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Nitrogen loss by anaerobic oxidation of ammonium
in rice rhizosphere
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Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen
(N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear.
In this study, we investigated the presence, activity, functional gene abundance and role of anammox
bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–
fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA
gene clone libraries. Results showed that rhizosphere anammox contributed to 31–41% N2 production
with activities of 0.33–0.64 nmol N2 g−1 soil h− 1, whereas the non-rhizosphere anammox bacteria
contributed to only 2–3% N2 production with lower activities of 0.08–0.26 nmol N2 g−1 soil h−1. Higher
anammox bacterial cells were observed (0.75–1.4 × 107 copies g−1 soil) in the rhizosphere, which were
twofold higher compared with the non-rhizosphere soil (3.7–5.9 × 106 copies g− 1 soil). Phylogenetic
analysis of the anammox bacterial 16S rRNA genes indicated that two genera of ‘Candidatus
Kuenenia’ and ‘Candidatus Brocadia’ and the family of Planctomycetaceae were identified.
We suggest the rhizosphere provides a favorable niche for anammox bacteria, which are important
to N cycling, but were previously largely overlooked.
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Introduction

With the rapid increasing use of chemical fertilizers
in agriculture, high nitrogen (N) loss in many densely
populated countries is becoming an important issue
from both environmental and agronomic perspec-
tives. China is one of the largest rice producing
countries and consumers of chemical N fertilizer in
the world (FAO 2013, available at www.fao.org/
publications/sofa.), which results in large amounts
of N loss through NH3 volatilization, NO3

− runoff and
leaching and N2O emissions (Xing and Zhu, 2000).
However, 410% of the total N fertilizers applied on
arable soils remain uncharacterized (Zhu, 2008).

The discovery of anaerobic oxidation of ammonium
(anammox) in natural ecosystems provides new insights
into the mechanisms responsible for N loss (Thamdrup
and Dalsgaard, 2002; Dalsgaard et al., 2003; Kuypers
et al., 2003). Recently, anammox bacteria were found to

be widely distributed in agricultural fields (Humbert
et al., 2010; Wang et al., 2012b; Shen et al., 2013; Wang
and Gu., 2013). However, these few published articles
mainly focused on the distribution and phylogenetic
diversity of anammox bacteria. The quantification of
anammox activity and its contribution to the N cycle are
not well known. To date, there are no studies that
address anammox processes in the rhizosphere, which
is ubiquitous (Jones and Hinsinger, 2008) and has a key
role in N cycling (Richardson et al., 2009; Jackson et al.,
2012; Liu et al., 2014). The role of anammox bacteria in
rhizospheric N cycling is unknown.

Hence, the objectives of the present study were to
investigate the occurrence, activity, contributions
and role of anammox to N loss in the rhizosphere
and non-rhizosphere zones of a fertilized paddy soil
from Southern China.

Materials and methods
Soil sampling
Paddy soil was collected from the Red Soil Ecologi-
cal Experiment Station, Chinese Academy of
Sciences, located in subtropical southern China, in
Changde city, Hunan province (N: 28°57'; E: 110°30').
Soil samples (0–20 cm) were collected in the field on
22 November 2010 and composited. Prior to the start
of the experiment, the soil was air-dried, then
homogenized and sieved (o2mm).
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Experimental setup
Rhizo-bags (30-μm nylon mesh, 7.5 cm diameter,
12 cm height) filled with 475 g sieved soil were
placed in the center of polyvinyl chloride pots
(15 cm diameter, 23 cm height), which were then
filled with 3 kg soil. The rhizo-bag was separated
into two compartments, which allowed smaller
molecular substrates to penetrate but prohibited
penetration by roots (Supplementary Figure S1).
Two treatments (control and N fertilization) were
evaluated, and for each treatment, we sampled
rhizosphere and non-rhizosphere soils. In the control
treatment, no fertilizers were applied. In treated soil,
N was applied as urea (100mg kg− 1 dry soil). The pot
experiment was carried out using a randomized
design with three replicates for each treatment.

The soils were first incubated for 1 month at 105%
of water-holding capacity at 25 °C, then added to pots
as described above. Rice seeds (cv. Xiangzaoshan 45)
were sterilized in 30% H2O2 for 10min and then
thoroughly washed with de-ionized water. Three days
after germination, uniform seedlings were trans-
planted into the rhizo-bags. After 37 days of rice
growth in a greenhouse (illumination 1500 Em−2 s−1,
ambient temperature 35 °C±2, 30 °C night; humidity,
ambient 90%), rhizosphere and bulk soils were
sampled. The rhizosphere and bulk soils were each
divided into three parts. One part was used for in situ
cell fixation for catalyzed reporter deposition–fluores-
cence in situ hybridization (CARD-FISH) as described
below, another part was immediately frozen in liquid
N2 and archived at −80 °C for molecular analysis, and
the other part was incubated to determine anammox
and denitrification activity.

