appendix S3 in Supplementary Information).
Briefly, we modified the trnL primers used pre-
viously by other researchers (Taberlet et al., 1991;
2007) and used an improved bioinformatics pipeline
that referenced site-specific taxon lists to identify
plants to a species level (for detailed information on
the approach, see Lamb et al., 2016). Bacterial,
archaeal and fungal community compositions were
assessed by high-throughput amplicon library
sequencing, as described in Piper et al. (2015a) and
Siciliano et al. (2014). Briefly, DNA was extracted
from 0.5 g of 2-mm sieved soil using the Ultraclean
Soil DNA Extraction Kit (MoBio, Carlsbad, CA,
USA). DNA concentration was determined using a
ultraviolet–visible spectrophotometer (Nanodrop
2000, ThermoScientific, Wilmington, DE, USA). For
bacteria, we used the universal 16 S rRNA primer set
515 F/806 R, which amplifies a 291-bp fragment near
the bacterial v4 region (Caporaso et al., 2011).
Primers contained an Ion Torrent adapter and a
unique barcode sequence for sample pooling. Sam-
ples were amplified in triplicate using a 25-μl
reaction mix containing 18 μl Platinum Blue Super-
mix (Invitrogen), and sample replicates were pooled
and purified using a QiaQuick gel extraction kit
(Qiagen Inc., Toronto, ON, Canada). Following
pooling, the samples were sequenced according to
the Ion PGM 200 Sequencing Kit v2 (Life Technol-
ogies). Similarly, fungal and archaeal diversity were
assessed via triplicate reactions using ITS1F and
ITS4 primers (Gardes and Bruns, 1993; Manter and
Vivanco, 2007) for fungi (acceptable for differentiat-
ing fungi at the genera level and coarser taxonomic
resolutions, cf. Krüger et al., 2009; Stockinger et al.,

2009) and A344F and A589R primers for archaea
(Teske and Sørensen, 2007). These amplicon
libraries were sequenced from the forward primer
on the 454 FLX titanium platform (Roche, Branford,
CT, USA) at Genome Quebec. We note here,
however, that the ITS1F and ITS4 primers may not
effectively amplify arbuscular mycorrhizal fungi
(Stockinger et al., 2010). Thus, we suggest our results
be interpreted in terms of the overall microbial
community, and not specifically the arbuscular
mycorrhizal fungi community—which is important
but beyond the scope of this study.

Bioinformatics processing
The 16 S gene is often used as a species diagnostic for
bacteria and archaea (Stackebrandt and Goebel, 1994;
Baker et al., 2003), although it has fewer hypervariable
domains in fungi. Among the regions of the ribosomal
cistron, the internal transcribed spacer (ITS) region has
the highest probability of successful identification
for the widest range of fungi (Schoch et al., 2012).
Therefore, we used the 16 S and ITS sequences to
identify and quantify bacterial and archaeal composi-
tion and fungal composition, respectively.

Bacterial and archaeal 16S. Data from the Ion
torrent and 454 Platforms were processed for
bacterial and archaeal 16 S rRNA gene analysis,
respectively (see Appendix S2 in Supplementary
Information). Seed sequences for each bacterial and
archaeal operational taxonomic unit (OTU) were
taxonomically identified using the GreenGenes data-
base (August 2013 release) using a naive Bayesian
classifier algorithm implemented in mothur (Wang
et al., 2007; Schloss et al., 2009). We calculated two
measures of alpha diversity: community evenness
using Evar (Smith and Wilson, 1996) and observed
richness as the total number of OTUs in each sample
normalized to a specific number of reads per sample.
In addition to these measures of alpha diversity, we
calculated phylogenetic diversity for archaea and
bacteria by considering the sequence data and the
evolutionary relationships in the communities by
implementing the UniFrac algorithm (Lozupone and
Knight, 2005; Lozupone et al., 2011). The UniFrac
approach incorporates evolutionary distance at the
sequence level and provides a more robust esti-
mate of community composition than OTU-based
approaches. For fungal community composition, we
were unable to use the UniFrac approach because
the differing read lengths of the intragenic spacer
region would bias UniFrac’s sequence-based analy-
sis. Thus, we used principal component analysis to
characterize the fungal OTU matrix and used the
scores for principal component one as a metric of
phylogenetic diversity.

Fungal ITS. ITS sequences were dereplicated and
denoised, and chimeric sequences were removed.
Remaining sequences (4200 bp) were further
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dereplicated, such that reads identical with longer
reads were added to the longer read count (cluster
fragments function in mothur). Next, we used the
OTU picking function in QIIME (pick_otus.py with
usearch61 and a 0.90 sequence similarity threshold)
to generate a list of OTUs and pick_rep_set.py to
establish a file of seed sequences for the selected
OTUs (Caporaso et al., 2010). These OTUs were
classified against the UNITE database (mothur for-
mat version –v6_sh_99) to provide a list of taxo-
nomic identifications (Kõljalg et al., 2005). OTUs
with identical classification were aggregated into
single OTUs and their abundance summed using
Primer6 (Clarke, 1993).

