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Local–global overlap in diversity informs
mechanisms of bacterial biogeography
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1Notre Dame Environmental Change Initiative, Notre Dame, IN, USA and 2Department of Biological Sciences,
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Spatial variation in environmental conditions and barriers to organism movement are thought to be
important factors for generating endemic species, thus enhancing global diversity. Recent microbial
ecology research suggested that the entire diversity of bacteria in the global oceans could be
recovered at a single site, thus inferring a lack of bacterial endemism. We argue this is not the case in
the global ocean, but might be in other bacterial ecosystems with higher dispersal rates and lower
global diversity, like the human gut. We quantified the degree to which local and global bacterial
diversity overlap in a diverse set of ecosystems. Upon comparison of observed local–global diversity
overlap with predictions from a neutral biogeography model, human-associated microbiomes (gut,
skin, mouth) behaved much closer to neutral expectations whereas soil, lake and marine
communities deviated strongly from the neutral expectations. This is likely a result of differences
in dispersal rate among ‘patches’, global diversity of these systems, and local densities of bacterial
cells. It appears that overlap of local and global bacterial diversity is surprisingly large (but likely not
one-hundred percent), and most importantly this overlap appears to be predictable based upon
traditional biogeographic parameters like community size, global diversity, inter-patch environmental
heterogeneity and patch connectivity.
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Introduction

Macroorganism species distributions are frequently
constrained by geographic barriers like oceans
and mountain ranges. Consequently, comparable
environments on different continents can have non-
overlapping biological assemblages owing to dispersal
limitation (i.e., endemisim; Cifelli, 1993; Melville
et al., 2006). In contrast, microorganisms appear to
disperse globally and rapidly in air and water
currents (Caporaso et al., 2012; Hanson et al., 2012;
Gibbons et al., 2013). In the absence of geographic
barriers, we expect transcontinental microbial com-
munity assemblages from similar environments to
have overlapping taxa. Two pieces of evidence
supporting widespread dispersal, and therefore
reduced endemism, in microbial communities
include the global distribution of some bacterial
groups, for example, freshwater Polynucleobacter
cosmopolitanus (Jezberová et al., 2010; Jezbera et al.,
2011), and strong correlations between local micro-
bial community composition and local environmen-
tal conditions, rather than geographic location

(Fierer and Jackson, 2006; Newton et al., 2007;
Lauber et al., 2009).

Despite the apparent absence of dispersal limita-
tion, observation error and stochastic aspects of the
community assembly process ensure we would not
detect exactly the same set of microbial species in,
even identical environments. However, we would
expect environmental selection to further reduce the
fraction of global diversity present in a particular
location (Martiny et al., 2006; Hanson et al., 2012).
The expectation for dispersal and environmental
selection to generate emergent patterns in the
fraction of global diversity found in a given local
environment suggests this quantity might serve as a
useful biogeographic metric. As deep DNA sequen-
cing becomes increasingly feasible, so too does our
ability to generate a complete census of local
composition and diversity, as well as to quantify
the fraction of global microbial diversity present at
any given place and time. A recent demonstration of
this approach recovered nearly 40% of the total
phylogenetic richness from the global ocean in a
single sample from the English Channel sampled to a
depth of 10 million 16 S rRNA gene sequences
(Caporaso et al., 2012; Gibbons et al., 2013). Albeit
from a single sample, this local–global diversity
comparison provides clear evidence of extensive
microbial dispersal in the ocean system. In fact, the
authors inferred a complete lack of dispersal
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limitation, and microbial endemism, when extrapo-
lating a log–linear rarefaction of their data to
generate an estimate of the sampling depth required
to achieve 100% recovery of the global ocean’s
bacterial richness in the English Channel sample.

