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The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex
metazoans provided newly available niche space for viruses and microbes. Modern day
contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal
endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we
propose a model for the origin of metazoan immunity based on external and internal microbial
selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses
(phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer),
which selected for mucin-binding capabilities. The concentration of phage within the SML provided
the LCMA with an external microbial selective described by the bacteriophage adherence to mucus
(BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against
invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and
bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host
intracellular niche space, those viruses that provided the LCMA with immune protection were
maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we
propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other
apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal
environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged
during the Precambrian era and continue to drive the evolution of metazoan immunity.
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Introduction
Microbial selectives
Most immune components have been discovered
within the context of pathogenesis (Tanji and Ip,
2005; Kawai and Akira, 2010). This emphasis has led
to the implicit assumption that immunology is the
study of host versus pathogen (Casadevall and
Pirofski, 2014). This two-dimensional bias is exem-
plified through the pervasive use of antimicrobial
when describing host–microbe interactions
(Brogden, 2005; Casadevall and Pirofski, 2014). In
nature, host–pathogen interactions occur within the
context of an ecological community, that is, a host in
symbiosis with its microbial partners, which is
called the holobiont (Casadevall and Pirofski, 2014;
Bordenstein and Theis, 2015). These symbioses run

the gamut of mutualistic to parasitic/pathogenic.
Niche exclusion is an essential dynamic for main-
taining the holobiont; any microbe, compound or
entity that removes a microbe from a particular
ecosystem creates novel niche space for another
microbe to occupy (Rodriguez-Brito et al., 2010). In
this perspective, we will utilize the term microbial
selective to describe mechanisms that maintain
specific microbes associated with a metazoan host.

The ever-changing, ubiquitous surface mucus layer
(SML)
Mucosal environments coat the surfaces of specific
epithelial cell types across the spectrum of metazoan
life (Bäckhed et al., 2005; Brown and Bythell, 2005).
These environments are constructed by mucin
macromolecules, which consist of a peptide back-
bone covalently bonded to variable oligosaccaride
side chains (Ferez-Vilar and Hill, 1999; Hang and
Bertozzi, 2005; Corfield, 2013). The process of
glycosylation is controlled by secondary structural
motifs (Julenius et al., 2005), the cellular repertoire
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of glycosyltransferases and their localization within
the Golgi apparatus resulting in distinct cellular
profiles (Hanisch, 2001). O-linked glycosylation has
been shown to be integral in immune protection
across the animal phyla (Tsuboi and Fukuda,
2001; Bond et al., 2014). Following posttranslational
modification, mucins are either tethered to the
epithelial cell surface or secreted into the surround-
ing environment forming the SML. Molecular inter-
actions between mucin molecules via hydrophobic
cysteine-rich domains (Silberberg and Meyer, 1982;
Bansil et al., 1995) and the formation of disulfide
bonds (Roberts, 1976) results in a viscoeleastic material
that provides the host with a physiochemical barrier
from the surrounding environment (Gendler and
Spicer, 1995; Johansson et al., 2013). In addition to
providing the host with protection, the SML also
concentrates particles from the environment by pro-
viding a smooth layer that encourages laminar (versus
turbulent) flow, thereby creating an effective particle
trap (Wild et al., 2004; Yang et al., 2012; Hill et al.,
2014). There is significant turnover of the SML; the
mouse gastrointestinal tract is capable of replacing its
entire mucin pool in a single day (Faure et al., 2002)
and corals release up to 4.8 l of mucus per square meter
of reef per day (Wild et al., 2004).

Microbes and viruses in the SML
Despite the high turnover, the SML is inhabited by a
diverse and stable assemblage of microbes and their
associated viruses, forming the SML microbiome
(Bäckhed et al., 2005; Lozupone et al., 2012; Schluter
and Foster, 2012; Closek et al., 2014). Individual
members of the SML microbiome gain access to
energy-rich mucins (Derrien et al., 2010) while
providing the metazoan host with a variety of benefits,
including immune protection (Cash and Hooper, 2005;
Sun and Chang, 2014) and nutrient production
(Thompson et al., 2015). Here we focus on SML-
associated bacteria and their predators, bacteriophage
(a.k.a. phage). To ensure retention within the SML,
bacteria and phage have evolved mucus-binding
proteins capable of responding to rapid environmental
change. For example, Lactobacillus sp. express a range
of proteins containing mucus-binding domains that
exhibit high genetic heterogeneity between strains,
suggesting they are adaptive (MacKenzie et al., 2010).
Similarly, T4 phage use the immunoglobulin-like
(Ig-like) domains of their capsid proteins to promote
mucus adherence. (Fraser et al., 2006; Barr et al., 2013).
Ig-like domains and related protein folds, such as
C-type lectins, contain variable regions, potentially
allowing phage to adapt to changes in the mucin pool
and maintain specific phage–metazoan associations
(Minot et al., 2012; Barr et al., 2013).

