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Pseudomonas fluorescens NZI7 repels grazing by
C. elegans, a natural predator
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The bacteriovorous nematode Caenorhabditis elegans has been used to investigate many aspects
of animal biology, including interactions with pathogenic bacteria. However, studies examining
C. elegans interactions with bacteria isolated from environments in which it is found naturally are
relatively scarce. C. elegans is frequently associated with cultivation of the edible mushroom
Agaricus bisporus, and has been reported to increase the severity of bacterial blotch of mushrooms,
a disease caused by bacteria from the Pseudomonas fluorescens complex. We observed that
pseudomonads isolated from mushroom farms showed differential resistance to nematode
predation. Under nutrient poor conditions, in which most pseudomonads were consumed, the
mushroom pathogenic isolate P. fluorescens NZI7 was able to repel C. elegans without causing
nematode death. A draft genome sequence of NZI7 showed it to be related to the biocontrol strain
P. protegens Pf-5. To identify the genetic basis of nematode repellence in NZI7, we developed a
grid-based screen for mutants that lacked the ability to repel C. elegans. The mutants isolated in this
screen included strains with insertions in the global regulator GacS and in a previously undescribed
GacS-regulated gene cluster, ‘EDB’ (‘edible’). Our results suggest that the product of the EDB
cluster is a poorly diffusible or cell-associated factor that acts together with other features of NZI7 to
provide a novel mechanism to deter nematode grazing. As nematodes interact with NZI7 colonies
before being repelled, the EDB factor may enable NZI7 to come into contact with and be
disseminated by C. elegans without being subject to intensive predation.
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Introduction

Laboratory studies of bacteria–nematode interac-
tions, most notably studies using clinical isolates
of Pseudomonas aeruginosa, have shown that many
environmental and human pathogenic bacteria
possess mechanisms to inhibit bacteriovores such
as Caenorhabditis elegans (Tan et al., 1999,
O’Quinn et al., 2001; Sifri et al., 2005; Powell and
Ausubel, 2008; Troemel et al., 2008; Bjornlund et al.,
2009; Pedersen et al., 2009; Tampakakis et al., 2009;
Zaborin et al., 2009; Irazoqui et al., 2010; Niu et al.,
2010; Rae et al., 2010). Examples of such mechan-
isms include poisoning by cyanide production

(Gallagher and Manoil, 2001), pore formation by
Bacillus thuringiensis Cry toxins (Marroquin et al.,
2000) and biofilm formation across the nematode
pharynx by Yersinia pestis (Darby et al., 2002).
Aversive olfactory responses to bacteria have
also been described (Zhang et al., 2005; Shtonda
and Avery, 2006; Pradel et al., 2007; Ha et al., 2010).
However, studies examining the interaction of
C. elegans with bacteria it encounters in the
environments in which it is commonly found are
relatively scarce (Félix and Braendle, 2010; Freyth
et al., 2010).

The model strain C. elegans strain N2 was
originally isolated from a mushroom farm (Hansen
et al., 1959; Grewal and Richardson, 1991; Chen
et al., 2006). C. elegans has also been isolated from
compost, snails, rotting fruit and wild decaying
mushrooms (Hodgkin and Doniach, 1997; Barriere
and Felix, 2005; Caswell-Chen et al., 2005; Barriere
and Felix, 2007). On mushroom farms C. elegans is
known to colonise the fruiting bodies (sporophores)
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of Agaricus bisporus, where bacteria belonging to
the genus Pseudomonas commonly occur (Grewal
and Richardson, 1991; Grewal, 1991a). Synergistic
interactions between C. elegans and mushroom
pathogenic pseudomonads have been reported to
increase the severity of blotch disease of cultivated
mushrooms (Grewal, 1991a,b). Furthermore, fluor-
escent pseudomonads both antagonistic and bene-
ficial to mushroom growth have been isolated
directly from C. elegans (Grewal, 1991a; Grewal
and Hand, 1992). Thus, in a mushroom farm
environment, C. elegans may be likely to interact
more frequently with pseudomonads than with
bacteria that are commonly used as food sources in
laboratory studies, such as Escherichia coli
(Zarkower et al., 1984; Atkey et al., 1992; Grewal
and Hand, 1992; Tsukamoto et al., 2002; Viji et al.,
2003; Curran et al., 2005). We have found that many
pseudomonads isolated from mushrooms possess
mechanisms for inhibiting nematode growth or
deterring nematode feeding. Our investigation of
the mushroom pathogenic pseudomonad Pseudo-
monas fluorescens NZI7, described here, has uncov-
ered a novel and highly effective mechanism that
deters nematode feeding, even in nutrient limited
conditions where production of nematicidal factors
is insufficient to confer protection.

Materials and methods

Bacteria and nematode cultivation
Pseudomonas and E. coli strains were cultured on
Luria–Bertani medium (Sambrook and Russell,
2001) at 28C and 37 1C, respectively, for 24 h before
use. Strains used are listed in Supplementary Table
S1. Wild-type C. elegans Bristol N2 and Caenorhab-
ditis briggsae nematodes were maintained at either
15, 20 or 22 1C on nematode growth medium (NGM)
(Brenner, 1974) inoculated with E. coli OP50 and
synchronous cultures were produced according to
the protocols available on NematodeBook (Girard
et al., 2007). Antibiotics were used at the following
concentrations: kanamycin 50 mgml�1, tetracycline
20 mgml� 1, chloramphenicol 25 mgml�1. Nematode
rapid killing assays were performed on brain heart
infusion (BHI) agar (Oxoid, Hampshire, UK).

