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Dispersal network structure and infection
mechanism shape diversity in a coevolutionary
bacteria-phage system
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1Biosciences, University of Exeter, Exeter, UK; 2Department of Mathematics, Imperial College London,
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Resource availability, dispersal and infection genetics all have the potential to fundamentally alter
the coevolutionary dynamics of bacteria–bacteriophage interactions. However, it remains unclear
how these factors synergise to shape diversity within bacterial populations. We used a combination
of laboratory experiments and mathematical modeling to test how the structure of a dispersal
network affects host phenotypic diversity in a coevolving bacteria-phage system in communities of
differential resource input. Unidirectional dispersal of bacteria and phage from high to low
resources consistently increased host diversity compared with a no dispersal regime. Bidirectional
dispersal, on the other hand, led to a marked decrease in host diversity. Our mathematical model
predicted these opposing outcomes when we incorporated modified gene-for-gene infection
genetics. To further test how host diversity depended on the genetic underpinnings of the bacteria-
phage interaction, we expanded our mathematical model to include different infection mechanisms.
We found that the direction of dispersal had very little impact on bacterial diversity when the
bacteria-phage interaction was mediated by matching alleles, gene-for-gene or related infection
mechanisms. Our experimental and theoretical results demonstrate that the effects of dispersal on
diversity in coevolving host–parasite systems depend on an intricate interplay of the structure of the
underlying dispersal network and the specifics of the host–parasite interaction.
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Introduction

Microbial diversity is key to many ecosystem
processes (Naeem and Li, 1997; Bell et al., 2005;
Madsen, 2011), and coevolution among microbes
has been suggested as one of the major drivers of
biodiversity (Buckling and Rainey, 2002; Forde
et al., 2008a). Coevolution is an inherently spatial
process that depends not only on the traits of the
interacting species but also on the environment in
which those interactions take place (Thompson,
1999, 2005; Forde et al., 2004; Parchman and
Benkman, 2008; Piculell et al., 2008; Laine, 2009;
Craig and Itami, 2010; King et al., 2011; Lorenzi and
Thompson, 2011).

There are many ways in which the environment
can be spatially structured, but variation in resource

input is likely to be one of the major factors
influencing coevolutionary dynamics (Hochberg
et al., 2000). In particular, experimental studies
using bacteria and bacteriophages have demon-
strated that the rate of coevolution can increase
with increased resources (Forde et al., 2004;
Lopez-Pascua and Buckling, 2008), whereas bacter-
ial diversity peaks at intermediate resource levels
(Forde et al., 2008a).

High dispersal and the cosmopolitan distribution
of bacteria (Brodie et al., 2007; Fahlgren et al., 2010;
Yamaguchi et al., 2012) and phages (Breitbart et al.,
2004; Angly et al., 2006) across a wide range of
environments add additional complexity and the
potential to greatly influence microbial diversity
(Brockhurst et al., 2007; Vogwill et al., 2008, 2009,
2010). If the abiotic environment does not vary in
space, theoretical and experimental studies indicate
that dispersal, or gene flow, homogenizes genetic
variation (Gandon and Michalakis, 2002; Vogwill
et al., 2011). Theory suggests that the same result
holds if the abiotic environment varies in space. In
particular, Hochberg and van Baalen (1998) pre-
dicted that gene flow across spatial gradients in
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productivity can lead to a decrease in overall
diversity summed across the gradient. However,
this theoretical prediction remains experimentally
untested.

In the present study, we evaluated how the
structure of the dispersal network across a spatial
resource gradient affects patterns of bacterial
phenotypic diversity in a coevolutionary system
consisting of the bacteriophage T3 and its bacterial
host Escherichia coli. Bacteriophage T3 uses
lipopolysaccharides (LPS) as receptors for adsorp-
tion to the host cell, and resistance to T3 is
conferred through mutations that truncate LPS
(Tamaki et al., 1971; Lenski, 1988; Qimron et al.,
2006), which can lower bacterial fitness through
pleiotropic effects on outer membrane proteins
(OMPs) involved in the uptake of resources
(Sen and Nikaido, 1991). This bacteria-phage
interaction forms the molecular basis for a coevolu-
tionary system conforming to the terminology of the
‘Kill the Winner’ (KtW) hypothesis (Winter et al.,
2010) in the sense that phenotypes with intact LPS
structure correspond to competition specialists,
whereas truncated LPS structures are a hallmark of
a defense specialist.