Phage drive bacterial evolution
Within the SML, phage outnumber their bacterial
hosts by roughly an order of magnitude (Barr et al.,

2013). Upon infection, phage replicate via either
lytic or lysogenic life cycles. The lytic cycle involves
the production of new virus particles, ultimately
leading to cell lysis and viral release. Alternatively,
in the lysogenic cycle the phage genome integrates
into the host genome and becomes a prophage.
Temperate phage utilize both lytic and lysogenic
strategies and are important drivers of evolution in
the SML (De Paepe et al., 2016). Depending on the
genetic repertoire of the newly acquired prophage,
bacterial physiology can be directly affected through
the donation of novel genes, disruption of host genes
and manipulation of cellular metabolism (Brüssow
et al., 2004). In addition, some temperate phage
provide their host with immune protection by
preventing the attachment of other phage particles
(superinfection exclusion) (Soller and Epstein, 1965)
or preventing phage propagation of a secondary
infection (superinfection immunity) (West and Scott,
1977; Fogg et al., 2010; Abedon, 2015). These
mutualistic temperate phage enhance the competi-
tive fitness of their hosts (Bossi et al., 2003) and drive
bacterial evolution (Obeng et al., 2016).

Discussion

Colonization of the SML in the last common metazoan
ancestor (LCMA)
Fossil evidence and molecular data suggest the
LCMA emerged sometime between the Cryogenian
and Ediacaran periods approximately 542–720 mil-
lion years ago (Davidson and Erwin, 2009). The
LCMA most likely consisted of two cell layers: an
ectoderm with a SML and an internally facing
endoderm (Müller, 2003; Lang et al., 2007). We
propose that the first bacteria arrived to the SML
through active chemotaxis toward energy-rich
mucins (Bansil et al., 1995; Stocker and Seymour,
2012), random sequestration by SML fluid dynamics
(Wild et al., 2004; Yang et al., 2012; Hill et al., 2014)
or both. The dynamic properties of the SML would
have selected for bacteria that could be maintained
through the expression of mucus-binding proteins or
similar mucus-binding mechanisms (MacKenzie
et al., 2010). Once established within the SML,
bacteria that provided the metazoan host with a
fitness advantage via competitive exclusion of
potential pathogens or nutrient production would
have been further selected. The arrival of the first
phage may have occurred in conjunction with the
first bacteria as an integrated prophage or from the
environment as a temperate/lytic phage. Prophage
associated with the first bacterial colonizers
increased host fitness through superinfection exclu-
sion and superinfection immunity mechanisms
(Soller and Epstein, 1965; Abedon, 2015). As the
first bacterial species continued to propogate, phage
capable of binding to mucins (for example, Ig-like
domains, among others) were favored by natural
selection. Colonization by additional bacterial
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species and their associated phage continued in the
SML until niche space was filled and a community
was formed. Mutualistic bacteria continued to
protect the metazoan host through competitive
exclusion of potential pathogens (Hibbing et al.,
2010) while phage provided immune protection as
proposed in the bacteriophage adherence to mucus
(BAM) model (Barr et al., 2013, 2015). In the BAM
model, phage adhering to mucus provide the host
with immune protection against invading pathogens
(Figure 1a). For an in depth discussion of where
competitive exclusion and lytic dynamics are

operating within the SML, the authors point the
reader to the following article (Silveira and Rohwer,
2016).