Statistical analyses
Overview. We used redundancy analysis (RDA) to
identify significant covariates among microbial com-
munities, followed by co-inertia analysis (CoIA) to
identify keystone OTUs (addressing questions 1 and
2 in the introduction), and then confirmed these
causal assumptions using SEM (question 3 and see
SEM of plant, root and soil microbial relationships
below).

Rare species. Species that occur in low quantities
across a study site (few occurrences and low
abundance) generate a large number of zeros in data
matrices. Because zeros have high leverage, they
contribute heavily to the total inertia of the data

matrix (Legendre and Legendre, 2012). From one
point of view, researchers may consider rare species
as potential indicators of special environmental
conditions. However, the primary purpose of ordina-
tion is to display the main axes of variation of the
data, not to deal with exceptions. On the other
hand, researchers may consider the occurrence of
rare species as a chance event that should not be
heavily favored in the analysis. To mitigate the
bias of zero-inflated data, we used a stepwise
elimination procedure to remove these species,
which progressively downweighted and removed
rare species (Figures 1a and b; see Supplementary
Appendix S3 in Supplementary Information;
Legendre and Legendre, 2012).

We acknowledge that the topic of rare species
removal is a contentious and unresolved issue (for
example, Marchant, 1999; Cao et al., 2001) and
recognize both the potential ecological significance
of some rare species and statistical quagmire of rare
species present due to chance (Lynch and Neufeld,
2015). Numerous methods exist for downweighting
rare species (for example, Poos and Jackson, 2012),
although many lack strong ecological foundations
(see a discussion on this topic in Lynch and Neufeld,
2015). Therefore, we ran our RDA analyses on both
the full and downweighted data matrices to evaluate
the effect of rare species removal on variation
in community composition. We found statistical
relationships among microbial composition and
environmental covariates were stronger (as indicated

Figure 1 Sequence of statistical analyses used to assess functional relationships among smooth brome and soil microbial communities.
(a) Distinct data matrices were used for archaea, bacteria, fungi, and explanatory covariates (bottom left) along a brome invasion gradient.
(b) OTUs with small occurrence values only appear in a fraction of the sampling plots and generate a lot of zeros in the data matrices.
Because zeros have high leverage and contribute heavily to the total inertia of the ordinations, we chose to eliminate rare species using a
stepwise elimination procedure (Legendre and Legendre, 2012; see Materials and methods). (c) RDA was used to summarize significant
linear relationships among microbial communities, and between communities and above- and belowground explanatory covariates.
(d) Principal components analysis (PCA) was run on each microbial data matrix to find the maximal inertia projected on two axes. The
reduction in dimensions of each data set resulted in independent structures for each community. CoIA tests for agreement between two
structures (microbial and/or root communities) by calculating axes that maximize the covariance between the factorial scores of samples.
(e) SEM uses two or more structural equations to model multivariate relationships. Here we use the results of the SEM analyses, based on
prior experience and substantive knowledge gained from the previous statistical analyses, to reflect causal dependencies between smooth
brome and soil microbial communities in a natural grassland under invasion by smooth brome.
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Figure 2 Conceptual model of aboveground (green arrows), belowground (brown and gray arrows), and interkingdom influences
(large light blue arrows) on soil microbial communities along cover classes of smooth brome. Conceptual arrows representing
aboveground, belowground, and interkingdom influences are based on significant explanatory variables as determined through each RDA.
Biplots of RDAs for each kingdom ((a) bacteria, (b) fungi, and (c) archaea) are presented with significant explanatory variables (bold blue
arrows within biplots; P⩽0.05). Box color in each RDA represents smooth brome cover classes and point shape represents A and B
horizons (see legend at top of figure).

Table 1 Results of RDA of soil microbial abundance

Kingdom Covariate Variance explained F VIF P-value

Archaea Litter nitrogen 0.015 1.627 1.000 0.001***
Final model 0.015 1.627 — 0.001***

Bacteria Litter nitrogen 0.024 12.803 1.046 0.001***
Root biomass 0.012 6.189 1.582 0.001***
SOC 0.008 4.376 1.605 0.003**
AOA 0.006 3.225 1.057 0.006**
Final model 0.207 6.649 — 0.001***

Fungi Root biomass 0.022 3.265 1.622 0.001***
Bacterial richness 0.014 2.094 1.166 0.003**
SOC 0.013 1.966 1.847 0.002**
AOB 0.012 1.762 1.427 0.006**
Litter nitrogen 0.011 1.640 1.178 0.017*
Archaea richness 0.010 1.444 1.136 0.044*
Final model 0.111 2.028 — 0.001***

Abbreviations: AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria; ANOVA, analysis of variance; RDA, redundancy analysis;
SOC, soil organic carbon; VIF, variance inflation factor.
Belowground explanatory variables: soil pH, SOC and total soil nitrogen. Aboveground variables: litter nitrogen, root biomass, root evenness, and
smooth brome cover. Interkingdom variables: AOA, AOB and richness, evenness and diversity for archaea, bacteria, and fungi. Shown are
explained variance, F-values, VIFs, and P-values (ANOVA). The final model includes all listed covariates. *Po0.05, **Po0.01 and ***Po0.001
significance.
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by higher F-statistics) after rare species removal
(Figure 2, Supplementary Figure S4; compare
F-values in Tables 1 and 2 of the downweighted
data set to the corresponding Supplementary Tables
S1 and S2, which are of the full data set). We
interpreted the stronger pattern in the downweighted
data as an increase in our signal-to-noise ratio, and a
winnowing of the full microbial data matrices to only
the most influential abundant species. Therefore,
we focused all subsequent analyses on the down-
weighted data sets.