Previous work comparing local and regional
richness in non-microbial systems generated much
debate in the ecological literature and demonstrated
the utility of comparing measures of diversity at
more than one spatial scale (Cornell and Lawton,
1992; Schoolmaster, 2001; Fox and Srivastava,
2006). These local vs regional richness comparisons
were accomplished by regressing local richness on
regional richness with the expectation that a linear
relationship indicated regional control of local
species richness and a non-linear relationship
suggested saturation of patch richness as a result of
local ecological interactions. Although this work
highlighted the potential importance of regional- to

global-scale processes for local community assembly
and diversity, the legitimacy of the original local vs
regional regression methodology has been thor-
oughly discredited (Hillebrand and Blenckner,
2002; Hillebrand, 2005; Szava-Kovats et al., 2012).
These methodological concerns have caused many to
abandon comparisons of local and regional diversity,
but we argue the utility of the concept should not be
conflated with methodological weaknesses. Others
appear to agree with our view, given recent augmen-
tation of the local vs regional regression approach to
overcome its deficiencies (Szava-Kovats et al., 2012;
Gonçalves-Souza et al., 2013).

A recent review of microbial biogeography called
for a refocusing of microbial ecologists’ efforts
towards a deeper understanding of microbial biogeo-
graphy process rather than continued pattern identi-
fication (Hanson et al., 2012). For example Hanson
et al. (2012), highlight the inability of distance-decay
analyses to evaluate the relative importance of
selection, drift, dispersal and mutation. The fraction
of global diversity found in a local patch (local–
global overlap) appears to be a potentially useful
metric for biogeographic pattern identification
(Gibbons et al., 2013), but it also suffers from an
inability to infer anything about process. One
potential advantage of local–global overlap is that it
can be quantified for a single site or sample, in
contrast to the pairwise nature of distance-decay
metrics, allowing relatively straightforward genera-
tion of theory-based, quantitative expectations for
local–global overlap. Here, we ask whether the
comparison of observed local–global overlap with
the expectations from a neutral biogeography model
can reveal the relative importance of dispersal and
environmental selection for bacterial community
assembly, and avoid the issues associated with the
local vs regional regression approach (Figure 1).
Although selection, drift, dispersal and mutation are
all important biogeographic mechanisms, we focus
on environmental selection and dispersal as these
have been the primary focus of past microbial bio-
geography and meta-community research (Martiny
et al., 2006; Logue and Lindström, 2008; Jones and
McMahon, 2009).

Under a neutral model, the extent of local–global
overlap is dictated by dispersal, global diversity
(both species richness, S, and species abundance
distributions, SAD), and the number of individuals
in the local patch (N), which determines how deeply
the local community ‘samples’ global diversity.
Therefore, given some knowledge of S, the global
SAD, and N, a neutral expectation for local–global
overlap can be generated and compared with the
observations of overlap in species composition or
phylogenetic diversity based upon marker gene
surveys. If observations closely resemble predictions
from a neutral model, dispersal is relatively strong in
comparison with local selection (Figure 1—Case 1).
In contrast, strong deviation of observations of
local–global overlap from neutral expectations

Figure 1 A conceptual figure of local–global overlap of phyloge-
netic diversity. Local patches receive dispersing individuals from
the global species pool with richness S, and contain N individuals.
In the figure, arrow size is proportional to immigration rate and
patch size is proportional to N. In addition, local environmental
heterogeneity (local patch shape) can impose environmental
selection. The relative importance of dispersal and selection (Case 1
vs Case 2) dictate what fraction of global phylogenetic diversity is
represented in a given local patch (x’s indicate presence in middle
panels). Our neutral model (gray line in bottom panel) generates a
saturating curve of local–global overlap in phylogenetic diversity
as a function of N:S. The position of observed local–global overlap
(boxes labeled with case number—local patch number in lower
panel) are estimated from the fraction of the global phylogeny
represented in any given local patch, and may allow inference
about the relative importance of dispersal vs environmental
selection (Case 1 vs Case 2).
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indicates local selection is more important than
dispersal in driving the local community assembly
(Figure 1—Case 2).