Tumor necrosis factor (TNF)-induced apoptosis—an
internal microbial selective
Although the colonization of the SML by specific
phage species provided the metazoan host with
immune protection, the same fluid dynamics also
increased the retention of eukaryotic viruses and
subsequent adsorption to the LCMA host. As with

Figure 1 Microbial selective mechanisms in the LCMA. (a) BAM. Energy-rich mucin macromolecules secreted from the ectoderm formed
a SML that was colonized by bacteria and associated phage. Mutualistic phage provided the LCMAwith immune protection from invading
bacteria via (1) competitive exclusion and (2) lytic attack. (b) TNF-mediated apoptosis. Mucins also increased the rate of contact between
eukaryotic viruses and their metazoan hosts leading to the formation of mutualistic relationships. Viruses that provided the LCMA host
with immune protection were maintained. If a beneficial virus became pathogenic or if a parasitic virus invaded, the infected cell was
removed via TNF-mediated apoptosis and other apoptotic mechanisms.
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the phage, these eukaryotic viruses developed
mechanisms to bind to mucins and infect host cells
(for example, influenza virus today; Wild et al.,
2004). Upon infection of a multicellular host, the
canonical response is programmed cell death or
apoptosis of the infected cell, thus preventing viral
dissemination to neighboring cells (Barber, 2001).
Apoptosis has been observed across the spectrum
of life from bacteria to animals (Lewis, 2000; Bidle
et al., 2007). Many versions of apoptosis exist
(Holler et al., 2000; Berg et al., 2001; Bratosin et al.,
2001) and the general process likely emerged with
the origin of multicellularity (Ellis and Horvitz,
1986; Raff, 1992; Steller, 1995; Aravind et al.,
2001). However, metazoan apoptosis appears to be
unique through its use of TNF receptors (Quistad
and Traylor-Knowles, 2016), which are activated by
TNF ligands (Aggarwal, 2003). Many of the
domains involved with apoptotic signaling via
TNF receptors are also present and functional in
cnidarians, considered to be among the oldest
animal phyla (Lasi et al., 2010; Quistad et al.,
2014; Sakamaki et al., 2014, 2015; Lu et al., 2016;
Moya et al., 2016).

The targeted destruction of a virally infected cell
is the most conservative approach to maintain
organismal integrity; however, viruses can also
provide the host with a selective advantage. For
example, Herpesviruses provide mice with protec-
tion from bacterial infection (Barton et al., 2007)
and latent dynamics with Herpesviruses and their
metazoan hosts have been described from cnidar-
ians (Vega Thurber et al., 2008; Grasis et al., 2014)
to humans, suggesting an ancient origin (Steiner,
1996). In addition, similar to temperate phage,
metazoan viruses provide their hosts with immune
protection via superinfection exclusion (Tscherne
et al., 2007; Zou et al., 2009). If the beneficial virus
or virally encoded element is transferred to the
germline through reverse transcription (RNA
viruses) or recombination (DNA viruses), then the
trait could be inherited by future generations and
drive evolutionary processes (for example, endo-
genous retroviruses) (Grow et al., 2015). Evidence
for past viral co-option events can be found
throughout the modern metazoan immune system
(Villarreal, 2011) including the canonical response
to viral infection: interferon production (Chuong
et al., 2016).

We propose that competition between viruses for
host niche space led to the formation of mutualistic
relationships between the LCMA and its resident
viruses. Those associations that provided the host
with immune protection were maintained. In those
cases where resident viruses were not protective or
they developed into a pathogenic infection, the
LCMA removed the infected cell via TNF-mediated
apoptosis, among other apoptotic mechanisms
(Figure 1b). Based on extant animal phyla, the
LCMA possessed a large and dynamic stem cell
population (Bosch, 2009), therefore, it could

rapidly replace any cells deemed to be a risk to
organismal integrity without incurring a major
fitness cost. Taken together, TNF receptors served
as the viral gatekeepers to the LCMA, promoting
beneficial chronic infections and eliminating
destructive interactions.

Conclusions

Here we have proposed a model for the development
of metazoan immunity via external (phage) and
internal (TNF-mediated apoptosis) microbial selec-
tive mechanisms. The LCMA secreted mucins from
epithelial tissue, generating an SML that selected for
bacteria and phage with mucin-binding properties.
Phage provided the LCMA with an external micro-
bial selective in which phage bound to mucus via
hypervariable domains protect the metazoan host
from invading bacteria (BAM) (Barr et al., 2013,
2015). In addition to attracting bacteria and phage,
mucins also increased the rate of contact with
eukaryotic viruses resulting in the development of
mutualistic symbiosis that provided the LCMA with
immune protection. If a new virus was pathogenic or
if a resident virus became parasitic, those cells were
eliminated via TNF-mediated apoptosis and other
versions of apoptosis. We hypothesize that both
microbial selective mechanisms described here
evolved during the Precambrian era and continue
to drive the evolution of metazoan immunity in
modern day phyla.
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