Our previous work with E. coli and phage T3
coevolution in experimental microcosms showed
that low resource environments supported more
diverse communities than high resource environ-
ments (Forde et al., 2008a). Both high and low
resource environments contained highly resistant
bacterial phenotypes (defense specialists) and highly
infective generalist phage. However, whereas these
dominated high resource environments leading to
low diversity, low resource environments addition-
ally contained sensitive bacterial phenotypes (com-
petition specialists) and their more specialist phage,
and as such, were more diverse (Forde et al., 2008a).

Here we considered how the above patterns of
bacterial diversity changed when symmetric and
asymmetric movement of both bacteria and phage
was introduced across the resource gradients. For
symmetric (bidirectional) gene flow, we expected
the fitness of a given phenotype to be the weighted
average of the local fitness it experiences in all
habitats along the gradient (Kawecki and Holt,
2002). This should only favor bacteria and phage
found in both low- and high-resource habitats,
namely defense specialists and highly infective
generalist phages (Forde et al., 2008a). This in turn
is expected to decrease overall diversity. However, it
is less clear a priori how unidirectional dispersal
should affect bacterial diversity.

In accordance with expectations, we found that
bidirectional dispersal decreased diversity com-
pared with when communities were closed.
Somewhat surprisingly, however, we found that
unidirectional dispersal from high to low resources
increased host diversity. Extending the mathematical
model in Forde et al. (2008a), we showed that
these unexpected outcomes are predicted when

bacteria-phage interactions follow modified gene-
for-gene infection genetics (Forde et al., 2008a).

To further test how the observed dispersal-induced
patterns of host diversity depended on the genetic
underpinning of the bacteria-phage interactions,
we expanded our mathematical model to include
different infection mechanisms. This was motivated
by the findings in Forde et al. (2008a), which showed
that the precise nature of the relationship between
diversity and resources depended on the infection
genetics between bacteria and phages.

Curiously, although in the case of modified gene-
for-gene mechanism the different dispersal direc-
tions gave rise to different patterns of bacterial
diversity, this was not the case for matching alleles
(Gandon and Michalakis, 2002; Morgan et al., 2005;
Weitz et al., 2005; Forde et al., 2008a), gene-for-gene
(Morgan et al., 2005; Forde et al., 2008a; Gandon and
Nuismer, 2009) or related infection mechanisms
(Nuismer and Otto, 2005; Fenton et al., 2009). These
results could be explained by the fact that the
modified gene-for-gene mechanism gives rise to
‘KtW’ dynamics (Winter et al., 2010), whereas the
other tested infection mechanisms do not. Our paper
illustrates that the effect of dispersal on microbial
diversity depends on the intricate interplay of the
structure of the dispersal network and precise
nature of coevolutionary interactions.

Materials and methods

Experimental design
We coevolved E. coli and phage T3 in continuous
culture devices known as chemostats (Bohannan
and Lenski, 1997) which were connected by dis-
persal. All chemostats were initially inoculated with
isogenic strains of bacteriophage T3 (obtained from
the American Type Culture Collection) and E. coli
(strain REL 607; Bohannan and Lenski, 1997).
The volume of each community was maintained
at 30ml, with a washout rate of 0.2 turnovers per h.
We directly manipulated resource input and dis-
persal of T3 and E. coli to test how the direction
of dispersal along a resource gradient affected
local adaptation and diversity. Three levels of
resource input were used (high¼ 1000 mgml� 1,
intermediate¼ 100 mgml�1 or low¼ 10 mgml�1

glucose), whereas the dispersal treatments consisted
of unidirectional, bidirectional and no dispersal of
the bacteriophages and bacteria together (Figure 1).