The goal of this study was to evaluate the proposed
use of a neutral biogeography model and observa-
tions of local–global overlap to elucidate the relative
importance of dispersal and environmental selection
for microbial community assembly. To estimate
local–global overlap, we combined existing deep-
sequenced local data sets (Caporaso et al., 2011) with
broadly distributed global survey data sets from
a diverse set of ecosystems, including human-
associated, soil and aquatic environments. These
ecosystems varied in the ratio of number of indivi-
duals in a local sample to global species richness
(N:S), and therefore had different expected levels of
local–global overlap under our neutral biogeography
model. By testing whether observed levels of local–
global overlap deviated strongly from neutral expec-
tations, we evaluated our ability to infer the relative
importance of dispersal and selection in these
diverse ecosystem types. Although previous work
has shown individual host-specific community
composition in human-associated bacterial commu-
nities (Benson et al., 2010; Fierer et al., 2010), we
hypothesized that local–global overlap for human
microbiomes would more closely correspond to
neutral predictions because of higher dispersal
amongst patches and/or reduced inter-patch envir-
onmental heterogeneity, which could diminish the
strength of environmental selection.

Materials and methods
Data sources and local–global overlap metric
To generate estimates of local–global overlap, we
required both deeply sequenced samples from a
single community at a single time point (‘local
samples’) and a set of samples from spatially
distributed patches from the same ecosystem (‘global
samples’). The local data sets we used came from a
single study (Caporaso et al., 2011). Six of the eight
ecosystems sampled by Caporaso et al. (2011) had
suitable global data sets, including human gut,
tongue and skin; ocean, freshwater lake and soil.
Available global data sets varied significantly in their
sampling effort, and as a result we randomly down-
sampled the more deeply sampled data sets
(Supplementary Table S1). We obtained these data
sets primarily from the QiimeDB database and Earth
Microbiome Project Databases (Supplementary Table S1).
We selected phylogenetic overlap, the fraction of
branch length in a phylogenetic tree of all global
diversity recovered in a local sample, as our metric
of local–global overlap because this metric was
previously used in this context (Gibbons et al.,
2013). In addition, much recent work has highlighted
the utility of including phylogenetic relationships in
metrics of diversity (Helmus et al., 2007; Cavender-
Bares et al., 2009; Kembel et al., 2010). For brevity,

we will refer to the fraction of global phylogenetic
diversity present in a local sample as ‘local–global
overlap’ throughout the remainder of the paper.

Neutral model of local–global overlap
We selected Hubbell’s neutral model (Hubbell, 2001)
to generate expectations for local–global overlap in
microbial communities. Because we expected the
ratio of local community size to global diversity to be
a key regulator of local–global overlap in diversity,
we systematically varied this ratio across model
simulations by varying global diversity with a
constant local number of individuals (n=1000).
Simulations were run for 1000 individual deaths
after which time local communities had always
reached a dynamic equilibrium of richness. Follow-
ing each death of a local individual, the parameter m
dictated whether local reproduction or immigration
replaced the local community member. Local repro-
duction was proportional to local population abun-
dances, and immigrating individuals came from a
global community with richness (S) and an empiri-
cally derived, lognormal SAD. A custom function
generated in the R Statistical Environment was used
for these simulations (R Development Core Team,
2010). To estimate phylogenetic overlap of the local
and global communities, we generated random
bifurcating phylogenetic trees containing all mem-
bers of the global, and therefore local, community
with the rtree() function from the ape package of the
R Statistical Environment (Paradis et al., 2004). Local
community composition (presence–absence) and the
random phylogenetic tree were used as inputs to
the phylosor() function in the R package Picante
to estimate local–global overlap for each model
simulation (Kembel et al., 2010). Model results for
local–global overlap based solely on OTU identity,
ignoring phylogenetic relationships, were extremely
similar to those using phylogenetic diversity.
Ten replicate simulations were run at eight global
diversities ranging from 10 to 50 000 species, which
when combined with a local community size of 1000
individuals spans the range of observed N:S for
available empirical data. All R code used to generate
our local–global overlap expectations is available in
Supplementary Materials.