Chemical analytical procedures
Soil pH was determined in a 1:2.5 soil/water
suspension. Soil organic matter, total organic C and
total N were determined using a total carbon analyzer
(TOC-V CPH, SHIMADZU, Japan). Ammonium
(NH4

+), nitrate (NO3
−) and nitrite (NO2

−) were extracted
from the soil with 2 M KCl and diluted prior to
determination by a flow injection analyzer (FIA
QC8500, Lachat, Loveland, CO, USA). Soil grain size
was analyzed using a laser scattering particle analy-
zer (MS2000, Malvern Instruments, Malvern, UK)
after sieving (2mm) to remove the gravel and plant
roots. All analyses were performed in triplicate.

Fluorescence in situ hybridization and catalyzed
reporter deposition
CARD-FISH was applied to capture photographic
documentation of anammox bacterial cells in the
rhizosphere and bulk soils. The horseradish peroxidase
(HRP)-labeled oligonucleotides probe Amx820 (5′-
AAAACCCCTCTACTTAGTGCCC-3′) (Schmid et al.,
2000) was used for the detection of anammox
bacteria, including ‘Candidatus Brocadia’ and ‘Can-
didatus Kuenenia’, in the soil samples. To check for
unspecific staining and autofluorescence, the HRP-

labeled probe Non338 (5′-ACTCCTACGGGAGG
CAGC-3′) (Wallner et al., 1993) was used. Total cells
were determined on the basis of staining with DAPI
(4,6-diamidino-2 phenylindole) and were recorded
with an LSM 710 confocal laser scanning micro-
scopy (Carl Zeiss, Inc., Oberkochen, Germany).
Sampling and processing for CARD-FISH followed
standard protocols (see Supplementary Table S1).

Measuring anammox and denitrification rate with
15N labeled ammonium and nitrate
The activity and potential role of anammox and
denitrification were measured at in situ soil tem-
peratures with a 15N-tracing technique (Thamdrup
and Dalsgaard, 2002; Risgaard-Petersen et al., 2004).
Approximately 3.5 g soil (fresh weight, three repli-
cates) were transferred to 12.0ml glass vials (Exetai-
ner, Labco, High Wycombe, Buckinghamshire, UK)
together with N2-purged media water from in situ
irrigation water (total C: 0.89mg l− 1; total N: 0.40
mg l− 1; NH4

+-N: 0.08mg l− 1; NO3
−-N: 0.29mg l− 1). The

resulting paddy soils were then preincubated to
remove residual NOx

− and oxygen (Supplementary
Figure S2). Subsequently, 100 μl of N2-purged
stock solution of each isotopic mixture, namely,
(1) 15NH4

+ (15N-(NH4)2SO4 at 99.14%, 12mM N),
(2) 15NH4

++14NO3
− (KNO3, 12mM N) and (3) 15NO3

−

(15N-KNO3 at 98.15%, 12mM N), was injected
through the septa of each vial, resulting in a final
concentration of about 100 μM N. All isotope
solutions were flushed with He prior to addition.
The incubations were performed at temperature
35± 1 °C. At five intervals over 24 h (0, 3, 6, 12,
24 h, respectively), reactions in three replicate vials
from each treatment were inhibited by injecting
200 μl of a 7 M ZnCl2 solution. The rate and potential
contribution to N2 formation by anammox or deni-
trification were calculated from the excess produc-
tion of 29N2 and 30N2 in the 15NO3

− treatment,
measured by continuous flow isotope ratio mass
spectrometry (MAT253 with Gasbench II and
autosampler (GC-PAL), Bremen, Thermo Electron
Corporation, Finnigan, Germany), and the fraction of
15N in NO3

−. The equations used and their explana-
tions as described by Thamdrup and Dalsgaard (2002)
are summarized in Supplementary Information
(Supplementary Table S2).