Chemostats were sampled every 48h, concordant
with the imposition of the dispersal treatments. For
the unidirectional and bidirectional dispersal treat-
ments, B7.5ml were removed from each chemostat
before imposition of the dispersal treatments. Thus,
the same volume, containing the entire bacteria-
phage community, was removed from each chemostat
regardless of the direction of the flow. A portion of
each sample was used for the dispersal treatments
and to evaluate the phenotypic diversity of the
hosts.
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In the unidirectional dispersal treatment, 3ml of
the bacteria-phage community were dispersed from
the high resource environment to the intermediate
environment, and likewise 3ml from the intermediate
to the low resource environment. Three milliliters of
sterile saline solution were added to the high
resource environment to control for the input
volume across treatments (totaling 10% of the total
community). In the bidirectional dispersal treat-
ment, 1.5ml were dispersed from the high into the
intermediate environment, and 3ml from the inter-
mediate into the low resource environment. In the
other direction, 1.5ml were dispersed from the low
into the intermediate environment, and 3ml from
the intermediate into the high resource environ-
ment. Thus, each community received an input
volume totaling 3ml, regardless of the direction of
the flow. Each treatment was replicated three times.
The experiment ran for 13 days, or B200 bacterial
generations and 1000 generations of the bacteriophage.
During this period, there were seven bouts of dispersal
among communities.

Three different reference phage (T2, Tu1a and K3)
that attack LPS and different OMPs were used to
evaluate phenotypic diversity of the hosts. The three
reference phages utilize distinct mechanisms to
attack the host, and resistance to them requires
different counter-adaptations. For instance, OMPF
is the most common OMP of E. coli and is involved
in osmoregulation and nutrient uptake (Datta et al.,
1977; Travisano and Lenski, 1996). Phage T2 uses
both OMPF and a part of LPS distal to the T3
receptor to infect E. coli cells (Lenski, 1984), so that
resistance to T2 indicates that the LPS mutation has
also affected the assembly or function of OMPF.
Resistance to Tu1a also indicates effects on OMPF
(Schwartz, 1980). Resistance to K3 on the other hand
indicates that the truncation of LPS has also affected
the assembly or function of OMPA (Schwartz, 1980),
which is involved in amino-acid transport and the
structural integrity of the outer membrane (Morona
et al., 1985; Heller, 1992).

Approximately 20 colonies were isolated from
the high- and low-resource communities on days 9
and 13 of the experiment each. We did not
evaluate host diversity in the intermediate
productivity communities. Twenty microliters of
each of the three bacteriophages from the screen
were then dried on an agar plate and each bacterial
isolate was streaked across the bacteriophages to
assess whether bacteria were sensitive, partially
resistant or completely resistant. Further details
on the methodology and cellular biology asso-
ciated with the phenotypic screen are given in
Forde et al. (2008b).

This specific screening procedure allowed us to
identify up to 27 distinct phenotypes, as for each of
the three reference phage exactly three different
outcomes of the infection assay were possible. Of
those 27 potential phenotypes, a total of 15 were
actually observed across all populations (Table 1). The
observed frequencies of each phenotype within a
population were averaged across replicate chemostats.

Based upon these considerations, phenotypic
diversity was calculated using the Shannon-Wiener
index in the form

H ¼ �
X15
i¼1

piln pið Þ

where pi is the proportion of phenotype i in the focal
host population. Note, that we sum over all 15
observed phenotypes and set piln(pi)¼ 0 for pheno-
types that were not present in the focal community.
The results shown throughout the paper are the
diversity measures averaged over time. Data were
analyzed using analysis of variance with fixed
effects (direction of dispersal and resource level)
and their interaction.

We also obtained the total number of phenotypes
for each dispersal treatment and each resource
environment. This measure of phenotype richness
and degree of endemicity gives an indication of
whether diversity was mediated by phenotypes
specific to a resource environment or by phenotypes
shared between environments.

In addition, we quantified the resistance of each
observed bacterial phenotype against the reference
phages (Table 1). For each phenotype, we summed
up the level of resistance rn,i(0¼ sensitive, 0.5¼
partially resistant and 1¼ resistant) against each of
the three reference phages, such that after rescaling

the resistance score Ri ¼ 1
3

P3
n¼1 rn;i of a phenotype

can range from 0 (universally sensitive) to 1
(universally resistant).

We then calculated the population level of
resistance against reference phages in each treat-
ment by multiplying the average local proportions of
each phenotype with its resistance score and

summing over all phenotypes: 1
2

P15
i¼1 ðpL

i þpH
i ÞRi,

where the superscripts L and H denote proportions
in the low and high productivity environments,
respectively. This average population resistance

Figure 1 The structure of the dispersal network, labels indicate
the different resource levels. Timeline of dispersal and sampling
events are shown at the bottom.
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against reference phages is a measure of the
probability that a randomly picked cell from either
resource environment is resistant against a randomly
picked reference phage.