To identify likely values for the parameters used
(N:S, μSAD and σSAD) in our neutral biogeography
model, we used our global sequence data sets (see
Data Sources above) and estimates of cell abun-
dances (n, Supplementary Table S2) in microbial
biomass samples from the literature (Supplementary
Table S2). We chose to use the scale of an individual
sample as the spatial extent of a local patch because
that is the unit of observation in DNA-sequence-
based surveys. Ideally the definition of a local patch
would be informed by knowledge of the spatiotem-
poral scales of interaction between bacterial cells
and populations, but this environmental microbiology
research frontier is only in its infancy (Vos et al., 2013;
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Lushi et al., 2014; Rusconi et al., 2014). Global
community richness (S) was determined by max-
imum likelihood estimation of the asymptote for
rarefaction of OTU richness from available spatial
surveys (Supplementary Table S1). The mean and
standard deviation of the global lognormal SAD
(μSAD and σSAD) were taken as the mean of those
parameters estimated by maximum likelihood for
each of the deeply sequenced samples we used.

Identifying the appropriate model for asymptotic
local–global overlap
We can know exactly what the local–global overlap
in model simulations is, but empirical estimates are
subject to issues of sampling. As such, we must use
rarefaction to estimate the asymptotic local–global
overlap. A previous attempt to quantify local–global
overlap used a linear regression model against the
misleadingly line-like plot of local–global overlap
against the log10 of rarefaction depth (Equation 1;
Gibbons et al., 2013). When log transformed a
number of rarefaction depths are compressed near
the origin and it is difficult to observe systematic bias
in the model fit. When the model predictions and
residuals are viewed on an arithmetic scale, it is
clear that the log–linear model generates non-
random errors that make interpolation or extrapola-
tion of the model problematic (Supplementary
Figure S1). Fitting such a model without statistically
evaluating its suitability yielded the conclusion that
sequencing to a depth of 1.93 × 1011 would recover
all phylogenetic richness in the global ocean, that is,
100% local–global overlap.

Percent overlap ¼ m ´ log 10 rare f action depthð Þ þ b

ð1Þ
To ensure we were using an appropriate model for

estimation of local–global overlap, we evaluated the
performance of seven models, including the log–
linear model from Gibbons et al. (2013), when
estimating local–global overlap. The six models in
addition to the log–linear are commonly used in
rarefaction procedures (Jimenez-Valverde et al.,
2006), and model performance was evaluated using
Akaike’s Information Criterion (Akaike, 1974), and
visual examination of residuals (Supplementary
Figure S1). The most likely model parameters were
estimated in R by minimizing custom negative log-
likelihood functions assuming errors conform to a
beta distribution (R Development Core Team, 2010).
Optimal solutions were determined using ‘optim’

with the Nelder-Mead algorithm repeated 100 times
with varied starting values. Rarefied local–global
overlap values from the English Channel were kindly
provided by Sean Gibbons and Jack Gilbert.

Cross-system observations of local–global overlap
After identifying the most appropriate statistical
model for estimation of asymptotic local–global

overlap, we estimated this proportion for microbial
communities from six diverse environments, encom-
passing human-associated and natural microbiomes
to provide context for the English Channel result
(Gibbons et al., 2013) and to explore potential
differences in the balance between selection and
dispersal in dictating local community assembly.

OTU definition and local–global overlap. To quan-
tify which microbial operational taxonomic units
(OTUs) are shared in the local and global data sets,
we have to use sequence similarity to define these
groups. We used the popular Qiime software for
these purposes. For each environment type, OTUs
were selected using the ‘pick_subsampled_referen-
ce_otus_through_otu_table.py’ script in Qiime
(Caporaso et al., 2010b) v1.5 (all settings default,
uclust similarity cutoff = 0.97) using the Greengenes
(DeSantis et al., 2006) v13_5 16S rRNA gene
sequence database as the reference set for the first
round of OTU picking, PyNAST (Caporaso et al.,
2010a) alignment, and alignment masking. Full or
nearly full-length Greengenes reference sequences
were used preferentially as representative sequences
when applicable. Otherwise, Uclust (Edgar, 2010)
seed sequences were used as the representative for
de novo OTUs.