Quantitative nematode feeding and choice assays
Quantitative nematode feeding and choice assays
were performed by washing overnight bacterial
cultures twice in dH2O and resuspending bacteria
at an OD600 of 0.1. Fifty microlitres of this suspen-
sion were spotted onto the centre of a 45-mm
diameter NGM plate and incubated for 24h at
28 1C. Ten synchronous L2/L3 nematodes were
transferred to each plate and plates were incubated
at 20 1C. Lawns were photographed daily and the
area occupied by the lawn determined using
the magnetic lasso function in Adobe Photoshop

(Adobe Systems Incorporated, San Jose, CA, USA).
Mixed bacterial populations were tested similarly,
except that overnight cultures were mixed in
different ratios before aliquoting onto NGM.

Choice assays were set up by spotting 25 ml of an
overnight culture of the strains to be tested
equidistant from a central point on an NGM plate
and incubating the plates for 2 days at 28 1C.
Nematode preference was assessed by placing B20
L3/L4 nematodes into the centre of each plate and
scoring for presence of nematodes and the extent to
which each colony was consumed over 3 days at
22 1C. Chemotaxis assays were performed similarly
except larger numbers of nematodes were used per
plate (B200) and the number of nematodes at the
bacterial colonies counted 6h after transfer. The
chemotaxis index was calculated as (number on spot
2—number on spot 1)/total number of nematodes at
both spots.

Biochemical complementation of edible mutants
was tested by supplementing NGM plates with 1mM

thiamine or 1mM anthranilic acid. Plates streaked
with mutants of interest were incubated for 24 h at
28 1C and then between 15 and 20 L3/L4 nematodes
were transferred to the centre of the lawns. Plates
were incubated at 20 1C and observed daily for
5 days.

Screen for loss of nematode repellence
The construction and phenotypic analysis of an
ordered library of 9696 insertional mutants of
NZI7 using mini-Tn5::gfp::lux is described in
Supplementary Methods. Oligonucleotides used
are listed in Supplementary Table S2. To identify
mutants that showed reduced ability to repel
nematodes, mutants were replicated using a
48-point colony replicator onto NGM plates. Two
colonies of E. coli OP50 were inoculated at opposite
sides of the mutant grid to serve as a food source
while nematodes explored the plate. Plates were
incubated for 2 days at 28 1C to allow colonies to
grow. After incubation, B20 L4/adult nematodes
were placed adjacent to the E. coli colonies. Plates
were incubated for 3 days at 20 1C and observed
daily. The mutant library was screened twice using
this protocol. Mutants identified in the initial screen
were validated in two replicate ‘dummy grids’, in
which 46 of the positions contained wild-type NZI7,
and as individual lawns. Individual edibility assays
were performed by streaking the test strain across an
NGM or BHI plate, allowing the strain to grow
for 24h and then placing B20 synchronous L2/L3
nematodes in the centre of the bacterial lawn.

Results

P. fluorescens NZI7 repels feeding by C. elegans
We tested a collection of 60 Pseudomonas isolates,
including 32 strains isolated from mushroom farms,
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to determine whether they showed differential
interactions with C. elegans. Considerable hetero-
geneity in nematode–bacteria interactions was
observed; some strains showed high resistance to
nematode grazing, while others supported higher
rates of nematode growth and reproduction than
E. coli OP50, which is commonly used as a food
source for C. elegans (Table 1). One strain, the
mushroom pathogen P. fluorescens NZI7 (Godfrey
et al., 2001b; henceforth referred to as NZI7), was of
particular interest, as it exhibited a distinctive and
highly effective mechanism for repelling C. elegans
without killing when grown on NGM. The same
phenomenon was observed with the related species
C. briggsae (data not shown). Nematodes initially
explored NZI7 lawns but became averse to further
interaction, preferentially occupying bacteria-free
parts of the agar surface and showing a severe
impairment in growth. When the assay was repeated
using nutrient rich BHI media, nematodes died after
a few hours exposure to NZI7. We quantitatively
analysed nematode feeding by monitoring the area
of the bacterial lawn and nematode size. Both NZI7
and the biocontrol strain P. protegens Pf-5 (formerly
P. fluorescens Pf-5 (Ramette et al., 2011), and
henceforth referred to as Pf-5), were highly resistant
to nematode grazing (Figure 1). Pf-5 produces an
arsenal of molecules with anti-eukaryote activity
that could target C. elegans (Loper and Gross, 2007),
and caused nematode death on both BHI and NGM.

Chemotaxis mutants of C. elegans are able to feed on
NZI7 without exhibiting deleterious effects
In binary choice assays in which nematodes were
able to choose between colonies of E. coli OP50 or
NZI7, wild-type nematodes were strongly repelled
by NZI7 (chemotaxis index � 0.91±0.09, N¼ 6). In
contrast, C. elegans chemotaxis mutants tax-2 and
tax-4 (reviewed by Bargmann (2006)) showed sub-
stantially reduced repulsion (chemotaxis indices
� 0.38±0.18, N¼ 5 and � 0.44±0.15, N¼ 7, respec-
tively). Complete loss of repulsion would result in a
chemotaxis index of 0, so the residual repulsion
suggests that avoidance of NZI7 has both chemotac-
tic and non-chemotactic elements. Recent work by

Table 1 Growth and behaviour of Caenorhabditis elegans on
lawns of pseudomonads cultivated on nematode growth medium
(NGM)

Strain Ranka Observations (0–72h)