The model
The mathematical model was based on the one
developed in Forde et al. (2008a) and was designed
specifically to capture the biology of microbial
coevolution. The deterministic model tracks evolu-
tion in initially isogenic populations of co-occurring
clonally reproducing bacteria (B0) and phages (P0) in
the chemostat. Mutations occurred with a small but
prescribed probability, and the fitness of mutant
bacteria and phages depends on every component of
the system (a genotype-by-genotype-by-environment
interaction).

T3 phages have higher adsorption rates to wild-
type E. coli than to contemporary hosts (Chao et al.,
1977; Forde et al., 2004; Qimron et al., 2006). Thus,
in our initial model, we assumed that the binding
probabilities between bacteria and phages are
graded (see Sasaki and Godfrey, 1999). As in Forde
et al. (2008a), we also assumed that there are two
character states at two diallelic loci, L and O, in
wild-type bacteria (B0). We incorporated pleiotropy
between LPS and OMPs by assuming that mutations
at these loci regulate the biosynthesis of LPS
polymers such that the length of the LPS O antigen
correlates with the phenotype T¼ 4� (2� LþO),
yielding four phenotypes: B0(L¼ 0,O¼ 0) with T¼ 4;
B1(0,1) with T¼ 3; B2(1,0) with T¼ 2; and B3(1,1)
with T¼ 1.

We assumed that mutations in the bacteria
occurred as point mutations at either L or O locus
with rate e. Mutations in wild-type phages (P0)
occur at one locus with four possible alleles giving
rise to one of three types, denoted Pi (where i is
from 1 to 3) and the rate of mutations from one
phage type to another, e, is independent of the

type of phage. The matrices Mb and Mp modeling
mutations between the four bacterial types and the
four phage types, respectively, are given in
Appendix A.

The core of the E. coli–T3 model is a 4� 4 matrix
that defines the relative infectivities of each phage
strain to each bacterial type:

F ¼ s

1 l l2 l3

0 l l2n l3n
0 0 l2n2 l3n2

0 0 0 l3n3

0
BB@

1
CCA ð1Þ

This infection matrix is based on a mechanistic
understanding of the attachment process of T3 to its
host and as such it is specific to the system under
consideration (Forde et al., 2008a). Each column
represents one of the four phage types and the
respective interactions with the different host
strains. For example, the first column corresponds
to the wild-type T3 that can only infect wild-type
E. coli, hence there is a single entry in the first row
of this column. Here s stands for the attachment rate
of the wild-type phage, l represents the change of
adsorption rate caused by alterations in the structure
of phage tail-fiber protein and n represents the
change in adsorption rate caused by the loss
of a single sugar from the bacterial LPS complex
with constraints lo1, no2, respectively. Because
of its resemblance to the classical gene-for-gene
model (Morgan et al., 2005; Gandon and Nuismer,
2009), this specific model has been termed modified
gene-for-gene infection mechanism (Forde et al.,
2008a).

In complete analogy to the experimental methods,
we can define a resistance score for each bacterial
phenotype as the number of phage phenotypes
against which it is resistant. This means that the
resistance score in the model is simply given by the
number of zeros in each row of the infection matrix
divided by the total number of phage phenotypes.
For the modified gene-for-gene infection mechanism
in (1), the resistance score thus ranges from 0 for the
wild-type B0 (competition specialist) to 0.75 for the
most, but not completely, resistant type B3 (defense
specialist).

We extended the model in Forde et al. (2008a,b) to
include dispersal between chemostats of different
productivity. Following from the experimental
design shown in Figure 1, we considered a scenario
in which three chemostats contain different
resource levels, resulting from different concentra-
tions of resources in the chemostat input vessels.
The rates of change over time in the resource
concentration Si, bacterial densities Bi and phage
densities Pi in high-, intermediate- and low resource
environments are given by

dSi

dt ¼ D S0
i �Si

� �
� cm Sið Þ � Bi

dBi

dt ¼ Mb m Sið Þ�Bið Þ� FPið Þ�Bi �DBi
dPi

dt ¼ Mp b� FTBi

� �
�Pi

� �
�DPi

ð2Þ

Table 1 Identified phenotypes

Phenotype T2 Tu1a K3 Resistance score

1 s s s 0
2 s pr s 0.16
3 s s pr 0.16
4 s r s 0.33
5 s s r 0.33
6 pr r s 0.5
7 pr s r 0.5
8 s pr r 0.5
9 s r pr 0.5
10 r pr pr 0.66
11 pr r pr 0.66
12 s r r 0.66
13 r r pr 0.83
14 r pr r 0.83
15 r r r 1

Abbreviations: S, sensitive; pr, partially resistant; r, resistant.
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where the subscript i¼L, I, H represents the low,
intermediate and high resource environments,
respectively. Here, S0

LoS0
IoS0

H denote the resource
concentrations in the input vessels, whereas Bi and
Pi denote the vectors of the four bacterial and phage
densities in the different resource environments.
The matrix FT is the transposed of the infection
matrix. The operators ? and * denote the scalar
product and component-wise multiplication,
respectively.