DNA extraction and PCR
DNA was extracted from approximately 0.25 g soil
using a PowerSoil DNA Isolation Kit (MoBio Labora-
tories, Carlsbad, CA, USA), in accordance with the
manufacturer’s instructions. DNA concentration and
quality were measured by a Nanodrop ND-1000
(Thermo Scientific, Wilmington, DE, USA). Thermal
cycling and data analysis were carried out with a
Real-time PCR Detection System (Roche480, Roche,
Indianapolis, IN, USA) to assess the abundance of
anammox hzsA gene with the primers of
hzsA_1594F and hzsA_1857R (Kartal et al., 2011;
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Harhangi et al., 2012). The reaction mixture con-
sisted of 4 μl DNA as template, 0.6 μl of each primer,
10 μl of SYBR 2 Premix Ex Taq, 1.0 μl BSA (20
mgml− 1) and 3.8 μl of dd H2O. Thermal cycling
conditions were as follows: 3min at 95 °C, followed
by 45 cycles of 10 s at 95 °C, 10 s at 63 °C, 10 s at
72 °C, and 10 s at 82 °C. Three independent quanti-
tative PCR assays were performed for each sample.
Negative controls without DNA template were
included in each amplification reaction. Standard
curves were obtained using 10-fold dilutions of
standard plasmid containing hzsA gene, which were
amplified with the primers mentioned above. Every
sample was quantified in three parallel quantitative
PCR reactions to ensure the correct amplification.
Only the reactions with efficiencies between 90%
and 110% were accepted.

A nested PCR approach was conducted to detect
the anammox bacterial 16S rRNA genes. The initial
amplification was fulfilled using the PLA46f-630r
primer combination with a thermal profile of 96 °C for
10min, followed by 35 cycles of 60 s at 96 °C, 1min at
56 °C, and 1min at 72 °C (Juretschko et al., 1998; Neef
et al., 1998). Afterward, a 500 times diluted PCR
product was used as template for the second
amplification with Amx368f - Amx820r primers using
a thermal profile of 96 °C for 10min, followed by 25
cycles of 30 s at 96 °C, 1min at 58 °C, and 1min at 72 °C.
The PCR mixture and thermal cycling programs were
conducted as described by Hefting et al. (2006). The
amplified products were examined by electrophor-
esis using a 1.0% agarose gel.

Cloning and sequencing
The PCR amplified anammox bacterial 16S rRNA
gene fragments were cloned using the pMD19-T
vector cloning kit (TaKaRa, Bio Inc., Shiga, Japan)
according to the manufacturer’s instructions. Plasmid
DNA was isolated with the GeneJET Plasmid Mini-
prep Kit (Fermentas, Lithuania). At least 30 positive
clones from each sample were randomly selected for
sequencing (Invitrogen, Shanghai, China). The quality
of the recovered sequences was checked using the
Chromas Lite (version 2.01, Technelysium Pty, QLD,
Australia) program. The occurrence of chimeric
sequences was further examined using UCHIME
(31). The Phylogenetic analysis of the 16S rRNA gene
was performed with the MEGA 6.0 software (http://
www.megasoftware.net) by maximum likelihood
method. A bootstrap analysis with 1000 replicates
was applied to estimate the confidence values of the
tree nodes. The sequences obtained in this study for

anammox bacteria are available from Genbank under
accession numbers KJ523975–KJ524101.

Statistical analysis
Results were given on a soil dry weight basis (oven
dry, 24 h, 105 °C). Data were expressed as the mean
of replicates ± s.e. except where otherwise noted.
One-way analysis of variance (Duncan, Po0.05) and
Student’s t-test (Po0.05) were used to determine
differences between groups. All analyses were
assessed by SPSS for Windows version 14.0 software
(SPSS Inc., Chicago, IL, USA).

Results

Soil properties and inorganic N pools after planting
Paddy soil was selected for this study with high
ammonia concentration, which was also used in
many anammox bioreactor studies to stimulate
anammox bacteria (Strous et al., 1998; Sliekers
et al., 2002; Kartal et al., 2008). The chemical
characteristics of the soil are shown in Table 1.
Because of long-term application of chemical fertili-
zers, the content of paddy soil organic matter, Cmic, N
compounds (total N, Nmic) and available P and K were
high. The pools of NH4

+ and NOx
− from planted soils

are shown in Figure 1a. Overall, the NH4
+ concentra-

tions were almost 1–2 orders of magnitude higher
than those of NOx

−. The NH4
+ concentrations in the

bulk soil were significantly higher than in the rhizo-
sphere. In the rhizosphere, the NO3

− concentrations
were significantly higher than in the bulk soil. The
NO2

− concentration in the non-rhizosphere soil ranged
from 1.7mg kg−1 to 2.8mg kg−1 but was undetected in
the rhizosphere soil. The NH4

+ and NO3
− concentra-

tions in the rhizosphere did not change significantly
between fertilized and non-fertilized soil.