P. fl NZ047b 1þ Egg laying at o44h
P. fl WCS365 1þ Egg laying at o44h
P. fl NZ062 1þ Egg laying at o44h
P. fl NZ113 1þ Egg laying at o44h
P. to NCPPB 2192 1þ Egg laying at o44h
P. fl NZ009 1þ Egg laying at o44h, long
P. fl NZ43 1þ Egg laying at o44h
P. fl NZ092 1 Egg laying within 46h
P. sy DC3000 1 Egg laying within 46h
P. ae NZ017 1 Egg laying within 46h
P.sy B728a 1 Egg laying within 46h
P. sy 1448A 1 Egg laying within 46h
P. vi PC006 1 Egg laying within 48h
P. en L48 2 Egg laying within 48h, similar to OP50
P. fl NZ065 2 Egg laying within 48h
P. sy PN2 2 Egg laying within 48h
P. sy 870A 2 Egg laying within 48h
P. fl NZ102 2 Egg laying within 48h
P. fl NZ043 2 Egg laying within 48h
P. fl NZ096c 2 Egg laying within 48h
P. fl NZ060 2 Egg laying within 48h
P. gi NCPPB3146 2 Egg laying within 48h
P. fl WH6 2 Egg laying within 48h
P. fl SBW25 2 Egg laying within 48h
P. fl NZ024 2 Egg laying within 48h
P. fl NZ014 2 Egg laying within 48h
P. fl NZ104c 2 Egg laying within 48h
P. fl EJP115c 3 Some growth delay
P. re NCPPB 387 3 Some growth delay, no eggs after 48h
P. fl WCS417 3 Variable sizes, few eggs, fertility

inhibited
P. fl OE28.3 3 Many adults after 48h
P. fl NZ112c 3 Some eggs at 48 h, many adults, sluggish
P. sy B301D 3 Egg laying within 48h, loopy
P. fl NZ006 3 Egg laying within 50h
P. fl NZ103c 3 Egg laying within 50h
P. fl NZ031 3 Egg laying within 50h, thin,

uncoordinated
P. fl NZ011c 3 Egg laying within 50h, thin
P. fl NZ007 3 Egg laying within 50h, thin
P. fl BBc6R8 3 Some growth delay, lawn well grazedd

P. fl EJP116c 4 Some growth delay, small adults
P. fl NZ039c 4 Variable sizes, thin, a few eggs
P. fl Pf0-1 4 Variable sizes, a few eggs
P. fl NZ111 4 Variable sizes, a few eggs
P. pu WCS358r 4 Egg hatch inhibited, egg laying inhibited
P. pu UWC1 4 Growth moderately inhibited, some

adults present
P. sy 61 4 Growth moderately inhibited, thin
P. fl NZ052 5 Growth moderately inhibited, lawn

ungrazed
P. fl WCS374r 5 Growth moderately inhibited, low ferti-

lity, lawn ungrazed
P. to PMS117S 5 Growth moderately inhibited, very few

adults, lawn ungrazed
P. ae PA14 5 Growth moderately inhibited
P. fl NZ124 6 Growth moderately strongly inhibited,

small nematodes, no eggs
P. fl NZ059 6 Growth strongly inhibited
P. fl F113 6 Growth strongly inhibited
P. ae PA01 6 Growth strongly inhibited
P. fl NZI7c 7 Growth strongly inhibited, lawn

ungrazed
P. ch PCL1391c 7 Growth strongly inhibited, lawn

ungrazed
P. fl NZ101c 8 Dead within hours, tracks visible
P. pr Pf-5c 8 Dead within hours, few tracks
P. fl NZ097c 8 Dead
P. ma CTA23 8 Dead

Rank Phenotype
1þ Eggs produced within 48h, lawn grazed quicker than OP50
1 Eggs layed by 48h, lawn grazing similar to OP50
2 Some eggs laid by 48h, development slower than on OP50
3 Longer delay in development, eggs produced between 48 and 72h
4 Significant delay in development, few eggs after 72h
5 Moderate inhibition of growth, lawn largely ungrazed
6 Nematodes strongly inhibited, few mostly small nematodes, few or

no eggs

Table 1 (Continued )

Rank Phenotype
7 Nematodes strongly inhibited, lawn ungrazed, no egg production
8 Nematodes dead within h

Abbreviations: P. ae, Pseudomonas aeruginosa; P. en, Pseudomonas
entomophila; P. fl, Pseudomonas fluorescens; P. gi, Pseudomonas
gingeri; P. pr, Pseudomonas protegens; P. re, Pseudomonas reactans;
P. sy, Pseudomonas syringae; P. to, Pseudomonas tolaasii; P. vi,
Pseudomonas viridiflava.
aThe rank of each strain was assigned according to the key below.
bBold font indicates that a strain was isolated from a mushroom farm.
cIndicates that the strain was observed to cause rapid killing on brain
heart infusion (BHI) agar.
dGrazed/ungrazed refers to the extent to which the bacterial lawn was
visibly depleted over time through nematode predation.
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Chang et al. (2011) has demonstrated that pathogen
avoidance by C. elegans can be affected by the
lateral outer labial mechanosensory head neurons.
tax mutants feeding on NZI7 grew well and showed
no evidence of deleterious effects or pharyngeal
dysfunction, allowing us to conclude that NZI7 is
not intrinsically pathogenic to C. elegans and that
the failure of wild-type nematodes to feed on it was
due only to aversion and did not involve additional
physical effects such as the pharyngeal blockage
observed for C. elegans feeding on Y. pestis (Darby
et al., 2002). The resistance of NZI7 to nematodes
was stable with no evidence of either nematode
lethality or later nematode acclimation.

The P. fluorescens NZI7 genome is similar to that of the
biocontrol strain P. protegens Pf-5
NZI7 causes brown blotch disease on mushrooms,
which was attributed to production of a lipodepsi-
peptide similar to tolaasin (Godfrey et al., 2001a).
However, although NZI7 produces a diffusible mole-
cule that behaves like tolaasin in the white line
bioassay it is more closely related to Pf-5 than to the
tolaasin-producing type strain P. tolaasii NCPPB 2192
(Supplementary Figure S1). To identify candidate
genes involved in NZI7–nematode interactions we
generated a draft NZI7 genome (see Supplementary
Methods). De novo assembly of 165948 reads (B8�
coverage) generated 1034 contigs with a sum of
contig lengths of 6814598 nt. The genome of NZI7
showed a high degree of similarity to that of Pf-5,
consistent with their close phylogenetic relationship
(Supplementary Figure S2).