As many of the de novo OTU representative
sequences are non-overlapping (owing to sequencing
of different variable regions of the 16 S rRNA gene)
we generated a phylogenetic tree using FastTreeMP
(Price et al., 2010) with the –pseudo option which
estimates distances between non-overlapping
sequences based on their transitive relationships to
full-length sequences (other options: -gtr, -nt, -fast-
est). Previous investigation has shown that nucleo-
tide distances between different variable regions of
the rRNA gene are tightly correlated (Livermore and
Mattes, 2013) which indicates that this is a reason-
able approximation. The use of phylogenetic diver-
sity and previously defined reference OTUs
dramatically reduces the sensitivity of our results
to this potential issue. The influence of variation in
OTU assignments resulting from differences in 16 S
variable region is minimized because potential
misclassifications are occurring at the tips of the
phylogenetic tree, and therefore by definition con-
tribute little to the total branch length of the global
phylogenetic tree. In other words, small errors in
OTU assignment caused by differences in sequen-
cing approaches across studies are down-weighted
by our choice to use overlap in phylogenetic
diversity.

Sequences that were not alignable by PyNAST
(and thus did not appear in the phylogenetic tree)
were removed from the OTU tables. Single deep-
sequenced samples were rarefied (three replicates at
each depth) and phylogenetic overlap was computed
using beta_diversity.py in Qiime with the metric
‘unifrac_G’ which is Faith’s phylogenetic gain (Faith,
1992) or fraction of phylogenetic tree branch length
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unique to a sample. For each deeply sequenced
sample, rarefactions were computed at 300 random
depths to uniformly and non-arbitrarily sample
across the entire length of the curve (Cottingham
et al., 2005).

Estimating global OTU richness and local density.
Because the ratio of the number of individuals in the
local patch to global species richness (N:S) structures
our neutral expectations, we must estimate S from
our global data sets. To estimate global OTU richness
from each environment (S), we selected fully over-
lapping sequence sets representing diverse samples
(Supplementary Table S1) and picked OTUs as
described above. Sequences were rarefied, and
richness estimated as asymptotic number of 97%
identity OTU sequences. Typical sample sizes in
terms of the number of individual bacteria for each

environment (N) were estimated based on sampling
conventions for each ecosystem (Supplementary
Table S2).

Species presence–absence vs relative abundance.
One simple prediction we can derive from our
conceptual framework, is that compositional differ-
ences between patches in ecosystem types with high
local–global overlap in diversity should be driven by
differences in SAD rather than species presence–
absence. To simply evaluate this prediction, we
considered inter-patch, but intra-ecosystem pairwise
differences in composition for all patches in the
global data sets from human gut and lake ecosystems
as measured with Sørensen’s, presence–absence
based, and Bray-Curtis, includes consideration of
relative abundances, distance metrics. If the ratio of
these two distance metrics (Sørensen’s:Bray-Curtis)

Figure 2 A log(x) linear regression was previously used to model progressively increasing local–global overlap between a single deeply
sequenced sample from the English Channel and a set of many shallow samples from the global ocean as the deep sample is rarefied.
A model that has previously been used to model rarefaction processes (Weibull cumulative distribution function) yields a better fit and a
non-systematic error distribution compared with the log(x) regression. The central implication of this discrepancy in model selection is
that the more appropriate Weibull model has an asymptote (~0.40) whereas the log(x) regression model goes to infinity. Dots on plots show
data and the lines show model predictions.
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is close to one, it suggests species presence–absence
drives inter-patch differences. Whereas, a ratio much
below one suggests a greater importance of differ-
ences in SAD across patches. We made visual
comparisons of these values by plotting frequency
densities of observed ratios.