As another check of rare species influence, we
assessed whether individual bacterial OTU abun-
dance was associated with smooth brome cover, and
whether these OTUs were associated with environ-
mental covariates. To do this, we first assessed the
relationship between OTU abundance and smooth
brome cover via zero-inflated Poisson regression
models (Zuur, 2009) followed by Bonferroni correc-
tion (Shaffer, 1995), and then ran an RDA using
these correlated OTUs as covariates on the environ-
mental data matrix. We found that 88 OTUs were
strongly correlated with smooth brome cover (n=88)
using a Po0.001 threshold. Of these 88 OTUs,
only eight were correlated with the environmental
matrix (Po0.05). These OTUs were from the phyla
Acidobacteria, Actinobacteria, and Planctomycetes
and represented a mean relative abundance of
0.29 ± 0.03%, compared with 1.27 ± 0.04% for the
downweighted data OTUs. We included these eight
OTUs as endogenous variables in our final SEM
models with direct links between brome roots and
shoots, and fungal evenness (see below). We found
only two significant relationships: (1) smooth brome
roots increased the abundance of a bacterial OTU of
class Actinobacteria and (2) pH reduced the abun-
dance of a bacterial OTU of class Kueneniae, which
itself reduced fungal evenness. Thus, we present our
downweighting–RDA–CoIA approach as a means to

isolate larger-abundance influential consortia, and
present this Poisson–RDA method as an alternative
approach to identify influential conditionally rare
taxa such as pathogens (see Appendix S4 in
Supplementary Information and SEM results).

Soil microbial composition and keystone species.
We identified significant covariates among below-
ground, aboveground, and interkingdom influences
on microbial composition using RDA on Hellinger-
transformed reduced data (Figure 1c). RDA is a
method of summarizing linear relationships in a set
of dependent variables influenced by a set of
independent variables, using a blend of multiple
linear regression and principal components analysis
(Legendre and Legendre, 2012). RDA is a constrained
ordination method that computes axes that are linear
combinations of the explanatory variables (Borcard
et al., 2011). Thus, the axes produced using RDA
model the variation of the dependent variable,
allowing one to test a hypothesis (H0) of absence of
a linear relationship between microbial composition
and explanatory independent variables (Figure 1c).

The following four groups of explanatory variables
were used to model microbial composition (bacteria,
archaea, and fungi): (1) soil influences (soil pH,
soil organic carbon (SOC), and soil total nitrogen),
(2) aboveground plant influences (litter nitrogen,
smooth brome shoot abundance), (3) belowground
plant influences (root biomass, root evenness,
and root abundance of smooth brome), and (4)
microbial community influences (ammonia-oxidizing
archaea and AOB abundance; bacterial, fungal, and
archaeal evenness, richness, and diversity [H′]; Piper
et al., 2015a, b). Explanatory variables selected for
retention were based on permutation tests (Borcard
et al., 2011) and we used a permutational multi-
variate analysis of variance (PERMANOVA; Anderson,
2001) to test for significant differences among brome

Table 2 Results of PERMANOVA testing the effects of smooth brome cover class (0, 0–50, 50–85, 85–100%), soil horizon (A, B), and their
interactions on microbial community compositional similarity within a smooth brome-invaded fescue grassland (Hellinger distance)

Kingdom Effect d.f. Sum of Sqs Mean Sqs F Variance explained Pr (4F)

Archaea Cover class 1 1.053 1.053 2.147 0.020 0.001***
Soil horizon 1 0.182 0.182 0.371 0.004 1.000
Cover ×horizon 1 0.124 0.124 0.253 0.002 1.000
Residuals 103 50.509 0.490 — 0.974 —

Total 106 51.868 — — 1.000 —

Bacteria Cover class 1 0.134 0.134 2.692 0.022 0.025*
Soil horizon 1 0.600 0.600 12.072 0.101 0.001***
Cover ×horizon 1 0.109 0.109 2.197 0.018 0.074
Residuals 103 5.118 0.050 — 0.859 —

Total 106 5.960 — — 1.000 —

Fungi Cover class 1 0.460 0.460 1.901 0.017 0.006**
Soil horizon 1 1.581 1.581 6.534 0.060 0.001***
Cover ×horizon 1 0.214 0.214 0.883 0.008 0.609
Residuals 100 24.195 0.242 — 0.915 —

Total 106 24.450 — — 1.000 —

Abbreviations: d.f., degree of freedom; sq., square.
Community data matrices were statistically downweighted (rare species removed) before the PERMANOVA test. *Po0.05, **Po0.01, and
***Po0.001 significance.
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cover categories and soil horizon. We assumed a
direction of influence based on the nature of
explanatory variables. For example, we found bac-
terial richness was a significant predictor of fungal
composition, but fungal diversity was not a predictor
of bacterial composition. We interpreted this as a
primarily unidirectional influence of bacteria on
fungi. Though there may be exceptions to this, our
statistical framework supported this directional
nature and thus we maintained this direction of
influence through subsequent analyses.