To identify regions of nucleotide sequence simi-
larity between Pf-5 and NZI7, we used BLASTN
searches with an e-value threshold of 10� 6 between
the Pf-5 genome (Paulsen et al., 2005) and NZI7
genome sequence data (both the de novo assembly
and the raw sequence reads). The genome of Pf-5
contained 972 predicted genes that showed no
detectable nucleotide sequence similarity with
NZI7 (Supplementary Table S3) including genes
involved in the production of rhizoxin, the Mcf/Fit
toxin, pyoluteorin, orfamide and pyrrolnitrin, allow-
ing us to discount these as being responsible for the
repellence and lethality of NZI7 to nematodes when
grown on NGM and BHI, respectively. The NZI7
genome does contain genes predicted to be involved
in synthesis of cyanide, 2,4-diacetylphloroglucinol
and the extracellular protease AprA, all of which
have been implicated in inhibition of C. elegans, or
of plant parasitic nematodes such as Meloidogyne
incognita (Gallagher and Manoil, 2001; Siddiqui
et al., 2005; Meyer et al., 2009; Neidig et al., 2011).
However, one recent study has shown that purified
2,4-diacetylphloroglucinol promotes egg hatch in C.
elegans J1, and has no effect on the viability of
juvenile or adult nematodes (Meyer et al., 2009).

The majority of the 602 genes detected in NZI7
and not Pf-5 (Supplementary Table S4) are not
obviously associated with nematode repellence or
toxicity. However, the NZI7 genome is predicted
to encode a number of cell surface-associated
genes that are not present in Pf-5, including genes
associated with exopolysaccharide synthesis, type
IV pilus and fimbrial assembly and type II, IV, V and
VI secretion. Cell surface structures have been
shown to influence bacterial interactions with
nematodes (for example, Essex-Lopresti et al.,
2005; Maier et al., 2010). Thus, it is possible that
NZI7-specific factors contribute to repellence.

Identification of ‘edible’ mutants of P. fluorescens NZI7
To identify the genetic basis of nematode repellence
in NZI7 we constructed an ordered library of 9696
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Figure 1 P. fluorescens NZI7 exhibits stable resistance to
nematode grazing. (a) The ability of C. elegans to feed on selected
pseudomonads, monitored by measuring the area of the bacterial
lawn, with E. coli OP50 shown for comparison. The area of each
bacterial lawn was calculated relative to its area at t¼ 0. Values
are the mean of six replicates; error bars¼ s.d.m. (b) Comparison
of nematode size when fed on selected pseudomonads. After 48h
eggs and juvenile nematodes were visible on all but NZI7 and
Pf-5 treatments. Statistically significant differences in nematode
size on NZI7 compared with strains other than Pf-5 (99%
confidence, Bonferroni test applied) by one factor ANOVA
(bacterial treatment) were apparent 24h after transfer of nema-
todes to the plates (F¼ 97.51, Po0.01, n¼10). Error bars¼
s.d.m. Eco OP50¼E. coli OP50 (black circles); Pfl SBW25¼P.
fluorescens SBW25 (white circles); Psy DC3000¼P. syringae pv.
tomato DC3000 (black diamonds); Pto NCPPB 2192¼P. tolaasii
NCPPB 2192 (white diamonds); Pfl NZI7¼P. fluorescens NZI7
(black triangles); Ppr Pf-5¼P. protegens Pf-5 (white triangles).
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insertional mutants using a mini-Tn5 transposon
that contains a promoterless gfp::lux reporter car-
tridge (Fones et al., 2010). We developed a grid-
based assay to identify mutants that were unable to
repel C. elegans (Figure 2), which was validated
by confirming that nematodes were able to locate
‘edible’ pseudomonads, such as P. fluorescens
SBW25, placed in random positions in a grid of
wild-type NZI7 colonies (data not shown). The
library was also used to identify mutants with
alterations in other traits that might affect mush-
room pathogenesis or nematode predation: lipase,
chitinase and lecithinase activity, cyanide produc-
tion, haemolysis and production of the tolaasin-like
toxin (TOL) (Supplementary Table S5). Transposon
insertion points were determined by two step semi-
degenerate PCR (Jacobs et al., 2003).

A total of 84 NZI7 transposon mutants (0.87% of
the total, summarised in Table 2) were identified
and validated as ‘edible’. Of these 84 mutants,
45 displayed a wild-type phenotype in screens for
cyanide, exoenzyme and toxin production
(Supplementary Table S5). Sequencing led to the
determination of insertion points for 75 mutants.
Overlay of transposon hits onto corresponding ORF
positions in the draft NZI7 genome, mapped onto
the complete genome of Pf-5, showed that none of
these mutants were unique to NZI7 (Supplementary
Figure S2). However, 11 ‘edible’ mutants that
had wild-type phenotypes in the other screens

performed were associated with a single gene cluster
of unknown function, present in both NZI7 and Pf-5
(Figure 3), which is henceforth referred to as the EDB
(edible) gene cluster. The region of the NZI7 genome
containing the complete EDB cluster (ORFs 1–12) and
flanking ORFs (equivalent to PFL_5539 to PFL_5553
in Pf-5) was sub-cloned into the cosmid pLAFR6
(Huynh et al., 1989) to create pLAF4EDB and
transformed into NZI7 EDB mutants. The presence of
pLAF4EDB restored the ability of EDB cluster mutants
to repel C. elegans, confirming the role of the EDB
cluster in nematode repellence (Figure 4).