Results

Comparison of rarefaction models
Our candidate models provided widely different
predictions for local–global overlap. Having said that,
all candidate models with the exception of the
Weibull and Chapman–Richards had extremely
non-random residual distributions. We selected the
Weibull over the Chapman–Richards based upon the
well-accepted model selection criterion AIC (Akaike’s
Information Criterion). Notably, the previously used
log–linear regression model exhibited non-random
distribution of errors (Figure 2; Supplementary
Figure S1), and resulted in much larger estimates
of local–global overlap than the Weibull model. We
assert that the most appropriate model for estimating
asymptotic local–global overlap in diversity is the
Weibull cumulative distribution function (Equation 2),
and note that our findings are consistent with previous
assessments of model fits for rarefaction processes
(Flather, 1996; Van Rooijen, 2009).

Percent overlap ¼ a ´ 1� exp �b ´ rare f action depthcð Þð Þ
ð2Þ

A central property of the Weibull cumulative
distribution function is the presence of an upper
bound (asymptote) parameterized as ‘a’ in the model.
We interpret a as the theoretical maximum propor-
tion of global richness of an ecosystem that can be
found locally. Fitting a Weibull cumulative distribu-
tion function to the rarefied local–global overlap plot
from the English Channel indicates local richness is
~ 40% of total ocean richness, which contradicts the
assertion that with sufficient sampling 100% overlap
would be observed (Gibbons et al., 2013), but remains a
staggering amount of local–global overlap. As a result,
we recommend the use of a in the model above as an
asymptotic estimate of local–global overlap.

Neutral model of local–global overlap
For the neutral simulations of local–global overlap,
we estimated the parameters of a lognormal distribu-
tion describing the relative SAD of the 16 deep-
sequenced samples (μ=− 13±0.3, σ=1.43 ±0.04;
mean±s.d.). The mean and standard deviation of each
SAD were strongly correlated across the 16 samples
(r=0.82), but the model was not sensitive to even
independent changes in these parameters. The model
was also relatively insensitive to the probability of an
open site in the local community being replaced
by an immigrant (m; Supplementary Figure S2).
Simulation results were much more sensitive to the

assumed form of the SAD (uniform vs lognormal), as
has been shown previously (Schoolmaster, 2001).
The means of these parameters were used to describe
the ‘global’ SAD with the ratio of local density to
global richness set to a range of values including
empirical estimates from the six environments we
consider here. Our simulations predict local–global
overlap to be low at a low N:S, but rapidly rise to
complete overlap as N:S increases by ~2 orders of
magnitude (Figure 3b).

Local–global overlap in diverse environments
In total, we estimated asymptotic, local–global over-
lap of 16 samples from 6 different ecosystems (lake,
soil, marine, human gut, human skin and human
tongue surface; Figure 3a). The largest apparent

Figure 3 (a) Asymptotic local–global overlap (quantified as the
fraction of phylogenetic diversity in many shallow sequenced
samples from the same environment present in a single deeply
sequenced sample) for 16 samples from 6 ecosystem types. (b)
Observed maximum overlap is positively related to the ratio of the
number of individuals sampled (N) and global environmental OTU
richness (S). The dashed line is neutral theory predictions based
on simulated overlap values with random sampling from a global
taxa pool assuming a lognormal species abundance distribution.
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overlap occurred in the human gut samples (100, 91
and 87%) followed by the human tongue (90 and
78%). There was less overlap in the environmental
samples with greatest observed overlap in soil
samples (62, 41 and 41%), which are comparable
to lake samples (49 and 42%) whereas the lowest
overlap values were from the ocean samples (37, 24
and 21%). Overlap values from the human skin were
more comparable with the environmental samples
than other human microhabitats (46, 45 and 39%).

On the basis of our global richness estimates
(Figure 4) and the number of individuals in samples
(Supplementary Table S2), the N:S of the ecosystems
we considered varied over five orders of magnitude
with skin possessing low global diversity and low
number of local individuals (N:S near 1) and the gut
with tremendous local density and relatively low global
diversity (N:S of nearly 106). The other four systems
were fairly close with anN:S near 103. In all three cases,
the human-associated systems (gut, skin and tongue)
were much closer to neutral model expectations than
the other three systems (marine, lake and soil).