We implemented CoIA (Dolédec and Chessel,
1994) using the package ‘ade4’ version 1.7-2 in R
(Dray and Dufour, 2007) to examine important
correlations between kingdoms as revealed by the
RDAs (Figure 1d). In CoIA, multivariate analyses like
principal components analysis are processed on
each community matrix separately to find the
maximal inertia (that is, variance) projected onto
two axes. The reduction in dimensions of each
data set results in independent structures for each
community. CoIA tests for agreement between these
independent structures (microbial and/or root com-
munities) by calculating axes that maximize the
covariance between the factorial scores of samples.
Here we first reduced the dimensionality of the
archaeal, bacterial, and fungal matrices using Princi-
pal components analysis, and then selected the
dominant components (axes). The CoIA then gener-
ated new axes by rotation in multidimensional space
so as to maximize the covariance between the axes in
the two data sets (Dolédec and Chessel, 1994).
Two eigenvectors were selected from each kingdom
matrix for inclusion into the CoIA. RV coefficients
(a multivariate generalization of the Pearson correla-
tion coefficient) were calculated for each CoIA to
measure global correlations between matrices. The
significance of the associations between kingdom
matrices was tested with a Monte Carlo permutation
test using 9999 permutations.

Preliminary analyses revealed significant correla-
tions between site distances from the origin of the co-
inertia plane and smooth brome cover for the soil A
horizon and not the B horizon; therefore, we focused
our analyses on the A horizon. Within the A horizon,
we used t-tests followed by Bonferroni correction
(Shaffer, 1995) to determine which plots contributed
most to the common variance (total co-inertia)
within the two matrices (that is, sites furthest from
the plot origin), as well as the most important species
driving the co-inertia (Figure 1d). We then visualized
the configuration of the matrix pairs with joint
site plots, in which arrows represent the distances
between matrices in n-dimensional space and
points represent the arrow midpoint (Legendre and
Legendre, 2012).

SEM of plant, root, and soil microbial relationships.
We used SEM (Grace, 2006; Lamb et al., 2011)
to investigate a range of potential mechanisms
underlying smooth brome–microbial community

relationships (Figure 1e). Whereas many multivari-
ate methods are largely descriptive and more appro-
priate for exploratory analyses, SEM is capable of
testing a network of causal hypotheses and is
recommended for the evaluation of multivariate
hypotheses (Grace, 2006; Grace et al., 2012). Speci-
fically, we used SEM because it allows the evalua-
tion of simultaneous influences (for example, brome
may influence fungal composition both directly and
through altering bacterial diversity) rather than
individual causes (for example, brome influences
fungal composition only directly). The method is
thus appropriate for establishing probable causality
at the system (for example, brome–archaea–bacteria–
fungi) rather than the individual level (for example,
brome–fungi).

SEM rely on specification by researchers of a
network of a priori causal assumptions based on a
scientific body of evidence (for example, that pH is
an important driver of bacterial richness and not that
bacterial richness determines soil pH), and then
testing whether that causal network is consistent
with empirical data (Grace, 2006; Pearl, 2012;
Shipley, 2016). The postulated causal network gives
rise to a series of linear equations, which in turn give
rise to an expected covariance matrix. The expected
covariance matrix is then compared with the
observed covariance matrix arising from the data.
A statistically acceptable congruence between the
expected (causal model implied) and observed
covariance matrices is thus an empirical validation
of the causal assumptions used. In other words, an
SEM is a ecological theory describing a particular
system, and if congruent with the data, the theory is
supported. SEM is a well-established tool widely
used in the natural and social sciences for testing
causal inferences with correlative data sets; it is
however critically important that the causal assump-
tions made by the researcher be well grounded in
prior studies, scientific knowledge, logical argu-
ments, and other evidence. An SEM model fitting
the data does not prove the causal assumptions used,
but replication of a given model across many systems
represents a very strong test of the underlying theory
(Grace et al., 2012).

The initial (theoretical) SEM used smooth brome
shoot biomass and root abundance as measures of
the above- and belowground severity of smooth
brome invasion; it also used bacterial richness,
evenness, and phylogenetic diversity as measures
of bacterial diversity. Using RDA, we identified a
directional link between archaeal diversity and both
bacterial and fungal diversity (for example, Figure 2);
thus, we included a directional pathway from
archaea to bacteria and fungi in our SEMs. As pH
is known to influence microbial community compo-
sition (Fierer and Jackson, 2006), we included
direct relationships from pH to microbial diversity.
Both competitive and mutualistic interactions exist
between bacteria and fungi (de Boer et al., 2005).
However, our RDA analyses suggested the influence
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of bacteria on fungi is greater than the reverse in this
system, so we included a directional pathway from
bacteria to fungi in our model.

