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One millimetre makes the difference: high-resolution
analysis of methane-oxidizing bacteria and their
specific activity at the oxic–anoxic interface in
a flooded paddy soil

Andreas Reim, Claudia Lüke, Sascha Krause1, Jennifer Pratscher2 and Peter Frenzel
Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Marburg, Germany

Aerobic methane-oxidizing bacteria (MOB) use a restricted substrate range, yet 430 species-
equivalent operational taxonomical units (OTUs) are found in one paddy soil. How these OTUs
physically share their microhabitat is unknown. Here we highly resolved the vertical distribution of
MOB and their activity. Using microcosms and cryosectioning, we sub-sampled the top 3-mm of a
water-saturated soil at near in situ conditions in 100-lm steps. We assessed the community
structure and activity using the particulate methane monooxygenase gene pmoA as a functional and
phylogenetic marker by terminal restriction fragment length polymorphism (t-RFLP), a pmoA-
specific diagnostic microarray, and cloning and sequencing. pmoA genes and transcripts were
quantified using competitive reverse transcriptase PCR combined with t-RFLP. Only a subset of the
methanotroph community was active. Oxygen microprofiles showed that 89% of total respiration
was confined to a 0.67-mm-thick zone immediately above the oxic–anoxic interface, most probably
driven by methane oxidation. In this zone, a Methylobacter-affiliated OTU was highly active with up
to 18 pmoA transcripts per cell and seemed to be adapted to oxygen and methane concentrations
in the micromolar range. Analysis of transcripts with a pmoA-specific microarray found a
Methylosarcina-affiliated OTU associated with the surface zone. High oxygen but only nanomolar
methane concentrations at the surface suggested an adaptation of this OTU to oligotrophic
conditions. No transcripts of type II methanotrophs (Methylosinus, Methylocystis) were found,
which indicated that this group was represented by resting stages only. Hence, different OTUs
within a single guild shared the same microenvironment and exploited different niches.
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Introduction

Methane is, next to water vapor and carbon dioxide,
the most important greenhouse gas (Intergovern-
mental Panel on Climate Change, 2007), with
natural wetlands and irrigated rice fields together
emitting about one-third of the total (Conrad, 2009).
Their contribution would be even higher without
the activity of aerobic methane-oxidizing bacteria

(MOB), which act as a biofilter, mitigating emissions
to the atmosphere (Reeburgh et al., 1993). MOB use
methane as the sole source of carbon and energy,
provided oxygen is available (Trotsenko and
Murrell, 2008). Owing to this dual dependency,
they thrive at oxic–anoxic interfaces, where both
substrates are supplied (Brune et al., 2000). In
flooded soils and sediments, these interfaces are
located at the soil surface and in the rhizosphere of
macrophytes when present (Bosse and Frenzel,
1997; Bodelier et al., 2006). Rhizospheric MOB in
both paddy fields and natural wetlands have been
often studied (Calhoun and King, 1997; Eller and
Frenzel, 2001; Sorrell et al., 2002; Shrestha et al.,
2008; Vishwakarma et al., 2009), but work at the soil
surface has been mainly focused on process mea-
surements (Conrad and Rothfuss, 1991; Frenzel
et al., 1992; Bosse et al., 1993). The soil surface is
characterized by sharp counter-gradients of oxidized
and reduced species. Where these gradients overlap,
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X90% of potentially emitted methane is oxidized
(Frenzel et al., 1990; Conrad and Rothfuss, 1991).