Detection of anammox bacterial cells
For the analysis of anammox bacterial cells in
flooded rice soils, CARD-FISH analysis was used,
which allowed for the localization of native micro-
bial cells in the rhizosphere and bulk soils in situ.
Probe Amx820 hybridized with their 16S rRNA was
constructed to specifically detect anammox organ-
isms, including ‘Ca. Brocadia’ or ‘Ca. Kuenenia’. The
acquisition of CARD-FISH signals and autofluores-
cence were performed by laser scanning confocal
microscopy for an improved visualization of micro-
bial cells. Images showing discrete fluorescent
signals of high intensity were observed, which

Table 1 Characteristics of the paddy soil used in this study

pH 1:2.5 SOM, g kg− 1 Total N, g kg− 1 Cmir, mg kg−1 Nmic, mg kg−1 Available P, mg kg−1 Available K, mg kg− 1 Clay content %

5.9±0.1 41.7± 2.3 2.3 ± 0.2 1092.6± 21.4 128.2± 3.2 9.5 ± 0.8 62.8 ± 5.6 13.2

Abbreviations: Cmic, microbial biomass carbon; Nmic, microbial biomass nitrogen; SOM, soil organic matter. Parent material: quaternary red clay.
Mean± s.d. (n=3).
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represented individual microbial cells in the soils
(Figure 2). Anammox bacteria, including genera
affiliated with ‘Candidatus Brocadia’ and/or ‘Candi-
datus Kuenenia,’were detected in samples from both
the oxic and anoxic zones and verified by CARD-
FISH and sequencing of their 16S rRNA genes.

Anammox and denitrification rate and contribution to
N2 production
To determine anammox rate and the potential role of
anammox as a N2 producer, incubations were
performed with rhizosphere soil and bulk soil under

in situ temperature using a 15N isotope-tracing
technique. The results showed that, in the soil
samples amended with 15NH4

+, no significant accu-
mulation of 15N2-labeled gas could be detected in the
rhizosphere or bulk soils (Supplementary Figure
S3A), indicating that all ambient 14NOx

− was con-
sumed during preincubation. When both 15NH4

+ and
14NO3

− were added, 29N2 was accumulated but not
30N2 (Supplementary Figure S3B). Significant rates of
both anammox and denitrification were observed in
the incubations amended with 15NO3

− only
(Supplementary Figure S3C). It is possible that
potential rates may overestimate the actual in situ
activity because NH4

+ and NO3
− availability may limit

the process in situ. However, the in situ concentra-
tion of NH4

+ and NO3
− were quite high (32.0–224.3

mg kg−1 and 4.6–10.1mg kg− 1, respectively). Our
samples were incubated with NH4

+ or NO3
− to a final

concentration corresponding to a maximum of
o10% of the in situ concentration, therefore the
potential rates of anammox and denitrification may
not be seriously overestimated.

Anammox and denitrification rates calculated
using 29N2 and 30N2 production values from the
15NO3

− incubations are shown in Figure 1b. High
potential rates of anammox were observed (0.33–
0.64 nmol N2 g−1 soil h− 1) in the rice rhizosphere for
both treatments, contributing 31% and 41%, respec-
tively, to their total N2 loss. In the non-rhizosphere
zone, however, the rates of denitrification (3.66–
9.42 nmol N2 g− 1 soil h− 1) were much higher than
that of anammox (0.08–0.26 nmol N2 g− 1 soil h−1).
Approximately 2–3% was produced by anammox,
while the remainder was denitrified to N2. Though
differences were observed in denitrification activity
between rhizosphere (0.74–0.92 nmol N2 g−1 h− 1)
and non-rhizosphere (3.66–9.42 nmol N2 g− 1 h− 1),
denitrification was still the main contributor of N2

production in paddy soil (59–69% in rhizosphere
and 97–98% in non-rhizosphere). The isotope
tracing technique revealed that the ratio of contribu-
tion to N2 production by anammox in rhizosphere
(31–41%) was mostly 15 times higher than that in
non-rhizosphere (2–3%), suggesting high variability
in N loss between the two zones in the paddy soil.