Several of the ‘edible’ mutants identified in the
screen were found have insertions in genes pre-
viously shown to be important in P. aeruginosa
pathogenesis towards C. elegans: the global viru-
lence regulator gacS; dsbA, required for correct
folding of periplasmic disulphide-bonded proteins;
the phosphoenolpyruvate-protein phosphotransfer-
ase gene ptsP; purine biosynthesis genes; the
two-component sensor histidine kinase cbrA, and a
haemagglutinin repeat protein with weak similarity
to PA0041 (Tan et al., 1999; Gallagher and Manoil,
2001; Tan, 2002; Yorgey et al., 2001). An edible
mutant containing an insertion close to the 30 end
of algU, and immediately upstream of the algU
regulatory proteins mucA and mucB, was observed
to have a mucoid phenotype, which has been
reported to result in loss of pathogen avoidance in
P. aeruginosa interactions with C. elegans (Reddy
et al., 2011). Edible mutants with insertions in genes
with predicted roles in aromatic amino acid meta-
bolism (anthranilate and chorismate synthase genes)
and thiamine biosynthesis could be chemically
complemented by addition of 1mM anthranilate or
thiamine to the growth medium, respectively
(Supplementary Figure S3).

C. elegans has been shown to avoid Serratia
marcescens Db10 producing the lipodepsipeptide
serrawettin W2 (Pradel et al., 2007). However, NZI7
mutants disrupted in the biosynthesis of TOL
retained the ability to repel C. elegans. TOL mutants
were, however, unable to cause disease symptoms
on mushroom sporophore tissue (Supplementary
Figure S4), confirming the importance of this toxin
for mushroom pathogenesis. In contrast, mutation of
the EDB cluster did not alter disease symptoms on
mushroom tissue.

Delineation and bioinformatic analysis of the EDB gene
cluster
The EDB gene cluster is highly conserved in both
NZI7 and Pf-5 (Figure 3, Supplementary Table S6).
EDB-like gene clusters were also detected in the
genomes of several other pseudomonads: P. fluor-
escens WH6 (Kimbrel et al., 2010), Pseudomonas
brassicacearum NFM421 (Ortet et al., 2011), P.
brassicacearum Q8r1-96 (Loper et al., 2012), and
the insect pathogen Pseudomonas entomophila L48
(Vodovar et al., 2006b). We have also identified

X X

Figure 2 Bioassay for identifying NZI7 mutants that show a
reduced ability to repel C. elegans. NZI7 transposon mutants were
replicated onto NGM plates using a 48-pin replicator. Two
colonies of E. coli OP50 were inoculated at positions marked X
on opposite sides of the mutant grid to serve as a food source
while nematodes explored the plate. Plates were incubated for
2 days to allow bacteria to grow and then 20 L4/adult nematodes
were placed adjacent to the X positions using a wire loop. The
position of an edible mutant that has lost the ability to repel C.
elegans is highlighted and enlarged in the inset. The ‘tracks’ of
uneaten bacteria left by nematodes moving across the plate show
that nematodes come into direct contact with colonies of
nematode resistant bacteria. Photograph taken 3 days after
nematode transfer.
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EDB-like gene clusters in the draft genomes of
other mushroom pathogenic pseudomonads, includ-
ing P. fluorescens NZ007, P. tolaasii NCPPB2192,
P. tolaasii PMS117S and P. gingeri NCPPB3146
(Supplementary Figure S5). The genomic context
of the EDB cluster is not conserved in all of these
strains, but four additional ORFs found downstream

of the NZI7 EDB cluster genes, corresponding
to Pfl_5548-Pfl_5551 in Pf-5, are adjacent to the
EDB-like genes in all but two of these strains
(Supplementary Figure S5). Two of these ORFs,
ORF 10 (Pfl_5549) and ORF 11 (Pfl_5550), display
some similarity to ORF 7 (Pfl_5546) and ORF 8
(Pfl_5547), respectively. We were unable to detect

Table 2 NZI7 transposon mutants that show reduced nematode repellence relative to wild-type bacteria

Mutanta Identity Best hitb Repc

7F10* Thiol:disulphide interchange protein, DsbA family PFL_0085 �
7B2, 7F4 Glutaryl-CoA dehydrogenase PFL_0117 þ
7C10, 17G3* Glutamate-cysteine ligase PFL_0273 �
16A11 Histidinol dehydrogenase PFL_0929 þ
84H8* RNA polymerase sigma factor AlgUd PFL_1449 �
9D1* Intracellular septation protein A PFL_1596 þ
20H10* Cytochrome c-type biogenesis protein CycL PFL_1685 �
17G1 Glyoxylate carboligase PFL_1701 þ
15D2 3-isopropylmalate dehydrogenase PFL_2066 þ
19G12, 95A6* Intergenic: conserved hypothetical protein/pentapeptide repeat