MOB can be divided into two major groups, type I
and type II, being equivalent to the families
Methylococcaceae (g-proteobacteria), and Methylo-
cystaceae and Bejerinckiaceae (a-proteobacteria),
respectively. The key enzyme of all MOB is methane
monooxygenase (MMO), and the overwhelming
majority of cultivated MOB possess a membrane-
bound MMO (particulate MMO). Only the genera
Methylocella and Methyloferula lack this enzyme
and instead have a soluble MMO (sMMO) (Dedysh
et al., 2000; Dedysh, 2009; Vorobev et al., 2011). The
pmoA gene, which encodes the b-subunit of parti-
culate MMO, is an excellent functional marker for
studying MOB in most environments (McDonald
and Murrell, 1997; Dumont and Murrell, 2005;
McDonald et al., 2008). Its phylogeny reflects very
well that of the 16S rRNA gene (Kolb et al., 2003;
Degelmann et al., 2010). Type I MOB can be further
divided into type Ia (for example, Methylomonas,
Methylobacter, Methylosarcina and Methylomicro-
bium), and type Ib (for example, Methylococcus and
Methylocaldum). Recently, MOB belonging to the
phylum Verrucomicrobia have been isolated, but
these seem to be restricted to extreme environments
(Dunfield et al., 2007; Pol et al., 2007; Op den Camp
et al., 2009).

Sanger- and pyro-sequencing have provided a
large database of high-quality pmoA sequences
(Lüke et al., 2010; Lüke and Frenzel, 2011). Based
on pmoA phylogeny, type II MOB form a coherent
cluster well represented by cultivated strains. Many
distinct groups lacking cultivated representatives
have been allocated to type I MOB. Numerous
sequences are located at an intermediate position
between the pmoA gene of MOB and the amoA gene
of ammonia oxidizers. The substrate of the enzymes
encoded by these sequences remains uncertain, with
the exception of a few proven methane (Stoecker
et al., 2006; Dunfield et al., 2007) and alkane
oxidizers (Sayavedra-Soto et al., 2011; Coleman
et al., 2012).

More than 30 operational taxonomical units
(OTUs) corresponding to the species level have
been found in a single paddy soil (Lüke et al., 2010).
This raises the question whether and how their
niches are separated, and whether all these indivi-
dual OTUs really contribute to overall methane
oxidation. However, not all of these 30 OTUs need to
be active at the same time as methanotrophs form
resting stages (Whittenbury et al., 1970a, b). Indeed,
the development and activity of methanotroph
communities has been suggested to vary depending
on methane flow (Krause et al., 2012), nitrogen
supply (Rudd et al., 1976; Graham et al., 1993;
Bodelier et al., 2000a, b; Noll et al., 2008),
disturbance (Ho et al., 2011) and grazing (Murase
and Frenzel, 2008). At the macroscale, MOB com-
munity structure within a paddy field varies
randomly, probably as ploughing prevents the

development of explicit spatial patterns (Krause
et al., 2009). Rice roots select for specific commu-
nities, thereby favouring the growth of certain OTUs
(Lüke et al., 2011). Another aspect of spatial
organization, however, has not yet been addressed
— the community structure at the microscale. We
focused on the soil surface and hypothesized that
activity would be highest right at the oxic–anoxic
interface, which would potentially separate MOB
according to substrate availability, for example, high
methane/low oxygen in deeper layers and low
methane/high oxygen in shallower layers.

The study of gradient organisms requires a
physical model that mimics naturally occurring
gradients. With MOB, these are primarily the
counter-gradients of oxygen and methane (Gilbert
and Frenzel, 1998). We constructed microcosms that
allow incubation of the top 3-mm of a water-
saturated soil at near in situ conditions (Murase
and Frenzel, 2007). When methane was supplied
from below and air was supplied from above, a
functioning methanotrophic community developed
within a few days, oxidizing virtually all the
methane that otherwise would have passed through
this soil layer. We used cryosectioning (Murase
et al., 2006) to subsample the soil from top to bottom
in 100-mm steps. Focusing on pmoA as a functional
and phylogenetic marker, we analyzed genes and
transcripts along this depth profile, using pmoA
transcripts as a proxy for species-specific activity.
The community structure was assessed by terminal
restriction fragment length polymorphism (t-RFLP),
by a pmoA-specific diagnostic microarray (Bodrossy
et al., 2003), and by cloning and sequencing. Oxygen
microprofiles were used to model the depth-dependent
oxygen consumption rate (Berg et al., 1998). Rates
were correlated to copy numbers of pmoA genes
and transcripts. Transcripts were quantified using
a combination of competitive reverse transcriptase
PCR (RT-PCR) and t-RFLP.

