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Microbial ecology has witnessed tremendous
progress over the last decade empowered by meta-
omics approaches and innovations in DNA/RNA
sequencing as well as high-resolution mass spectro-
metry. In this climate, the rise of meta-omics projects
(Raes, 2011) such as MetaHIT and the Human
Microbiome Project, Tara Oceans, the Global Ocean
Sampling Expedition and the Earth Microbiome
Project aiming at unraveling the structure and
function of specific microbiomes in different habitats
was observed. Now that massive data generation is
no longer science fiction, the bottleneck shifts to
computational analysis (Falony et al., 2015).

On the bioinformatics front, important efforts have
already gone into the ‘upstream’ part of the analysis.
Traditional sequence mapping, assembly, binning
and clustering approaches have been scaled up
for the handling of hundreds of gigabytes of sequen-
cing data (Kim et al., 2013), and the generation of
biome-wide gene catalogs greatly facilitates the
analysis. Also, machine learning techniques have
been successfully applied on several occasions to
predict disease biomarkers from meta-omics data
(for example, Williams et al. (2009) and Zeller et al.
(2014)). However, for metabolic pathway-based
functional analysis, researchers usually still rely on
‘classic’ approaches developed for single genomes.
To identify and quantify the biochemical functions
and pathways that make up the metabolic wiring of
an ecosystem and assess functional shifts upon
perturbation, associations between environment,
metabolism and species–function relationships,
current studies usually rely on broad metabolic
databases (for example, KEGG (Kanehisa et al.,
2014)). Despite their unquestionable merit, such
resources unfortunately tend to be biased, for
historical reasons, toward Eukaryotes and model
organisms’ metabolism. These databases thus often
include pathways and pathway variants that do not
exist in many ecosystems under research, or lack
part of its enzymatic routes, which can be misleading
when drawing conclusions and penalizing for
statistical significance in large-scale studies. As a
case in point, no specific pathway module for the
production of butyrate can be found in the KEGG
encyclopedia, despite its significant clinical impor-
tance for the gut ecosystem. Thus, using ‘universal’

databases often results in suboptimal functional
assignment and fewer or false-positive outcomes.

Recently, novel approaches are being pursued to
improve the sensitivity and specificity of functional
interpretation of meta-omics data using biome-specific
approaches. For instance, Le Chatelier et al. (2013)
investigated specific metabolic shifts in the gut
metagenome of obese individuals based upon inspec-
tion of 51 manually compiled gut-specific pathway
modules and Sunagawa et al. (2015) studied ocean
biochemical processes using a targeted set of markers
for essential ocean biogeochemical processes. Like-
wise, Prestat et al. (2014) used manually curated
HMM profiles targeted for soil biochemical pathways
to improve the accuracy and the rate of functional
annotation of soil metagenomic samples. However,
such biome-specific approaches are more exceptions
rather than the rule.

Here, we illustrate the advantages of using biome-
specific approaches in an example comparative analy-
sis of a human gut metaproteomics data set (10
samples: 4 are healthy individuals and 6 Crohn’s
Disease (CD) patients in remission) from Erickson et al.
(2012) by comparing the outcome of a standard (KEGG-
based) analysis versus GOmixer (Raes Lab, Ghent,
Belgium), a human gut-specific metabolic pathway
analysis tool that we developed for this purpose
(available as an online tool and downloadable software
package at: http://www.raeslab.org/gomixer/).

In short, the GOmixer workflow starts by
quantifying human gut metabolic pathway modules
for each sample, by mapping gene abundances on a
database of predefined gut-specific modules.
A module is a set of tightly related enzymatic
functions that represent a cellular process with
defined input and output metabolites. The modules
used in GOmixer’s database were manually
compiled based on extensive literature searches
(Le Chatelier et al., (2013); Vieira-Silva et al.,
unpublished). For a module to be considered present
by GOmixer, its coverage (percentage of metabolic
steps present) should be higher than a user specified
threshold. Module abundance is defined as the
average abundance of the metabolic steps covered
for this pathway. After quantification, statistically
over/under-represented metabolic modules between
two groups of samples, in this case Healthy and CD
patients are determined using the nonparametric
Wilcoxon’s rank-sum test, given that metagenomics
data are generally distribution free and that the
test is robust to outliers. Benjamini–Hochberg’s false
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discovery rate is then used to correct for multiple
testing. The results are displayed on a gut-specific
global metabolic map to easily highlight trends in
functionally related pathways (Figure 1).

Table 1 shows the comparison between both
approaches. The results show that agreement
between universal and gut-specific analyses can
be found on multiple occasions. For instance,
both analyses show differential expression of the
Glycolysis and the Entner–Doudoroff pathways.

However, several modules not relevant to the context
of the human gut were also detected as significantly
different using universal module-based analysis.
For example, the Crassulacean acid metabolism
module (M00169), which is a carbon fixation
pathway in plants and M00344 (formaldehyde
assimilation, xylulose monophosphate pathway),
which is specific to yeast but not to prokaryotes,
are both found to be down-regulated in CD patients.
The reasons for these observations is the existence