family protein
PFL_2214/2215 � /þ

85A12 Haemaggluttinin repeat protein PFL_2761 þ
32F2, 28H5* Predicted transcription regulator containing HTH domain PFL_2816 �
7A5 NADH-quinone oxidoreductase, G subunit PFL_3902 þ
20E8* OmpA porin-like integral membrane protein PFL_3930 þ
10H11 ATP-dependent Clp protease PFL_3987 þ
55F9 Periplasmic binding protein PFL_4192 þ
25G4 Integration host factor PFWH6_1610e þ
39G12, 91G1, 74A9* Chorismate synthase PFL_4348 þ
93C1 (p)ppGpp synthetase I (GTP pyrophosphokinase) PFL_4446 þ
33D6 Cysteine synthase B PFL_4448 �
35A8, 21A6, 21C6* GacS sensor kinase protein PFL_4451 þ
52C3, 55C2, 52A7* Glycerol-3-phosphate dehydrogenase, FAD-dependent PFL_4870 þ /�
48A1 Acetolactate synthase, large subunit PFL_5255 þ
3A4* Two-component sensor histidine kinase CbrA PFL_5273 �
94B1 3-methyl-2-oxobutanoate hydroxymethyltransferase PFL_5277 þ
50A5 Glutamate 5-kinase PFL_5326 �
23G12* Major facilitator family transporter PFL_5388 �
82A10 FadE8, putative acyl-CoA dehydrogenase PFL_5425 þ
101B8, 79G1, 15G6, 79D6 3-dehydroquinate synthase-SNARE domain proteinf PFL_5540 � /þ
50G3 UbiA prenyltransferase family protein PFL_5541 �
14E12, 99G1 Hypothetical protein (Sugar phosphate isomerase/epimeraseg) PFL_5542 þ
90E9, 98H10 Hypothetical protein (Xylose isomerase-like TIM barrelf) PFL_5544 þ
7A7 Hypothetical protein (Type I phosphodiesterasef) PFL_5545 �
54G10 Hypothetical protein (Chromopyrrolic acid synthase, vioBg) PFL_5547 þ
50C11, 89C9 Anthranilate synthase component I PFL_5629 �
21C10* Bis(50-nucleosyl)-tetraphosphatase PFL_5651 �
95C3* Zn-dependent dipeptidase PFL_5742 �
11G5 Thiazole biosynthesis protein ThiG PFL_5850 �
90D7 Dihydroxy-acid dehydratase PFL_5877 þ
14F7 Phosphoenolpyruvate-protein phosphotransferase PtsP PFL_5899 �
66C3* Dinucleoside polyphosphate hydrolase PFL_5900 þ
77C3, 82A12* Penicillin amidase family protein PFL_5919 �
64H11, 25A7 Phosphoribosylaminoimidazole carboxylase, ATPase subunit PFL_6125 þ /�
31H3, 75C2, 86B12, 93G12, 94D11 Acetyl-CoA carboxylase, biotin carboxylase PFL_6158 þ /�
33H7, 8D5, 37A1, 46H6, Glucose inhibited cell division protein gidA PFL_6226 � /þ
14G6, 83F10, 16G5, 43D3* 6H10* tRNA modification GTPase trmE PFL_6229 þ
53A4* Inner membrane protein, 60 kDa PFL_6230 �

aMutants or sets of mutants marked with * showed non-wild-type phenotypes in other phenotypic screens, as listed in Supplementary Table S5.
Insertions within the EDB cluster are highlighted in bold.
bCorresponding ORF in P. protegens Pf-5.
cOrientation of reporter cartridge in transposon relative to disrupted gene (þ ¼ expressed, � ¼ reverse; � /þ ¼ both expressed and reverse
orientation insertion mutants isolated).
dThis insertion lies close to the end of algU, which is upstream of and in a potential operon with the algU regulatory proteins mucA and mucB.
eThe sequence flanking insertion 25G4 shows similarity to a region of Pf-5 adjacent to PFL_4308 that is annotated as intergenic and to ORFs
annotated as integration host factor in other pseudomonad genomes.
fPfam domain prediction.
gBLASTp hit (e-value o0.001).
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features characteristic of genomic islands associated
with the EDB region. However, a partial transposase-
like sequence is located adjacent to the EDB-like
gene cluster in P. fluorescens WH6.

To test whether these four downstream ORFs were
involved in nematode repellence, we constructed
deletion mutants lacking ORF 1, ORFs 9–12 and
the complete cluster (ORFs 1–12). Mutants lacking
ORF1 or the complete cluster displayed a similar
loss of repellence to the transposon mutants identi-
fied in the initial screen. However, mutants lacking
ORFs 9–12 retained the ability to repel nematode
predation (data not shown). Thus, only ORFs 1–8
are required for nematode repellence.

The majority of the 12 ORFs in the EDB cluster
show only weak sequence similarity to genes with
known or predicted functions (Table 2, Supple-
mentary Table S6). However, the presence of a 3-
dehydroquinate synthase domain in the first ORF, a
UbiA prenyltransferase family domain in the second
ORF, and the similarity of additional ORFs to
enzymes involved in modification of carbohydrate
substrates, suggests that this cluster encodes
enzymes that contribute to the synthesis of a novel
compound. Functional predictions for EDB
cluster proteins, based on structure prediction using
I-TASSER (Roy et al., 2010), also suggest that they
are involved in the synthesis or modification
of a carbohydrate-containing compound (Supple-
mentary Table S6).

Bioinformatic analyses using PSORTdb V2.0
(http://www.psort.org/psortb/ (Rey et al., 2005))
and Phobius (http://phobius.sbc.su.se/ (Käll et al.,
2004)) indicated that the putative 3-dehydroquinate
synthase-like and UbiA prenyltransferase-like

proteins are likely to be membrane associated while
the remaining proteins are predicted to be cytoplas-
mic. The domain architecture of the first ORF is
atypical for 3-dehydroquinate synthase proteins as it
contains a domain similar to the SNARE-associated
(SNARE_assoc) superfamily domain at the N-termi-
nus. This suggests that some of the proteins encoded
in the EDB cluster are associated with the membrane
or cell surface. We speculate that the compound(s)
synthesised by these proteins may also remain
membrane or cell surface associated, which is
consistent with the observation that nematodes can
discriminate between colonies grown in close
proximity in the grid screen.