In addition to pmoA, we used mmoX encoding for
a subunit of the sMMO to search for genes and
transcripts of aerobic MOB that lack a pmoA. Three
different primer sets were applied to DNA and RNA
extracted from microcosms incubated for 2, 4 and 6
weeks, respectively. While this design allows to
cover potential successional changes, the chosen
primer sets are expected to target a wide range of
mmoX diversity.

Materials and methods

Soil microcosm incubation and sampling
The construction and setup of the microcosms have
been described previously (Murase and Frenzel,
2007). Briefly, 14 g dry rice field soil from Vercelli
(Italy) was saturated with 7ml demineralized water
and incubated on a polytetrafluoroethylene mem-
brane, which divided the microcosm into an upper
and a lower compartment. The upper compartment
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contained oxygen at atmospheric concentrations,
while the lower chamber was connected to an
external reservoir (volume 1 l) with nitrogen gas
supplemented with methane (15%).

We set up four microscosms (1–4). During incuba-
tion, methane and oxygen concentrations were
monitored by gas chromatography. Methane was
added regularly to the reservoir keeping concentra-
tion stable (s.e. 0.16% CH4, n¼ 18). The microcosms
were incubated in the dark for 14 days at 25 1C.
Present and active methanotroph populations show
some succession, but most changes occur from 25
days onwards (Krause et al., 2010). Prior to
sampling, vertical oxygen profiles were determined
using an oxygen microelectrode (OX50, Unisense,
Aarhus, Denmark). The microcosms were then
shock frozen in liquid nitrogen and stored at
� 80 1C until further analysis. For sub-sampling,
the frozen soil was attached to a pre-cooled stage
with Tissue-Tek OCT Compound (Sakura Finetek,
Staufen, Germany). A cryotome (cryostat HM500M,
MICROM, Walldorf, Germany) was used to prepare
subsamples 100 mm thick (30 subsamples per micro-
cosm). The subsamples were stored in 500 ml
RNAlater-ICE (Ambion, Austin, TX, USA) at
� 20 1C for subsequent nucleic acid extraction.

Nucleic acid extraction
DNA and RNAwere extracted following the protocol
of Lueders et al. (2004) with minor modifications
(Krause et al., 2010). RNAwas prepared by digestion
of 1mg total nucleic acid with RQ1 RNase-free
DNase (Promega, Madison, WI, USA) and subse-
quent purification using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) according to manufac-
turer’s instructions. pmoA transcripts were enriched
using the mRNA-only Prokaryotic mRNA Isolation
Kit (Epicentre Biotechnologies, Madison, WI, USA)
and again purified with the RNeasy Mini Kit
(Qiagen).

Complementary DNA (cDNA) synthesis and pmoA
amplification
cDNA was synthesized and pmoA was amplified
using the One-step Access RT-PCR System (Promega)
with the forward primer A189f (50-GGNGACTG
GGACTTCTGG-30) (Holmes et al., 1995) and the
reverse primer mb661r (50-CCGGMGCAACGTCYTT
ACC-30) (Costello and Lidstrom, 1999). For t-RFLP,
the forward primer was FAM labeled. For micro-
array analysis, the reverse primer contained the
T7 promoter site (Bodrossy et al., 2003). A total of
1ml purified template RNA was mixed with 5ml
AMV/Tfl 5� reaction buffer (Promega), 0.01mg bovine
serum albumin (Roche, Basel, Switzerland), 2.5nmol of
each dNTP (Promega), 8pmol of each primer, 25nmol
MgSO4 (Promega), 5% (v/v) DMSO, 20U RNasin
Plus (Promega), 2.5U Tfl DNA polymerase (Promega),
2.5U AMV reverse transcriptase (Promega) and

molecular-grade water (Sigma-Aldrich, Munich,
Germany) in a total volume of 25 ml. Reactions
without AMV reverse transcriptase were used to
check for DNA contamination. The first strand of
cDNA was synthesized at 45 1C in 45min, followed
by 2min at 94 1C to inactivate the AMV reverse
transcriptase. The template was amplified in 35
cycles (30 s at 94 1C, 1min at 55 1C, 1min at 68 1C,
final elongation 7min at 68 1C). PCR products were
checked on a 1% agarose gel and extracted from the
gel using the QIAquick Gel Extraction Kit (Qiagen).
Genomic copies of the pmoA gene were amplified
following the same protocol, but without the initial
cDNA synthesis step.