We used multigroup SEMs with observed vari-
ables, as we collected two subsets of data (A and B
horizon) from the same sample points (Grace, 2006;
Piper et al., 2015a). In a multigroup SEM, models are
initially constrained to ensure path coefficients are
equal between groups (Grace, 2006; Lamb et al.,
2011). Constraints are then progressively released to
improve model fit. Different path coefficients
between horizons suggest significant differences in
the biological processes represented by that path
between horizons. Models were fit using the ‘lavaan’
package v. 0.5–20 in R (Rosseel, 2012). In order to
determine differences in biological processes
between groups in the multigroup SEM, we initially
constrained the models so that path coefficients were
equal between horizons. Constraints were progres-
sively released to improve model fit (cf. Piper
et al., 2015a). Path coefficient differences between
horizons indicated a significant distinction in the
biological processes represented by that path
between horizons. Before fitting the SEM, we used
general linear models with a quadratic term to check
for nonlinear relationships among exogenous and
endogenous variables; no nonlinearities were found.
To equalize variances we standardized variables by
dividing raw values by their group maximum.

We constructed our SEM model stepwise. Our
initial multigroup model assumed that the effects of
smooth brome shoots and roots differed between
horizons. We separated roots and shoots as they
likely influence nutrient availability differently
between soil horizons (Soil Classification Working
Group, 1998). We then tested for horizon-specific
effects of (1) pH on richness, evenness and phyloge-
netic diversity of archaea, bacteria, and fungi,
(2) archaea on bacteria and fungi, and (3) bacteria
on fungi. Improved model fit was assessed based on
reduced χ2 and Akaike Information Criterion.
There were no horizon-specific effects for pH on
bacterial or fungal composition (Supplementary
Tables S6–S8). Finally, we fit alternative models for
each bacterial OTU that exerted a significant influ-
ence on fungal diversity with relaxed parameter
constraints identical to those mentioned above.

In our first group of SEMs, we had three metrics of
fungal diversity (richness, evenness, and phyloge-
netic diversity), and evaluated the following four
separate causal assumptions: (1) no direct links
between smooth brome roots or litter to fungal
diversity, (2) direct links between brome litter and
fungal diversity, (3) direct links between smooth
brome roots and fungal diversity, and (4) direct links
between both smooth brome litter, and roots and
fungal diversity. Thus, we ran 12 separate models to
test each of these potential causal assumptions (that
is, 3 × 4; Supplementary Tables S6–S8). Once we
found the best model configuration (as determined
by Comparative Fit Index, Root Mean Square Error of

Approximation, and Standardized Root Mean Square
Residuals), we evaluated this model structure for
each bacterial OTU of interest identified through the
CoIA (n=12), as well as bacterial richness, evenness,
and phylogenetic diversity (n=3) for each fungal
diversity metric (n=3) for a total of 108 models
(12 × 3× 3). As an additional check on the direction
of causality of the diversity measures, we inverted
the causal link between fungi and bacteria, that is,
that fungal richness, evenness, and phylogenetic
diversity drove bacteria. For all three metrics,
evenness, richness, and phylogenetic diversity, the
χ2 was greater when bacteria were dependent on
fungi. For example, for evenness, the χ2 increased
from 5.4 to 8.9, for richness the χ2 increased from
14.7 to 21.3 and for phylogenetic diversity the
χ2 increased from 6.0 to 6.1. The SEM analyses
suggested three classes of relationships among
smooth brome and microbial diversity based on
frequency of microbial interactions. Specifically,
if we found significant relationships between
endogenous variables in more than one SEM, we
designated this as a ‘class’. For brevity, we present a
summary of the three model classes here and an
example of each class in the supplementary material
(Supplementary Tables S9–S17).

Results

Aboveground, belowground, and interkingdom
predictors of microbial diversity
Removing rare OTUs from each microbial matrix
resulted in a total of 82 archaeal (from 1339), 29
bacterial (from 6747), and 119 fungal (from 4014)
OTUs used in subsequent analyses (Supplementary
Figures S1–S3). The range of relative abundances
following downweighting changed as follows: archaea:
0.001–1.170% to 0.418–2.666%, bacteria: 0.001–5.151%
to 1.438–11.326%, and fungi: o0.001–2.607% to
0.067–3.424%.