GacS regulates expression of the EDB gene cluster
gacS mutant lawns showed the greatest reduction in
their ability to repel C. elegans (Figures 4 and 5).
GacS positively regulates the expression of numer-
ous secreted factors (Rahme et al., 1995; Blumer
et al., 1999; Vodovar et al., 2006a; Lapouge et al.,
2008) and as expected, gacS mutants lacked the
ability to produce cyanide, exoenzymes and TOL.
However, transposon mutants of NZI7 that lacked
the ability to produce these individual traits, and a
deletion mutant lacking the 2,4-diacetylphloroglu-
cinol biosynthetic cluster, retained the ability to
repel nematodes (Supplementary Table S5, data not
shown). This suggested that GacS regulates expres-
sion of the EDB cluster along with other unidenti-
fied factors that affect NZI7–nematode interactions.

The promoterless lux reporter cassette in the mini-
Tn5 transposon provides a tool for examining gene
expression when the transposon is oriented to place
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this cassette under the control of an endogenous
promoter. We tested whether GacS regulated the
expression of the EDB cluster by deleting gacS in
two such mutants (79G1 and 54G10), in which the
transposon is inserted into ORF 1 (PFL_5540) and
ORF 8 (PFL_5547), respectively. Luminescence was
strongly reduced in double DgacS/EDB mutants
relative to the EDB reporter mutants (Figure 6a).
We observed a similar reduction in luminescence
when gacS was deleted in the TOL mutant 5E3
(Figure 6b, Supplementary Table S5). Luminescence
in DgacS/EDB reporter mutants could be restored
to wild-type levels by complementation with gacS
(Figure 6d).

RT-PCR experiments indicated that EDB cluster
mRNAwas absent in NZI7 gacS mutants (Figure 6c)
raising the possibility that GacS may regulate

EDB at a transcriptional level rather than at the
post-transcriptional level described for several other
GacS-regulated genes (Whistler et al., 1998; Heeb
et al., 2005; Kay et al., 2005). However, we cannot
exclude the possibility that the lack of EDB mRNA
reflects RNA instability rather than transcriptional
regulation (Lapouge et al., 2008). Interestingly,
global transcriptional analysis of Gac-regulated
genes in Pf-5 did not identify PFL_5540-PFL_5551
as components of its Gac regulon (Hassan et al.,
2010), suggesting that the regulation of this locus
may differ between the two strains.

Environmental regulation of EDB expression
We used the lux reporter fusions within the EDB
cluster to monitor the impact of environmental

NZI7 79G1

NZI7 79G1
(pLAF4EDB)

NZI7 79G1
(pLAFR6)

NZI7

X

NZI7

NZI7 79G1NZI7-79G1
(pLAFR6)

NZI7 79G1
(pLAF4EDB)

0

5 000

10 000

15 000

20 000

25 000

30 000

0 24 48
Time after nematode transfer (hours)

M
ea

n 
ne

m
at

od
e 

ar
ea

 (
pi

xe
ls

) NZI7 

NZI7 79G1 (EDB)
NZI7 21A6 (gacS)

NZI7
EDB

EDB (p
LA

F4E
DB)

EDB (p
LA

FR6)
ga

cS

ga
cS

 (p
M

E32
58

)

ga
cS

 (p
RK41

5)

E. c
oli

 O
P50

R
el

at
iv

e 
la

w
n 

ar
ea

0.00

0.20

0.40

0.60

0.80

1.00

1.20

a a a

b

b

ccc

b

C

a
a

A

B
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conditions on EDB gene expression. EDB expression
was enhanced by mildly acidic pH, rich media,
moderate-high iron availability and an optimal
carbon-nitrogen balance (Supplementary Figure
S6A–D). EDB expression increased in late log and
early stationary phase but was repressed in station-
ary phase by carbon sources such as glucose and
mannose (Supplementary Figure S6E). Expression
was not significantly altered by introduction of the
complementing clone pLAF4EDB into reporter
strains, indicating that it is not autoregulatory
(Supplementary Figure S6F). As EDB mutants
continue to produce TOL, cyanide and exoenzymes
(Supplementary Table S5) the product of the EDB
cluster does not seem to affect the expression of
other GacS-regulated factors.

The product(s) of the EDB gene cluster act with other
factors to deter nematode feeding
The success of the grid screen in identifying edible
mutants suggests that the factor(s) produced by the
EDB locus are not active as a diffusible signal over
distances 45mm, as the phenotype of EDB mutants
would be masked by surrounding colonies if this
were the case. gacS mutants of P. protegens CHA0
have previously been shown to be protected by
wild-type bacteria from C. elegans feeding when
present at low frequency in mixed populations
(Jousset et al., 2009). We observed that nematodes
fed mixtures of NZI7 wild-type and EDB cluster
mutants in different ratios grown on NGM would
clear lawns where the initial ratio of EDB mutant:

wild-type was 5:1 or greater. This suggests that
nematodes make a decision based on an aggregate
assessment or that there is a critical level at which
the putative EDB product acts, below which it
becomes ineffective.

We transformed several palatable P. fluorescens
isolates with the cloned NZI7 EDB gene cluster
(pLAF4EDB) and were able to confirm EDB expres-
sion in most of the transformed strains by RT-PCR
(Supplementary Figure S7). However, none
of the transformed strains showed enhanced resis-
tance to C. elegans, either on NGM or on BHI
medium on which EDB is more strongly expressed
(Supplementary Figure S6B). E. coli transformed
with pLAF4EDB also failed to recapitulate the
repellent phenotype, although EDB expression was
comparatively poor in this background (data not
shown). It thus appears that the region of the NZI7
genome cloned into pLAF4EDB is insufficient to
confer resistance to nematode predation. This
suggests that NZI7 possesses additional genes that
act together with the genes in this region to confer
nematode resistance.