Cloning and sequencing
Cloning and sequencing was done as described
before (Lüke et al., 2010).

t-RFLP analysis
The purified PCR product (100ng) was digested
with FastDigest MspI enzyme (Fermentas, St Leon-Rot,
Germany) at 37 1C for 6min. Digested samples
were purified with Post-Reaction Clean-Up Spin
Columns (Sigma-Aldrich) according to the manu-
facturer’s instructions. A total of 2ml of each purified
sample was mixed with 11ml Hi-Di Formamide
(Applied Biosystems, Foster City, CA, USA) and
0.2 ml of an internal DNA fragment length standard
(MapMarker 1000, 50–1000 bp, x-rhodamine, Euro-
gentec, Ougree, Belgium) and denatured for 2min at
94 1C. The terminal restriction fragments (tRFs) were
separated and detected with capillary electrophor-
esis and an automatic sequencer (3130 Genetic
Analyzer, Applied Biosystems; 30min at 15 kV
and 9 mA). The tRF patterns were analyzed with
GeneMapper Version 4.0 (Applied Biosystems).

Microarray analysis
In vitro transcription, fragmentation, hybridization,
scanning and data analysis were performed as
described elsewhere (Stralis-Pavese et al., 2004;
Stralis-Pavese et al., 2011).

Competitive t-RFLP
A competitive PCR (cPCR) assay (Han and Semrau,
2004) was adapted to quantify copy numbers of
the pmoA gene and its transcripts. The assay was
optimized for the most abundant and active OTU.
A vector-born copy of an environmental Methylo-
bacter-related pmoA gene (accession number)
was used for standard preparation. Primers were
A189f_T7 (50-TAATACGACTCACTATAGGGGGNGA
CTGGGACTTCTGG-30) and Inner-rev-661 (50-CCG
GMGCAACGTCYTTACCACTCAGGAGTACCAGTTC
TT-30). Concentrations of DNA and RNA standards
were determined using RiboGreen and PicoGreen,
respectively (Molecular Probes Inc., Eugene, OR, USA).
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For each sample, a minimum of three PCR or RT-
PCR amplifications was performed as described
above. Each reaction contained equal amounts of
the environmental template, but varying standard
concentrations. After amplification, PCR products
were processed and analyzed by t-RFLP. We regressed
the logarithms of standard-to-sample ratios to the
logarithms of standard added; the amount of standard
at the equivalence point equaled the unknown copy
number (Freeman et al., 1999). For further details
and an example see Supplement 1.

Statistical analysis
t-RFLP data were analyzed as described before
(Krause et al., 2010). Briefly, the tRFs were binned
to OTUs based on an in silico analysis of about 500
sequences from field and greenhouse experiments of
Vercelli soil (Lüke et al., 2010). tRF profiles were
standardized (Dunbar et al., 2001) and expressed as
fractions. For microarray analysis, signals were
standardized (i) against the mean of the overall
array intensities (Lüke et al., 2011) and (ii) against
an experimentally determined reference value for
positive detection (Bodrossy et al., 2003). Statistical
analysis and graphics were done in R (R Develop-
ment Core Team, 2011). Analysis of similarity and
non-metric multidimensional scaling (using the
function metaMDS) were done with the vegan
package, version 2.1-0 (Oksanen et al., 2011).