Using RDA, we found compositional differences
within fungi and bacteria between the A and B
horizons; this variance appeared driven by
root biomass and SOC (Figures 2a and b,
Supplementary Table S2). Archaea composition
did not vary between soil horizons (Figure 2c).
We identified significant (Po0.05) belowground,
aboveground, and interkingdom correlations on
bacterial composition (Figure 2a, Table 1), represent-
ing 20% of the total variance in the bacterial matrix.
These influences included litter nitrogen, root
biomass, SOC, and ammonia-oxidizing archaea
abundance. Bacteria and archaea both influenced
fungal composition (although not vice versa as
inferred from the RDAs), along with several below-
ground and aboveground influences (archaeal and
bacterial richness, AOB abundance, root biomass,
SOC, and litter nitrogen); the constrained variance
represented 11% of the total variance in fungal
composition (Figure 2b). Of the potential explanatory
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variables, litter nitrogen was the only significant
predictor of archaeal composition (Figure 2c;
Table 1), although it represented only 2% of the
variance. Microbial community compositions of
archaea, bacteria, and fungi were similar within
microbial groups within a given brome cover class
(PERMANOVA, brome cover class explained var-
iance: 2% for each congener, Po0.023; Table 2).
Bacterial and fungal communities were similar
within horizons (explained variance: 10% for bac-
teria and 6% for fungi, Po0.001).

Interkingdom soil microbial relationships
The association between bacteria and fungi was
significant as indicated by the CoIA (RV=0.365,
Po0.001); the first axis represented 47% of the
variance. Bacterial–fungal variance in the co-inertia
plane was driven mainly by 12 bacterial OTUs. Six of
these OTUs in the phyla Acidobacteria, Actinobacteria,
and Verrucomicrobia were particularly influential as
indicated by significant distances (Po0.05) from the

biplot origin (Figure 3a; Supplementary Table S3),
although this relationship appeared independent of
smooth brome cover (4% explained variance,
P=0.509). The correlation between archaea and
bacteria community composition was significant
(RV=0.357, P=0.036) for the first and second axes
of the co-inertia plane (Figure 3b). The first axis
represented 30% of the variance and co-varied with
19 archaeal OTUs. Nine of these OTUs were
significantly distant (Po0.05) from the biplot origin
(Supplementary Table S4) and all from the Candi-
datus phylum. There was not a clear separation
between invaded and uninvaded plots in terms of
smooth brome (2% explained variance, P=0.855).
The association between archaea and fungi was
significant (RV=0.610, P=0.030): the first axis
represented 12% of the variance, although sites were
differentiated along the second axis based on smooth
brome cover (22% explained variance, P=0.042) and

Figure 3 Co-inertia analyses of A horizon interkingdom interac-
tions between (a) bacteria and fungi, (b) archaea and bacteria, and
(c) archaea and fungi along a smooth brome invasion gradient. The
large boxes contain joint site plots colored by smooth brome cover,
where arrows link kingdom diversity. Top left, clockwise: arrow
tails represent bacteria and the heads represent fungi; tails
represent archaea, heads represent bacteria; tails represent
archaea, heads represent fungi. Arrow length indicates the
strength of the association between matrices: short arrows indicate
strong concordance; long arrows, weak concordance. Small boxes:
projection of the kingdom of interest onto the co-inertia plane.
Bacterial and archaeal OTUs with significant loadings (P⩽0.05) on
the smooth brome gradient are indicated by bold red arrows
(Supplementary Tables S3 and S4).

Figure 4 Co-inertia analyses of A horizon root-kingdom interac-
tions along a smooth brome invasion gradient. The large panels are
joint site plots colored by smooth brome cover, where arrows link
root-kingdom diversity. (a) Arrow tails represent roots, and the
heads represent bacteria. (b) Arrow tails represent roots, and heads
represent fungi. Arrow length indicates the strength of the
association between matrices: short arrows indicate strong con-
cordance; long arrows, weak concordance. Small boxes: projection
of roots, fungi, or bacteria of interest onto the co-inertia plane.
Bold red arrows indicate root species with considerable (P⩽0.05)
loadings on the smooth brome gradient (Supplementary Table S5).
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29 archaeal OTUs (nine significantly distant from the
biplot origin (Po0.05)), and represented 8% of the
variance (Figure 3c; Supplementary Table S4).

Root influence on soil microbial composition
Roots were significantly linked to both bacteria and
fungi via biomass and SOC (Figures 2a and b). In the
root–bacteria co-inertia analyses, the first and second
axes together represented 47% of the variance, with
clear separation between smooth brome-invaded
and non-invaded sites (20% explained variance,
P=0.022; Figure 4a); however, the concordance
was insignificant (RV=0.273, P=0.105). Plots were
differentiated into invaded and non-invaded by
roots from 13 plant species (Figure 4a). There
was significant concordance (RV=0.472, P=0.049)
between roots and fungi; the first axis represented
15% of the variance and 10 root species differen-
tiated sites (Figure 4b; Supplementary Table S5).
Smooth brome clearly separated invaded and non-
invaded sites (29% explained variance, P=0.010).
Smooth brome reduced the abundance of several
native species (Bouteloua gracilis, Carex duriuscula,
C. filifolia, Elymus sp., and Galium boreale), which
appeared to be linked to bacterial and fungal
community composition (Figure 4b; Supplementary
Table S5).