Abundance of anammox bacteria
To obtain more detailed information on the ana-
mmox bacteria, the primer pair of hzsA_1594F and
hzsA_1857R was applied for the quantification of
anammox bacterial hzsA gene abundance in the soil
using quantitative PCR assay (Harhangi et al., 2012;
Wang et al., 2012b). The hzsA gene abundance was
up to 0.75–1.4 × 107 copies g− 1 dry soil in the rhizo-
sphere, whereas the number of anammox bacterial
genes decreased to 3.7–5.9 × 106 copies g−1 dry soil in
the non-rhizosphere (Figure 1c). The quantitative
PCR assays on 16S rRNA gene was also performed
and showed the proportion of anammox cell num-
bers to total bacteria were maintained at a high level

Figure 1 The concentration of NO3
−, NO2

− and NH4
+ (a), anammox,

denitrification activity and their contributions to total N2 produc-
tion (b) and abundance of anammox bacteria targeting the hzsA
gene and total bacteria targeting the 16S rRNA gene (c) both in the
rhizosphere and non-rhizosphere soils. The soil samples evaluated
were (1) rhizosphere in control (RC); (2) non-rhizosphere in
control (NC); (3) rhizosphere in N fertilization (RN); and (4) non-
rhizosphere in N fertilization (NN). n=3, Duncan test or t-test at
Po0.05 level, letters with different labels indicate significant
differences.
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of 4.3–4.9 × 10− 4 in the rhizosphere in comparison to
non-rhizosphere (2.2–2.3 ×10− 4). Anammox bacter-
ial abundance and their proportion to total bacteria
detected in rhizosphere were about twofold higher
than those observed in the adjacent bulk soils.

Community structure of anammox bacteria
To investigate the community structure of anammox
bacteria, the anammox 16S rRNA gene clone
libraries were constructed from four representative
soil samples (RC, NC, RN and NN). A total of 28
operational taxonomic units (OTUs) (97% cutoff)
were obtained from the rhizosphere (11 OTUs from
RC and 9 OTUs from RN) and the non-rhizosphere
(11 OTUs from NC and 8 OTUs from NN) as shown
in Figure 3. Phylogenetic analyses of anammox 16S
rRNA bacterial sequences and related sequences
deposited in GenBank showed 19 OTUs were
assigned to Planctomycetaceae (rhizosphere, 62.1%;
non-rhizosphere, 37.9%). The OTU 3# and OTU 7# in
the non-rhizosphere were most closely affiliated to
‘Candidatus Kuenenia’. The remaining OTUs were
affiliated with ‘Candidatus Brocadia’ (rhizosphere,
13.8%; non-rhizosphere, 86.2%).

Discussion

To the best of our knowledge, this is the first report
of the abundance and activity of anammox bacterial
in rice rhizosphere. Up to 31–41% of rhizospheric
soil N2 production with rates of 0.33–0.64 nmol N2-

g− 1 soil h− 1 was contributed by anammox, whereas
approximately 2–3% of N was produced through
anammox in bulk soils (0.08–0.26 nmol N2 g− 1 soil-
h− 1). These findings improve our understanding of
N cycle in paddy fields.

The observed anammox rates (0.33–0.64 nmol
N2 g−1 h−1) in the rhizosphere were significantly higher
than that in the bulk soils (0.08–0.26 nmolN2 g−1 h−1),

indicating that rhizospheric anammox process might
be an overlooked pathway for N loss from paddy
soils. In the rhizosphere, which is exposed to
oxygen, both partial denitrification and nitrification
may produce nitrite for anammox bacteria, which
have been reported in many environments, includ-
ing marine (Kuypers et al., 2005; Lam et al., 2007),
freshwater (Zhu et al., 2010, 2011a; Wang et al.,
2012a) and soil (Zhu et al., 2011b). In oxygen-limited
bulk soil, where nitrification is inhibited, denitrifica-
tion may provide anammox with nitrite. Higher
anammox rates were also detected in the surface
layer of other paddy soils (Zhu et al., 2011b; Sato
et al., 2012). The rhizosphere and surface layer of
standing water are typical oxic–anoxic interfaces in
wetland ecosystems; therefore, we propose that the
redox gradient in the rhizosphere is a hotspot for
anammox activity. In waterlogged ecosystems, oxy-
gen exposure and NOx

− production could be the key
factors in determining anammox activity.