Figure 1 GOmixer analysis outcome of Erickson et al. (2012). (a) Global gut metabolic processes map that gives an overview of the major
metabolic processes in the gut. The color scale reflects significantly enriched abundances in Healthy compared to Crohn’s Disease (CD)
subjects. (b) Chord plot highlighting species-function associations. Modules (MF numbers) belonging to the same global metabolic process
share the same color. Association links reflect module over/under-representation in Healthy (blue) or CD (red). In this analysis all
functions are over represented in Healthy. (c) Gut module map consisting of modules connected by their input and output compounds.
They are clustered according to their hierarchical classification (for example, amino-acid degradation) and reflect the flow of compounds
from top to bottom. The color scale reflects significantly enriched abundances in Healthy compared with CD subjects.
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of enzymes found in more than one metabolic
module, causing enzymes of truly present modules
to sometimes yield artifact overrepresentation of
other modules as well (Ye and Doak, 2009). Besides
increasing the false-positive rate, these uninforma-
tive modules inflate the number of statistical
comparisons to be done and thus penalize true
signals when correcting for multiple testing. We
explored whether approaches that aim at reducing
false-positive rate by finding a minimum number of
pathways that can explain all genes observed in a
given metagenome can resolve these issues and
reveal only gut-relevant pathways. For this reason,
we reanalyzed the data using MinPath (Ye and Doak,
2009) and the KEGG database. Although this
clearly improved results, non-relevant pathways
(for example, the Crassulacean acid metabolism
module) were still recovered (Supplementary Table
S1). Moreover, when applying this approach on 1267
(human-filtered) metagenomes (healthy, diabetes
and CD) used for the construction of the Integrated
Gene Catalog (IGC) (meta.genomics.cn/metagene/
meta/home) of the human gut microbiome, several
non-relevant plant (for example, M00085: Fatty
acid biosynthesis, elongation, mitochondria and
M00114: Ascorbate biosynthesis, plants, glucose-
6P=4ascorbate), human (for example, M00042:
Catecholaminebiosynthesis and M00135: GABA bio-
synthesis, eukaryotes, putrescine =4GABA) and
bacterial modules (for example, M00165: Reductive

pentose phosphate cycle (Calvin cycle), M00376:
3-Hydroxypropionate bi-cycle) were recruited
(see Supplementary Table S2 for details). However,
the bigger problem lies not in overpredicting but in
missing relevant modules for the collection of a
complete overview of the metabolic network at hand.
As an example, the GOmixer-based analysis also
uncovered specific gut fermentation modules, which
highlighted significant downregulation of proteolytic
and lipolytic fermentation, polysaccharide degradation,
and the production of short-chain fatty acids in CD
patients. These metabolic processes are essential for the
functioning of the human gut microbiota (Gerritsen
et al., 2011) and very relevant for understanding
pathomechanisms; however, no detailed module level
definition is available for them in the KEGG database.

Overall, this case study illustrates that using
universal, generic approaches in microbiome studies
are not without risk, and shows that using biome-
specific databases provides substantial advantages
for ecological and clinical analysis of meta-omics
data sets for specialists and non-specialists alike.
The reason for this is threefold: First, the specific
focus of biome-specific modules allows careful
hypothesis generation and tangible data analysis for
non-specialists. Second, it allows moving beyond
coarse-grained functional assignment to fine-grained
module level assignment, which is crucial to
associate bacterial species to specific metabolic
roles. Third, modules with well-defined input and

Table 1 Comparison between KEGG- and GOmixer-based metaproteomics analysis of Crohn's patients vs controls

KEGG Gut metabolic modules

M00001: Glycolysis (Embden–Meyerhof pathway),
glucose=4pyruvate

MF0080: Glycolysis (preparatory phase)

M00002: Glycolysis, core module involving three-carbon compounds MF0081: Glycolysis (pay-off phase)
M00008: Entner–Doudoroff pathway, glucose-6P=4glyceraldehyde-
3P, pyruvate

MF0089: Entner-Doudoroff pathway I

M00003: Gluconeogenesis, oxaloacetate =4fructose-6P MF0022: isoleucine degradation
M00061: Uronic acid metabolism MF0065: pectin degradation-5-dehydro-4-deoxy-D-

glucuronate degradation
M00166: Reductive pentose phosphate cycle, RuBP, CO2=4
glyceraldehyde-3P

MF0071: D-galacturonate degradation

M00170: C4-dicarboxylic acid cycle, phosphoenolpyruvate carboxykinase
type

MF0085: pyruvate:formate lyase

M00171: C4-dicarboxylic acid cycle, NAD, -malic enzyme type MF0091: beta-D-glucuronide and D-glucuronate degradation
M00173: Reductive citric acid cycle (Arnon–Buchanan cycle) MF0103: nitrate reduction (assimilatory)
M00178: Ribosome, bacteria MF0110: glyoxylate bypass
M00183: RNA polymerase, bacteria MF0113: acetyl-CoA to acetate
M00194: Maltose/maltodextrin transport system MF0114: acetyl-CoA to crotonyl-CoA
M00197: Putative sugar transport system MF0116: butyrate production via transferase
M00214: Methyl-galactoside transport system MF0117: butyrate production via kinase
M00308: Semi-phosphorylative Entner–Doudoroff pathway, gluconate
=4glyceraldehyde-3P, pyruvate

MF0123: propionate production (propanediol pathway)

M00345: Formaldehyde assimilation, ribulose monophosphate pathway
M00357: Methanogenesis, acetate =4methane
M00169: CAM (Crassulacean acid metabolism), light
M00344: Formaldehyde assimilation, xylulose monophosphate
pathway

Modules highlighted in green show common modules to both analyses. Modules highlighted in red are non-gut modules that were recruited by the
KEGG-based analysis only.
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output compounds are also important to integrate
multiple types of omics (for example, integrating
metabolomics data) and to model the ecosystem
responses to perturbation or predict future behavior
in longitudinal studies. This in turn will help
us understand the fundamentals of the microbial
ecology of a wide range of ecosystems, help us design
better diagnostics (both in clinical as environmental
applications), and better targeted therapies/interven-
tions. Finally, at the time where meta-omic data
generation is becoming available to all, but the
analysis and hypothesis generation remains complex,
biome-specific, user-friendly tools such as GOmixer
will contribute to the reduction of this complexity and
help drive omics-based microbial ecology forward.
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