Cyanide is responsible for rapid nematode killing by NZI7
One factor that could act in conjunction with EDB
to repel nematode predation is cyanide, which
has been implicated in nematode repellence in P.
protegens CHA0 (Neidig et al., 2011). NZI7 produces
high levels of cyanide on BHI, causing rapid
nematode killing by lethal paralysis, as previously
reported for P. aeruginosa PAO1 (Gallagher and
Manoil, 2001). However, NZI7 did not produce
detectable levels of cyanide when grown on NGM,
and a non-cyanogenic hcnB mutant was indistin-
guishable from the wild-type in nematode repel-
lence assays. On BHI the hcnB mutant failed to kill
nematodes but was highly repellent. An hcnB/EDB
double mutant showed significantly less repellent
activity than the hcnB mutant on BHI; some
nematodes remained on the bacterial lawn and
surrounding agar and grew to produce eggs within
3 days (Supplementary Figure S8). This confirmed
that EDB contributes to nematode repellent activity
on BHI and that cyanide is the primary nematicidal
toxin produced by NZI7 on BHI. However, NZI7
gacS mutants supported a much larger nematode
population than the hcnB/EDB mutant on BHI,
which supports the hypothesis that additional
gacS-regulated factors contribute to the inhibition
of nematode growth. TOL does not appear to be one
of these factors, as a triple hcnB/EDB/TOL mutant
was indistinguishable from the hcnB/EDB double
mutant on BHI and NGM (data not shown).

Discussion

The results presented in this study show that the
mushroom pathogen P. fluorescens NZI7 is able to
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Figure 5 Nematodes show greater attraction to gacS mutants
than to EDB mutants in chemotaxis assays. Nematode chemotaxis
was assessed by inoculating an NGM plate with the two bacterial
strains to be tested, incubating the plate for 24h, and then
inoculating B200 L3/L4 nematodes into the centre of the plate.
The number of nematodes at each bacterial colony was counted
6h after transfer. The chemotaxis index was calculated as
(number on spot 2—number on spot 1)/total number of nematodes
at both spots. Letters indicate statistical groupings of means for
comparisons to the same reference strain (indicated above).
Statistically significant differences (95% confidence, Bonferroni
test applied) were assessed by One Factor (bacterial treatment)
ANOVA (FOP50¼ 10.01, Po0.01, n¼6; FNZI7¼8.24, Po0.01, n¼6;
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repel grazing by C. elegans, a naturally occurring
bacteriovore in mushroom farms. The ability of
NZI7 to repel C. elegans depends on the activity of a
previously uncharacterised biosynthetic locus, the
EDB cluster. Interestingly, EDB-dependent nema-
tode repellence is effective even in low nutrient
environments, where nematicidal factors such as
cyanide are ineffective at limiting nematode preda-
tion. As the product of the EDB cluster seems
to have no effect on its own expression, or on the
expression of other GacS-regulated genes, it is
logical to hypothesise that the product(s) of this
cluster is sensed directly by C. elegans. However,
heterologous expression of the EDB gene cluster in
several palatable pseudomonads failed to recapitu-
late the phenotype seen in NZI7. Thus, while the
EDB cluster is important for nematode repellence
in NZI7, additional loci are necessary for NZI7 to
effectively deter nematode predation. In our assays

Pf-5 killed C. elegans, which may have masked any
repellent activity present, so we do not yet know
whether these loci are unique to NZI7 or also
present in Pf-5.

The observation that EDB mutants of NZI7 retain
some ability to repel and inhibit nematodes relative
to gacS mutants raises the possibility that the
product of the EDB locus acts additively or syner-
gistically with other factors to reach a threshold at
which C. elegans decides to avoid grazing. We
identified 40 distinct mutations, other than those
within the EDB cluster, which reduced nematode
repellence in NZI7. Although the majority of
these mutations require further validation through
complementation, it seems likely that many of the
disrupted genes also contribute to the nematode
repellent phenotype of this strain. Some may be
involved in the synthesis of precursor molecules
needed for the synthesis of the EDB product,
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while others could be involved in the synthesis
of a second nematode repellent factor. We also
identified an additional class of mutants, exempli-
fied by a mutation affecting the algU/mucA operon,
where the mucoid phenotype of mutant bacteria
may compromise the ability of nematodes to
respond to bacterial signals and of bacteria to
repel nematode predation (Reddy et al., 2011). It
should be noted that mutations affecting the
production of additional nematode repellent factors
may not have been detected in the grid screen if
these factors are highly diffusible or individually
contribute only a small fraction of the total NZI7
repellent activity.

C. elegans has been shown to respond to a wide
range of chemoattractants and repellents (Ward, 1973;
Dusenbery, 1975; Hilliard et al., 2004; Bargmann,
2006) and there is emerging evidence for the percep-
tion of bacterial metabolites by nematodes, notably
quorum sensing molecules and serrawettin W2 (Beale
et al., 2006; Pradel et al., 2007). Thus, the EDB locus
may be involved in the synthesis of a molecule that
identifies NZI7 as a strain to be avoided, even though
the product of the EDB cluster itself is not directly
toxic to nematodes. The ability to preferentially feed
on non-deleterious bacteria would clearly be advan-
tageous to nematodes in the natural environment,
where bacterial populations are heterogeneous
(Rodger et al., 2004; Zhang et al., 2005; Laws et al.,
2006; Shtonda and Avery, 2006).

The grazing resistance of NZI7 is particularly
intriguing when viewed in terms of the mushroom
pathogenic lifestyle of this bacterium. We have
observed that nematodes investigate bacterial colo-
nies and then move away without consuming large
quantities of bacteria rather than completely avoid-
ing them. This physical contact between nematodes
and NZI7 means that bacteria become transiently
associated with the surface of the nematode, and in
our assays NZI7 is clearly transported by the
nematodes, visible as bacterial trails from visited
colonies. The ability of NZI7 to be disseminated by
nematodes, while avoiding nematode predation,
could enhance both the survival and dispersal of
this mushroom pathogen, contributing to the devel-
opment of blotch disease.
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