Consistent with our predictions, gut patches,
which demonstrated high local–global overlap in
diversity, showed consistently greater difference
based upon Bray-Curtis than Sørensen’s index
(a ratio much below one) suggesting an importance
of differences in SAD, but not the presence or
absence of species across patches (Figure 5). This
difference between Sørensen’s and Bray-Curtis dis-
tances was much less prominent for the global lake
data set, which showed a much more modest degree
of local–global overlap.

Discussion

Our results suggest deviation of local–global overlap
from neutral expectations likely reflects the relative

importance of dispersal and environmental selec-
tion. We base this inference on the observation that
our cross-ecosystem comparison of local–global
overlap supported the hypothesis that human-
associated habitats, assumed to possess reduced
inter-patch heterogeneity and elevated dispersal,
more closely resembled expectations from our
neutral model in comparison with soil, marine and
freshwater samples. These findings are more-or-less
consistent with our conceptual diagram (Figure 1),
which depicts extremes in the relative importance of
dispersal (Case 1) and local selection (Case 2). If
dispersal has a dominant role in determining species
composition at the local scale, we would observe a
random ‘sampling’ of the global diversity at the local
scale and the level of local–global overlap is dictated
by the ratio of the number of individuals in the local
patch to the global species richness (N:S). This
outcome is depicted in the middle left panel of
Figure 1, and yields our neutral expectation (gray
line in Figure 1 bottom panel). When local selection
acts as a dominant biogeographic process, only a
subset of the global diversity is present in a local
patch (Figure 1, middle right panel) and the observed
local–global overlap is much smaller than that
expected by our neutral model (Figure 1, bottom
panel).

Importantly, theory provides a basis for expecta-
tions, and often is most useful when it takes the form
of a null model to which more complex systems can
be compared (Gotelli and McGill, 2006). Our neutral
model of local–global overlap in diversity fills this
role and generated results consistent with previous
models of local-regional species composition
(Cornell and Lawton, 1992; Schoolmaster, 2001;
Fox and Srivastava, 2006). Our model generates
intuitive output with increases in local density or
decreases in global diversity increasing the local–
global overlap and decreases in local density or
increases in global diversity decreasing the local–
global overlap (Figure 3). In this way, the number of
individuals in a local patch dictates the depth to
which global diversity is ‘sampled’. This constraint
indicates that for many systems a local–global
overlap of 100% is impossible, and allows for
ecologically relevant comparisons across diverse
ecosystems. Interestingly, the region along our N:S
axis with the most rapid change in local–global
overlap of diversity is in the range of our observa-
tions, although extremely low levels of local–global
overlap (o10%) were not observed (Figure 3).

When comparing local–global overlap across eco-
systems, the most distinct pattern we observed was
the propensity for human-associated samples to have
higher local–global overlap, and to be more similar
to our neutral expectations than other microbial
habitats (lakes, soil and ocean; Figure 3). The human
gut communities were the strongest example of this,
but even the skin-associated communities were
close to the neutral model simulations despite
showing lower levels of absolute local–global overlap.

Figure 4 Rarefaction curves to estimate global 97% sequence
identity OTUs richness from six environments. Estimated asymp-
totic richness values are in parentheses in the legend.
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In contrast, soil, lake and ocean communities
consistently showed local–global overlap much
lower than the neutral expectations. These results
seem to indicate that human-associated microbial
habitats have greater dispersal and/or less inter-
patch variability in selective factors, owing to low
inter-patch environmental heterogeneity, relative to
the other environments.

Consider dispersal amongst human-associated
microbial habitats relative to soil, lake and marine
habitats. Because microorganisms disperse through
air, all patches of every environment type are
connected by the atmosphere establishing a baseline
microbial dispersal rate common to all human and
environmental ecosystems. However, in addition to
air, microbes disperse directly between humans
through close contact. When combined with the
global human travel and high connectivity in human
social networks, it is arguable that microorganisms
have relatively rapid dispersal among all available
patches (people). Evidence supporting this idea
includes the observation that skin–skin contact
causes microbial transfer (Meadow et al., 2013), as
well as pandemic pathogen transmissions that occur
over short time scales (Mutreja et al., 2011). In stark
contrast, environmental ecosystems like lakes and
soils are intrinsically immovable and thus globally
distant ecosystem patches are hypothetically con-
nected by atmospheric dispersal alone.