In the present study, great variation in denitrifi-
cation rate was observed between rhizosphere
(0.74–0.92 nmol g− 1 soil h − 1) and bulk soils (3.66–
9.42 nmol N2 g − 1 soil h − 1) (Figure 1b). As high
concentrations of nitrate were detected in both
zones, the possible reason for these changes may be
the presence of oxygen, which was transported
through the roots (Armstrong, 1971; Brune et al.,
2000). It is known that denitrification activity
declines sharply in the presence of oxygen
(Firestone et al., 1979; Firestone and Tiedje.,
1979). Hence, we propose that due to oxygen
exposure denitrification activity in the rhizosphere
declined significantly in comparison to the
adjacent anoxic bulk soil. Although there are
differences in denitrification rates between the
rhizosphere and bulk soils, our results indicate
that denitrification is still the main pathway for N
loss in paddy soil (59–69% in the rhizosphere and
97–98% in the non-rhizosphere).

Figure 2 In situ mapping of anammox bacteria from rhizosphere and bulk soils by confocal laser scanning confocal microscopy.
Anammox bacteria stained by CARD-FISH probe Amx820 specific for genera ‘Candidatus Brocadia’ and ‘Candidatus Kuenenia’ (left) and
combination of DAPI-stained cells and cells stained with probes specific for anammox bacteria (right) are shown. NC, non-rhizosphere in
control; NN, non-rhizosphere in N fertilization; RC, rhizosphere in control; RN, rhizosphere in N fertilization.
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Figure 3 Phylogenetic tree of deduced anammox 16S rRNA gene sequences. Branches corresponding to partitions reproduced ino50%
bootstrap replicates were collapsed.

Figure 4 Schematic representation of the N loss from paddy soil. The classical processes of nitrification (blue), denitrification (green) and
recently discovered anammox (red) as well as anaerobic oxidation of ammonium coupled to Fe-reduction (magenta) are shown both in
oxidized rhizosphere and reduced bulk soil.
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In addition to their high activity, high cell
numbers of anammox bacteria (0.75–1.4 × 107 copies
g−1 soil) in the rhizosphere in comparison to non-
rhizosphere were also observed and were higher
than those reported in other agricultural soils (Zhu
et al., 2011b; Humbert et al., 2012; Shen et al., 2013).
To the best of our knowledge, this is the highest
anammox abundance recorded in agricultural soils.
In the rhizosphere, the abundance was over twofold
higher compared with the non-rhizosphere zone.
The reason for the drastic increase in abundance was
probably related to NOx

− in the rhizosphere, which
was in agreement with other studies (Hamersley
et al., 2007; Shen et al., 2013; Zhu et al., 2013).
Another possible reason may be attributed to the
high background value of NH4

+ (32.0–224.3mg kg− 1)
in comparison to NO3

− (4.6–10.1mg kg− 1). In the pot
experiment, no differences in rhizospheric NH4

+

concentrations were observed between fertilized
and non-fertilized treatments, which was in agree-
ment with literature reporting that 10 units of
anammox reaction needed 10 units of ammonia
and nitrate, respectively (Jetten et al., 1998; Zhu
et al., 2013). This suggests that the rhizosphere
provides a more favorable habitat for anammox
bacteria.

In the present study, the anammox communities
were closely related to two genera ‘Candidatus
Brocadia’ and ‘Candidatus Kuenenia’, which
have been observed to be dominant anammox
community in soils and sediments (Fan et al.,
2010; Humbert et al., 2010; Zhu et al., 2011a;
2011b; 2013; Shen et al., 2013). Moreover, results
using a 16S rRNA-targeted oligonucleotide probe
specific for these two genera demonstrated the
actual presence of anammox bacteria (Figure 2)
in rhizosphere and bulk soils. The Amx820
oligonucleotide probe was one of the most widely
used probes for the CARD-FISH analysis (Schmid
et al., 2005; Li and Gu, 2011). It was the first time
that CARD-FISH was applied to detect anammox
bacterial cells in flooded rice soils.

It should also be noted that the rhizosphere is an
operational definition, which is dependent on
experimental setup. In this study, we separated bulk
soil from rhizosphere using a nylon bag, which was
commonly adopted in other rhizosphere studies
(Steen, 1984; Steen and Atkinson, 1991; Liu et al.,
2006; Jia et al., 2013; Huang et al., 2014). None-
theless, in reality the micro-environment around
rhizosphere is a continual redox gradient that
extends from the root surface to the bulk soil. This
redox gradient is common for most wetland plants
(Caffrey and Kemp, 1991; Pedersen et al., 1998; Lee
and Dunton, 2000), therefore the findings from this
study are important for both natural and constructed
wetland ecosystems. This rhizosphere-driven ana-
mmox process was largely overlooked thus far.
Taken together, we propose a conceptual model of
N loss from paddy soil via different pathways along
the redox gradient in paddy soils (Figure 4).
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