The first equation of (2) describes the rate of
change in resource concentration in the three
chemostats, where the constant D represents the
chemostat washout rate. Resource consumption is
modeled using a Michaelis–Menten bacterial growth
vector function m and resource conversion rate c.
The phage production is represented by a vector of
burst sizes b; however, latent period was not
explicitly modeled. Bacterial costs for resistance
are mediated by phenotype-specific maximal growth
rates, which are incorporated into the growth vector
function m. Similarily, an increase in phage host
range is traded-off with a decrease in burst size,
described by the burst size vector b (Ferris et al.,
2007; Poullain et al., 2008). For a further description
of the model in the absence of spatial structure see
Appendix A.

Unidirectional and bidirectional dispersal
between high (i¼H), intermediate (i¼ I) and low
resource (i¼L) environments was incorporated into
the model in the following way. After a simulated
time of N hours, the simulation was stopped and the
densities of resources, bacteria and phages in the
three chemostats were reduced by 25%, represent-
ing the removal of 7.5ml of the total chemostat
volume of 30ml. Then the dispersal treatment was
imposed by increasing the densities in the receiving
chemostats by the appropriate amount, which
depends on the predispersal densities in the source
chemostat and the dispersal treatment. For example,
in the unidirectional treatment, the low productivity
chemostat received a sample of 10% of the whole
resource-bacteria-phage community of the inter-
mediate productivity chemostat, corresponding to
3ml of volume. After this procedure, the simulation
of system (2) was started again and run until the
next dispersal event. In this way, complete analogy

with the experiments was maintained. All para-
meters in model (2) are from Forde et al. (2008a) and
are shown in Table 2.

To test how the model results depend on the form
of host–parasite interactions, we also included
matching alleles, gene-for-gene, inverse matching
alleles and inverse gene-for-gene infection genetics
in our analysis. The detailed forms of these infection
matrices can be found in Appendix A.

Results

Experiment
The results of the phenotypic diversity assay are
displayed in Figure 2a. Diversity differed markedly
among the dispersal treatments and an analysis of
variance showed that the direction of dispersal
had a significant effect on diversity, whereas there
was no effect of resource level or interaction
between factors (Table 3). Unidirectional dispersal
increased diversity compared with no dispersal
(P-value¼ 0.045), in particular in the high resource
environment. Bidirectional dispersal on the other
hand had an overall negative effect on diversity
compared with no dispersal (P-value¼ 0.01) and
unidirectional dispersal (P-valueo0.0001).

For the no dispersal and bidirectional treatments,
an equal total number of phenotypes were identi-
fied, whereas the highest total number of pheno-
types was observed in the unidirectional treatment
(Figure 3). The fraction of locally specific types was
highest for the no dispersal treatment and lower in
the unidirectional and bidirectional treatments
(Figure 3b).

The global proportions of identified phenotypes
within each dispersal treatment were obtained
as the average frequency of each type across
resource environments (Figure 3a). In contrast to
the no dispersal and unidirectional flow treat-
ments, the meta-population in the bidirectional
treatment is dominated by just two phenotypes,
which explains the lower level of diversity in this
treatment.