Soil microcosms for mmoX analyses
To evaluate the potential role of sMMO, we used
another 8 microscosms that were installed and
incubated as described above. Two microcosms
were killed after 2 weeks, and three microcosms
each after 4 and 6 weeks, respectively. Soil was
sampled in 0.5 g aliquots, shock frozen in liquid
nitrogen, and stored at � 80 1C till further analysis.
DNA and RNA were simultaneously extracted
and prepared as described above. RNA samples
were reverse transcribed with random hexamer
primers and SuperScript III reverse transcriptase
(Invitrogen, Darmstadt, Germany). Amplification of
mmoX gene and transcript sequences was done
using (i) primer set mmoX206f/886r (Hutchens
et al., 2004), (ii) primer set mmoXf92/r1430 (Islam
et al., 2008), and (iii) primer set mmoXLF/LR
(Rahman et al., 2011). Primer set mmoX206f/886r
covers a fairly wide range of mmoX diversity,
whereas mmoXf92/r1430 includes verrrucomicro-
bial sequences. Primer set mmoXLF/LR is specific
for Methylocella. To check for cDNA quality, we
amplified both rRNA and pmoA with primer sets
8F/1392R (Amann et al., 1995) and A189f/682r
(Holmes et al., 1995), respectively. We got products
from all samples. Amplicons generated with
mmoX206f/886r from DNA extracted from micro-
cosms after 2 and 6 weeks of incubation were cloned
and sequenced as described above. Sequencing was

carried out by GATC (GATC Biotech AG, Konstanz,
Germany). Phylogenetic trees were constructed from
sequence data using the ARB software package
(Ludwig et al., 2004).

Sequences
pmoA sequence data have been submitted to EMBL
under accession numbers HE805099–HE805112.
mmoX sequence data have been submitted to GenBank
under accession numbers JQ889714–JQ889792.

Results

Methane oxidation and t-RFLP analysis
We followed methane concentrations over time in
both the lower and upper compartments of the
microcosms. The lower compartment with the
methane source simulated the methanogenic soil
layer. The upper compartment, or headspace, was
replenished with air every 2 days. Initially, in all
microcosms, up to 3% methane accumulated in the
headspace, but after 5 days of incubation, accumu-
lation ceased resulting in an average headspace
concentration of 228ppmv CH4 which indicated the
presence of an active and efficient methanotrophic
community.

After 2 weeks of incubation, the oxic–anoxic
interface in all microcosms stabilized between 1.5
and 1.7mm (Figure 1a). After 14 days, the soil of
four microcosms was shock frozen with liquid
nitrogen, removed intact, mounted in a cryotome
and sub-sampled in 100-mm layers by sectioning.
A total of 30 subsamples per microcosm were
analyzed (total n¼ 120).

For an initial overview, we analyzed the genes and
transcripts by pmoA t-RFLP. We assigned OTUs
based on an in silico analysis of 500 pmoA clone
sequences plus another 3500 sequences retrieved by
pyrosequencing (Lüke et al., 2011; Lüke and
Frenzel, 2011). The assignments were supported
by 15 sequences generated from cloned mRNA
(another 80 clones were derived from rRNA, see
below). Figure 1 shows a synopsis of the average
oxygen microprofile and the DNA and mRNA-based
t-RFLP profiles from microcosm 1. The DNA-based
pattern was diverse, with dominating fragments
identified as type Ia (Methylobacter) and Ib, and as
type II (Methylocystis and Methylosinus). The type-
II-specific fragment was dominant below 2.2mm
depth, whereas fragments assigned to type Ib MOB
had their highest relative abundance around the
oxic–anoxic interface between 1.0 and 2.0mm depth
(Figure 1b). This increasing dominance of type-I-
specific fragments was even more pronounced in the
pmoA transcripts (Figure 1c). Methylobacter-related
tRFs dominated around the oxic–anoxic interface,
but also in the upper 0.5mm. Based on t-RFLP, type
II MOB did not transcribe the pmoA gene. This was
consistent with cloning and sequencing of pmoA
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transcripts: type-II-specific sequences were lacking.
A considerable fraction of tRFs was not derived from
pmoA transcripts but rather from rRNA, as observed
previously with pmoA RT-PCR (Krause et al., 2010).
These false-positive tRFs became most obvious
below the oxic–anoxic interface, which suggested
an extremely low number of target molecules in the
anoxic soil.