Effects of smooth brome abundance on soil microbial
structure
Although including direct pathways between
smooth brome and fungi diversity resulted in better
fit for the SEMs, as indicated by reduced χ2-values

Figure 5 Multigroup SEMs of smooth brome and pH influences
on bacterial and fungal diversity (richness, evenness, and
phylogenetic diversity) and interkingdom interactions. (a–c)
Influential abundant taxa identified through downweighting,
RDA, and CoIA. (d, e) Influential rare taxa identified through
Poisson regression and RDA. (a) Increased archaeal diversity
increases abundance of four bacterial OTUs. (b) Smooth brome
shoots reduced abundance of two bacterial OTUs. (c) Smooth
brome shoots and roots increase bacterial diversity resulting in
decreased fungal diversity. (d) Smooth brome roots increased
abundance of OTU 5113. (e) pH had an inverse effect on OTU 2472
(that is, alkaline pH, reduced abundance; acidic pH, increased
abundance) and that OTU reduced fungal diversity. Solid arrows
represent significant relationships (Po0.05, dashed lines are
nonsignificant), the thickness of the arrow indicates the strength
of the relationship and the color indicates the direction of the
relationship (green=positive, red=negative). Standardized path
coefficients are shown next to pathways. Path coefficients can be
interpreted as this: if, in a for example, brome shoot abundance
increases by one s.d. from the mean, then fungal diversity would
increase by 0.027 s.d.'s from its own mean. Thus, the greater the
path coefficient, the larger the effect. Where parameters differ
between horizons, two path coefficients are shown: the first is the
coefficient for the A horizon and the second for the B horizon.
All models achieved adequate fit (Supplementary Table S20).
Significant path coefficients between smooth brome roots and
shoots, bacterial parameters on fungal diversity and archaeal
diversity on bacterial parameters are illustrated in the inset bar
graph (Supplementary Tables S9–S17). Bars with a height of 0.025
indicate nonsignificant paths. For details on each model class, see
Supplementary Information (fungal evenness: Supplementary
Table S10, fungal richness: Supplementary Table S9, fungal
phylogenetic diversity: Supplementary Table S11, bacterial
OTU 5113: Supplementary Table S18, bacterial OTU 2472:
Supplementary Table S19).
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(Supplementary Tables S6–S8), the direct pathways
were not significant (Figure 5). There were 12
bacterial OTUs important for structuring fungal
communities (Supplementary Table S3), with
unique relationships between endogenous variables
(Supplementary Figure S5) and common pathways
among several other OTUs. The SEM analyses
suggested three classes of relationships among
smooth brome and microbial diversity based on
frequency of microbial interactions. In the first class,
archaeal diversity increased abundance of four
bacterial OTUs (that is, we found significant path
coefficients between archaeal diversity and abun-
dance of four bacterial OTUs), with no other
significant linkages identified (Figure 5a). In the
second class of relationships, increased smooth
brome litter was associated with a decrease in
abundance of two bacterial OTUs (Figure 5b).
Finally, in the third class, increased smooth brome
litter was associated with an increase in bacterial
diversity in the A horizon, and increased smooth
brome root abundance was associated with an
increase in bacterial diversity in the B horizon; this
increased bacterial diversity then decreased fungal
diversity in the A horizon (Figure 5c). Thus, the
smooth brome–bacteria and bacteria–fungi pathways
were horizon-specific, and bacteria–fungi relation-
ships were more pronounced in the A horizon—with
the exception of two rare bacterial OTUs that were
horizon-unspecific (Figures 5d and e). The resulting
best models (as determined by Comparative Fit
Index, Root Mean Square Error of Approximation
and Standardized Root Mean Square Residuals)
used fungal evenness as the diversity metric for
classes 1 and 2 (Supplementary Tables S10 and S13)
and fungal richness for class 3 (Supplementary
Table S15).

Discussion

Biological invasions are thought to be among the
most serious threats to biodiversity and ecosystem
functioning in terrestrial environments (Mooney and
Hobbs, 2000). Invasive species often have an impact
on soil microbial communities (van der Putten et al.,
2007; Rodrigues et al., 2015), and feedbacks from
these microbial communities can be essential for
invasion success (van der Putten et al., 2001; Smith
et al., 2014). Yet, to our knowledge, no study has
examined an ecosystem undergoing invasion to
include environmental, plant, and multiple kingdom
microbial components along the invasion gradient.
We expected a trophic cascade in which smooth
brome-structured fungi via roots (cf. Johnson et al.,
2004) and fungi in turn influenced other microbes.
Instead, we found that bacteria mediated fungal
responses to brome invasion, whereas archaea
influenced select bacteria. Bacteria were the only
significant pathway linking aboveground brome
effects to fungal changes associated with invasion.

Horizon- and species-specific effects of invasion
Horizon-specific smooth brome effects suggest a
decoupling of litter and root effects of invasive
species (Elgersma et al., 2011; Ma et al., 2016),
although potential litter leachate effects on roots
should not be discounted (Scherer-Lorenzen et al.,
2003). Our SEM results suggest smooth brome shoot
abundance caused changes in the A horizon bacterial
community, whereas roots drove changes in the B
horizon (Figure 5c). Effects in the A horizon were
driven mainly by plant litter-derived nitrogen and its
influence on bacteria (Table 1). Similarly, smooth
brome litter drove increased abundances of AOB,
archaea, and soil nitrogen at this site (Piper et al.,
2015a, b).