The average level of resistance against reference
phage for each treatment, along with the relative
contribution of each phenotype to the population

Table 2 Parameter values for model (2)

Parameter Description Value

mi
max Maximal growth rate of bacterial type i m0

max¼1.18h�1, m1
max¼1.009h� 1, m2

max¼0.89h�1, m3
max¼0.66h�1

K Bacterial half saturation constant 0.06mgml�1

bi Burst size of phage i b0¼306, b1¼ 153, b2¼ 99, b3¼ 72 virions per cell
D Chemostat dilution rate 0.2 h� 1

e Rate of point mutations 10� 4

c Resource conversion rate 2.3�10�5mg per cell
Si
0 Resource in parameter SH

0 ¼ 103 mgml�1, SI
0¼ 102 mgml�1, SL

0¼10 mgml�1

s Wild-type T3 attachment rate 2�10�8mlh�1

n,l Infectivity parameters fitted in Forde et al. (2008a,b) n¼0.677, l¼0.94
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level resistance against reference phage, is shown in
Figure 2b. This serves as a proxy for assessing the
resistance to the wild-type T3 phage. For example,

resistance to the reference phages signifies changes
in LPS, OMPF and/or OMPA which can be used to
infer whether a given phenotype has mostly intact
LPS structure (low resistance score) or truncated
LPS (high resistance score) required for the resis-
tance to T3 (Tamaki et al., 1971; Lenski, 1988;
Qimron et al., 2006). Although the average level of
resistance is similar in all three dispersal treatments,
the contribution of different phenotypes is consis-
tent with the differing levels of diversity (Figure 2b).
In the no dispersal and unidirectional treatments,
the population level resistance is mediated by
several different types with varying degrees of
resistance, whereas the level of resistance in the
bidirectional treatment can mainly be attributed to
one single highly resistant phenotype.
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Figure 2 (a) Host diversity (Shannon-Wiener index ±s.e.m.) in
the high (dark grey) and low (light grey) resource environments
for the three different dispersal treatments. Dotted lines were used
to guide the eye highlighting host diversity levels in high (dark
grey dots) and low (light grey dots) resource environments in the
absence of dispersal. (b) Population resistance against reference
phages as a proxy for bacterial resistance against the wild-type T3
phage. Bar length gives the average population resistance for each
dispersal treatment. Phenotypes have been grouped according to
their average resistance against the reference phage, and the
partitioning of each bar indicates the contribution of each group
to the mean population resistance.

Table 3 Analysis of variance for experimental results of host
diversity

Source Sum
square

d.f. Mean
square

F Probability4F

Gene flow
direction

2.17816 2 1.08908 17.89 o0.0001

Resource 0.03859 1 0.03859 0.63 0.4363
Gene flow�
resource

0.18694 2 0.09347 1.54 0.2423

Error 1.09592 18 0.06088
Total 3.65280

Abbreviation: d.f., degree of freedom.
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Figure 3 (a) Proportions of identified host phenotypes (Table 1)
for the three different dispersal treatments across both resource
environments. For each dispersal treatment, the phenotypes are
placed on the x axis in order of ascending resistance against the
reference phages, from the universally sensitive type 1 on the left
to the universally resistant type 15 on the right (see text for
details). (b) Phenotype richness and endemicity. Each bar
indicates the total number of identified phenotypes for each of
the three dispersal treatments, partitioned into the number of
phenotypes that were present in both resource environments
(blue); only in the low resource environments (green); only in the
high resource environments (red).
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Model
Using deterministic simulations of model (2), we
calculated diversity for each directional treatment
(see Materials and methods for details) and to
maintain consistency with the experiments, diversity
was averaged over time.

In order to relate theoretical predictions to
experimental data of E. coli–T3 interactions, we first
considered the modified gene-for-gene mechanism (1).
In the absence of dispersal, the model predicted
greater host diversity in low resource environments
compared with high resource environments
(Figure 4a), which was in agreement with the
experimental results (Figure 2a).

We fine-tuned the dispersal rate in the model by
using the experimentally observed patterns of
phenotypic diversity (Figure 2a). Model predictions
(Figure 4a) aligned with the experimental results

(Figure 2a) for dispersal rates higher than those used
in the experiment. This discrepancy could be due to
the relative simplicity of the model that combines
bacterial diversity into four phenotypes. This natu-
rally also led to consistently lower absolute levels of
diversity (Figure 4a) than observed experimentally
(Figure 2a). However, it is the simplicity of the
model that enabled us to interpret experimental
findings in a broader context as explained in the
Discussion.

Turning to the population level of resistance, the
model predicted that resistance against wild-type T3
under the bidirectional treatment is conferred
almost exclusively through the dominance of the
most resistant type (Figure 4b). This is in agreement
with experimental results in Figure 2b, which depict
bacterial resistance against reference phages and
supports our use of population resistance against
reference phage as a proxy for bacterial resistance
against the wild-type T3. Under the other two modes
of dispersal, the model predicted that a significant
proportion of a less resistant type was maintained in
the population, which is broadly in agreement with
the experimental results (Figure 2b). The model
does not capture the precise population composi-
tion observed in the experiments due to its simpli-
fication of grouping bacterial diversity into four
phenotypes.