Another consideration is inter-patch environmen-
tal heterogeneity. Because humans rely on very rigid
homeostatic conditions to maintain biochemical
processes, each healthy human gut is likely a near
identical ecosystem from a microbial perspective. In
contrast, soils, lake and ocean patches are highly
heterogeneous in temperature, nutrients, light

availability and many other variables that affect
microorganism colonization, growth and survival.
A recent comparison of global soil microbial diversity
to the diversity recovered in Central Park, NY, USA
highlights the importance of site-to-site variation in
environmental conditions. Ramirez et al. (2014),
were able to recover comparable levels of soil
microbial diversity in Central Park as that observed
across broad continental gradients, and this was
attributed to the tremendous heterogeneity of soil
conditions observed in Central Park. We view inter-
patch heterogeneity in environmental conditions,
and therefore selection, as perhaps the most likely
explanation for lower observed single sample over-
lap in aquatic and soil communities relative to the
human gut and tongue. Analogous to the Central
Park study (Ramirez et al., 2014), intra-patch
environmental heterogeneity may enhance local–
global overlap, but additional modeling and empiri-
cal work would be required to fully investigate this
added complexity.

It is important to note that we are not suggesting
that the microbial community is completely uni-
form across human habitats as a great wealth
of research demonstrates systematic differences
between individual microbiomes (Turnbaugh et al.,
2008; Kuczynski et al., 2010; Faust et al., 2012).
Rather, our analysis predicts that most bacterial
OTUs can be found in a single host and differences
between individuals are based on relative abundance
differences as opposed to more predominant pre-
sence–absence differences, as would be expected in
non-host-associated ecosystems like lakes given the
levels of local–global overlap we observed, as can be
observed for global human gut and lake samples
from our analysis (Figure 5).

Our paired theoretical–empirical approach pro-
vided novel insight into how local microbial diver-
sity scales to the global extent in a diverse set of
ecosystems. We find an intriguing dichotomy
between human-associated and non-human-
associated habitats that seems to be consistent with
what we know about cross-patch environmental
heterogeneity and dispersal amongst patches in
those types of microbial ecosystems. However,
further work is required to rigorously test this
hypothesis. In addition, our work relied on OTUs
defined based upon 16 S ribosomal-RNA gene
sequences, and other approaches are now available
to resolve much finer genetic differences. Of course
these more resolved approaches would likely find
greater levels of endemicity, but we have no reason
to expect our qualitative patterns would not be
robust to exploration with more genetically resolved
techniques.

Conclusions

In summary, we argue that comparison of local–
global overlap of diversity to neutral model

Figure 5 Frequency densities of the ratio of Sørensen’s:Bray-
Curtis distance metrics. Microbial community differences between
lakes are primarily driven by presence–absence of OTUs as shown
by the preponderance of Sørensen’s:Bray-Curtis ratios near one
(black dense line). In contrast, differences between gut bacterial
communities are more driven by abundance differences (low
Sørensen’s:Bray-Curtis ratio; gray dense line). The vertical dashed
line indicates a ratio of one.
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expectations can provide insight into the relative
importance of biogeographic processes (e.g., disper-
sal vs selection). When evaluated with a concep-
tually and statistically robust approach, local–global
overlap in diversity appears to be a property that
non-randomly varies between ecosystem types. In
addition, our observed cross-ecosystem patterns in
local–global overlap are consistent with ecosystem
properties such as dispersal rate and inter-patch
environmental heterogeneity. Given the theoretical
basis and initial observations we report here, this
metric may prove useful in the future in addressing
fundamental questions about the drivers of micro-
bial community assembly in much the same way
that distance-decay relationships have helped to
identify patterns consistent with island bio-
geography theory.
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