Given the importance of the plant root community
to vesicular–arbuscular mycorrhizal fungi and fun-
gi’s role as the initial decomposers of plant litter
(Johnson et al., 2004), we expected direct plant–
fungal links. Rather, we found that aboveground
biomass effects cascaded into the fungal community
via bacteria, with no direct links to the plant root
community. Similarly, in the B horizon, roots were
linked to bacteria but not to fungi. Thus, a model in
which plants and bacteria mediate effects on fungi is
congruent with our field observations.

Several possible mechanisms can account for the
mediation of plant root effects on fungal commu-
nities. First, bacteria could suppress fungi via
antibiotic production (Forsberg et al., 2014) and
mediation of root exudation (Rudrappa et al., 2008).
Second, plant species lost during invasion may
also explain why bacteria were key in mediating
root effects on the belowground ecosystem. Specifi-
cally, we found the loss of roots of native graminoids,
including Bouteloua gracilis, Carex spp., and
Elymus spp. (Figure 4), was more important to the
structuring of fungal and bacterial communities than
was the increase in smooth brome roots following
invasion. Displacement of slower growing, resource-
conservative native species by invasive species
changes the community-weighted mean values of
root traits such as root nitrogen allocation, specific
root length, and root turnover rates (Smith et al.,
2014). The shift in soil nitrogen cycling (Craine et al.,
2002) driven by fast-growing (N-exploitative) plants
like smooth brome may encourage bacterial
biomass growth, compared with slow-growing
(N-conservative) plants that promote fungal abun-
dance (de Vries et al., 2012).

Another possibility is that plant species-specific
mediation of fungi may also be occurring. For
example, the native Bouteloua gracilis is a C4 grass
that displays frequent mutualisms with fungi in
semi-arid grasslands (Herrera et al., 2010), likely due
to regulation of heat stress by endophytic root-
associated fungi (McLellan et al., 2007). B. gracilis
promotes microbial grazer abundance (Ingham et al.,
1985) and then benefits from the excreted ammonia.
Smooth brome may also alter fungal communities
through depleted phosphorus concentrations in the
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rhizosphere (Wang et al., 2004) or increased root
exudates (Dean Stacy et al., 2005). Further, native
Carex species structure fungal diversity in grasslands
(Johnson et al., 2004) and across environmental
gradients (Pellissier et al., 2014) and promote
beneficial dark septate fungi (Johnson et al., 2004).
Carex reduction of fungal pathogens of bacteria may
increase bacterial richness (Johnson et al., 2003).
Finally, Elymus species may form symbiotic relation-
ships with both endophytic fungi (White and
Morgan-Jones, 1987) and bacteria (Dalton et al.,
2004). Our results suggest that the displacement of
native species, along with the associated changes in
the trait structure of the plant root community, may
be a more important (albeit indirect) driver of fungal
communities in invaded areas than increases in
smooth brome abundance.

Keystone bacterial and archaeal OTUs
In general, some bacteria influenced fungi, archaea
influenced bacteria and fungi did not influence
the other two kingdoms. Few species emerged as
critical for structuring the between-kingdom inter-
actions. Only 10 plant species roots drove the
plant–microbial concordance, 12 bacterial OTUs
drove the bacterial–fungal concordance, and 18
archaea OTUs drove archaeal–bacterial concor-
dance. Our statistical approach does not explicitly
build networks; therefore, these bacterial and
archaeal indicators may be the strongest representa-
tives of more diffuse networks that influence other
kingdoms.

Archaea and fungal communities were concordant
(RV=0.610, P=0.030), and together they differentiated
invaded versus native grassland sites. Ammonia-
oxidizing archaea are common at this site and increase
during invasion, with subsequent effects on nitrifica-
tion (Piper et al., 2015b). Despite numerous studies of
archaea, bacteria, and fungi (van der Heijden, 2008), to
our knowledge, none have investigated interactions
among the three kingdoms. Here we show that there
were many (n=26) links between archaea and fungi,
although very little is known about archaeal–fungal
interactions (Prosser and Nicol, 2008). Archaea are
common, but not overly abundant in roots (Buée et al.,
2009, although see Simon et al., 2000); our work
suggests that research on the functional roles of archaea
in structuring root-associated fungal communities is
warranted.

Conclusion

Invasive plant species can have a major impact on
the structure and function of soil microbial commu-
nities, which is important as soil microbes have a
critical role in the functioning of natural ecosystems
(Bissett et al., 2013; van der Putten et al., 2013). The
effects of plant invasion differ between soil horizons,
with shoot litter having a dominant effect in the A

horizon and roots in the B horizon. Furthermore,
fungal changes in response to plant invasion were
mediated via select bacterial species. Critically,
native plant species displacement and root loss
appeared to be the most important driver of fungal
composition during invasion. Thus, we suggest
microbial response to plant invasion may be driven
not by the plants that are present, but rather by the
plants that are now absent. Future work should
include investigation of networks among roots and
microbial populations (sensu Banerjee et al., 2016;
Weiss et al., 2016) to better understand the roles of
keystone taxa in changing ecosystem functioning
during invasion.
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