Model predictions did not change when we
removed the intermediate resource environment
from our model and instead only considered low
and high resource environments linked by dispersal.
This could be explained by the observation
that in the absence of dispersal, the intermediate
resource environment followed the pattern of diver-
sity observed in the high resource environment
(Supplementary Figure B1, Appendix B).

We next tested our hypothesis that the effect of
dispersal across productivity gradients on host
diversity depends not only on the structure of the
dispersal network but also on the infection genetics
of bacteria and phages. Therefore, we replaced the
modified gene-for-gene interaction matrix (1) with
the matching alleles, gene-for-gene, inverse match-
ing alleles and inverse gene-for-gene models
described in the Appendix B.

In line with previous results, in the absence of
dispersal, the model with matching alleles infection
mechanism predicted coexistence of all four bacter-
ial types at similar densities in both resource
environments (Forde et al., 2008a). As a conse-
quence, we observed markedly higher levels of
diversity independent of habitat productivity
(Figure 5a). Moreover, neither unidirectional nor
bidirectional dispersal had a visible impact on
bacterial community composition and the observed
levels of diversity (Figure 5a).

The results with the classical gene-for-gene infec-
tion mechanism were very similar to the matching
alleles model. Bacterial populations were domi-
nated mainly by equal proportions of the two host
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wild-type T3 phage as predicted by model (2) with modified
gene-for-gene infection mechanism. Each color represents one of
the four phenotypes from the theoretical model.

Dispersal networks and coevolution
M Sieber et al

510

The ISME Journal



types with intermediate resistance, such that diver-
sity was higher overall and there was no difference
between resource environments (Figure 5b). In
addition, diversity did not change in response to
different dispersal modes (Figure 5b). Note, that
similar marginal effects on diversity were also
obtained with inverse matching alleles and inverse
gene-for-gene infection genetics.

Discussion

We combined experimental coevolution of bacteria
and phages with mathematical modeling to deter-
mine the effects of dispersal across a productivity
gradient on bacterial diversity. We found that
dispersal of bacteria and phages had a marked effect
on overall host diversity compared with diversity in
the absence of dispersal, but patterns of diversity
depended on the structure of the dispersal network.
When communities were connected by bidirectional
dispersal, bacterial diversity decreased in all
habitats across the productivity gradient (Figure 2),

as expected from previous results (Hochberg and
van Baalen, 1998; Vogwill et al., 2011). Unexpect-
edly, unidirectional dispersal from high to low
productivity habitats increased bacterial diversity
in the source habitat and had only a small effect on
the downstream community (Figure 2), leading to an
overall increase in diversity.

This differential effect of the two dispersal
networks can be understood within the framework
of the ‘KtW’ hypothesis (Winter et al., 2010). KtW
assumes that bacterial phenotypes employ evolu-
tionary strategies ranging from competition specia-
lists (efficiently growing, but phage-sensitive) to
defense specialists (slower growing, but phage-
resistant). The modified gene-for-gene infection
mechanism mediating the interaction between
E. coli and T3 (Forde et al., 2008a) conforms to the
assumptions of KtW. Here wild-type bacteria with
intact LPS structures correspond to competition
specialists, whereas phenotypes with one or several
LPS truncations are at the defense specialist end of
the strategy spectrum, as truncations in LPS can
have pleiotropic effects on OMPs involved in the
uptake of nutrients (Sen and Nikaido, 1991).

In accordance with central predictions of KtW and
previous results (Bohannan and Lenski, 2000; Forde
et al., 2008a), we found that without dispersal, low
resource environments allowed the coexistence of
competition specialists and a smaller fraction of
defense specialists, whereas in high resource
environments, costly mutations conferring resis-
tance against phages were effectively mitigated by
abundant resources and thus allowed defense
specialists to dominate (Forde et al., 2008a). As a
consequence, low resource environments were
more phenotypically diverse compared with high
resource environments (Figure 2).

When bacteria and phages were dispersed
together bidirectionally across the resource gradient,
the defense specialists, which were able to persist
under both environmental conditions, became the
dominant phenotype in all habitats. Thus, as
expected from theoretically predictions (Hochberg
and van Baalen, 1998; Kawecki and Holt, 2002),
overall diversity decreased when dispersal was
bidirectional (or symmetrical) across the hetero-
geneous landscape.

In contrast to the prediction by Hochberg and van
Baalen (1998) that dispersal across a resource
gradient should decrease diversity, we found that
unidirectional dispersal from high to low resource
environments increased overall diversity. A possible
explanation for our result is that although the high
productivity community did not receive any input
of non-endemic phenotypes, the repeated loss of a
fraction of the microbial population during dispersal
events may have opened up a niche for the
competition specialists. Our theoretical model
suggests that the decrease in density of defense
specialists and the associated lower rates of phage
predation after a dispersal event can allow a small
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subpopulation of competition specialists to tem-
porarily reach high population densities. If dispersal
is not too infrequent, this transient effect is enough
to allow the competition specialists to persist in the
high productivity environment. Thus, a decrease in
density-dependent competition as a side-effect of
the dispersal process itself led to the observed
increase in diversity in the upstream high resource
environment, rather than any actual dispersal-
mediated gene flow.

Our theoretical study of different infection
mechanisms further suggests that the presence of
different phenotypic strategies in different environ-
ments is in fact necessary for dispersal to have a
marked effect on diversity. The matching-alleles
infection mechanism, for example, led to a higher
overall bacterial diversity, but in this case the
different phenotypes all represent the same evolu-
tionary strategy with equal competitive abilities and
resistance against phages. Thus, all phenotypes
coexist in similar proportions in all environments
across the productivity gradient and dispersal
between habitats can have no effect on local
phenotypic diversity.

A similar rationale applies to the gene-for-gene
and related infection mechanisms, such as inverse
matching alleles and inverse gene-for-gene.
Whenever the infection mechanism mediating the
bacteria-phage interaction does not promote the
emergence of a locally specific set of phenotypic
strategies, in the sense of the KtW hypothesis, the
effect of dispersal on local diversity can only be
marginal.

The form of dispersal we considered in our study
is typical for, but not limited to, aquatic habitats,
where bacteria and phages are passively transported
together with the surrounding aquatic environment.
The effect of riverine network structure on bio-
diversity is of great importance in freshwater ecology
(Nelson et al., 2009; Brown et al., 2011), but its effects
on microbial diversity are under-researched. Our
results shed light on how local selection for distinct
phenotypic strategies and dispersal work together to
shape microbial diversity in aquatic networks. We
further illustrate that dispersal events can pose
significant perturbations of upstream communities,
which allow the local rare biosphere (Sogin et al.,
2006) to fill newly opened niches and flourish
temporarily. This is a usually overlooked aspect of
dispersal with the potential to alter the course of
coevolution and induce a permanent shift in micro-
bial community composition.

Our theoretical model further predicts that dis-
persal rates have an effect on bacterial community
composition (Supplementary Figure B2, Appendix B),
in line with dispersal experiments involving
freshwater bacteria in their natural lake water
environments (Lindström and Östman, 2011). Our
model also suggests that unidirectional dispersal
tends to increase overall bacterial diversity,
regardless of the strength of the transport flow

(Supplementary Figure B2a, Appendix B). Interest-
ingly, the relationship between dispersal strength
and diversity is more complex in bidirectional
networks, suggesting that high dispersal rates have
a negative impact on overall diversity, whereas low
to moderate dispersal rates tend to increase diversity
(Supplementary Figure B2b, Appendix B). These
theoretical results have implications for the potential
impact of altered flow regimes (Bunn and Arthington,
2002) on microbial community composition.

In summary, our combination of in vitro experi-
ments and mathematical models suggests that the
effect of dispersal on microbial diversity depends on
an intricate interplay of the abiotic characteristics
of habitats within a dispersal network and the
specific mechanism mediating the interaction of
the coevolutionary players. If the heterogeneous
landscape supports the formation of locally distinct
ecological strategies following a KtW pattern, bidir-
ectional dispersal tends to favor defense specialist
strategies and thus decreases diversity. Unidirec-
tional dispersal, on the other hand, can increase
diversity in high productivity upstream commu-
nities by disturbing the resident defense specialists,
thereby opening up niches for competition specia-
lists. These findings could be taken further and used
to shed light on why are certain marine bacteria so
successful (Zhao et al., 2013).
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