The pmoA gene diversity along the depth profiles
was consistent between all four microcosms. On
average, the dominating methanotroph groups (type
II and type Ia) showed an alternating pattern with a
predominance of type Ia around the oxic–anoxic
interface (Figure 2). Also the transcript analysis was
consistent with the results described for microcosm
1: a lack of type II, a pronounced dominance of type
Ia around the oxic–anoxic interface, and a high
fraction of false-positive products at depths where
no aerobic methane oxidation was expected.

Quantification of transcripts by competitive t-RFLP
Neither the pmoA microarray nor the classic t-RFLP
(Horz et al., 2001) allow quantification sensu stricto,
even if they are often regarded as semi-quantitative.
To quantify copy numbers of the pmoA gene and its
transcripts, we combined cPCR or RT-PCR with
t-RFLP, respectively. We focused on a fragment
affiliated to Methylobacter that showed high relative
abundances at the oxic–anoxic interface (tRF 508,
Figure 1b). This OTU reached copy numbers up to
3.73� 108 pmoA genes per gram fresh weight of soil,
and a maximum of 9.5 transcripts per genomic
pmoA copy at the oxic–anoxic interface (Figure 3).
Based on this distribution and further supported by
microarray data (Figure 4, see below), we defined
three depth zones: surface zone, oxic–anoxic inter-
face and anoxic zone (Table 1). The average number

of pmoA transcripts in the highly active oxic–anoxic
interface were one order of magnitude higher than in
the surface and anoxic zones (Table 1). The highest

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.15 0.30 0.45 0.60 0.75
Relative abundance

D
ep

th
 [m

m
]

 Type II  Type Ia

Figure 2 Vertical differentiation of the DNA-based population
structure in all four microcosms. Mean relative abundances of
type II and type Ia MOB (± s.e., n¼ 4). Type II corresponds to tRF
244; type Ia is the sum of all other fragments. Unlike RT-PCR, the
DNA-based analysis did not suffer from unspecific amplification
of rRNA genes.

Type Ia [349]

Type Ib [79]

Type Ia [241]

Methylobacter [508]

Methylomonas [437]
Methylocystis;
Methylosinus [244]

[373]

RPCs [226]

rRNA

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

D
ep

th
 (

m
m

)

O2 (µM) Relative abundance Relative abundance
0 100 200

Figure 1 Vertical profiles of oxygen concentration and of tRFs derived from pmoA genes and their transcripts. Data are from microcosm 1.
(a) Average oxygen profile (± s.e., n¼4) measured with a microelectrode. Relative abundance of pmoA tRFs derived from (b) DNA and
(c) RNA. The phylogenetic affiliation of tRFs is given together with their size in brackets. rRNA: combined relative abundances
of different tRFs derived from unspecific reverse and amplification of 16S and 23S rRNA sequences; RPCs: rice paddy clusters
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transcript:gene copy ratios coincided with the area
of highest oxygen consumption, as calculated from
the oxygen microprofiles (Figure 3).

Microarray analysis of pmoA transcripts
We analyzed the transcript patterns of the four
microcosms using non-metric multidimensional
scaling (Figure 4). Each of the three depth zones
formed a distinct cluster with significant differences
to each other (analysis of similarity, Bray–Curtis
dissimilarity, Po0.001). Probes used for ordination
and a few others yielding obvious spatial patterns
are listed in Supplement 1.

The original microarray data from all four micro-
cosms (1–4) provided additional information
(Supplement 2). Hybridization signals for type-II-
specific probes were observed mostly in the
oxic–anoxic interface, but the signals were faint.
The only type II probe that gave a stronger signal
(P_MM_MsT343) is unspecific, that is, it binds
also to many type Ib sequences. This signal coin-
cided with that of the general probes for type Ib
(Ib453 and Ib559).

The general probes for type Ia (O_Ia193, O_Ia575)
gave strong signals not only at the oxic–anoxic
interface but also in the anoxic zone. Furthermore,
probe Mb271 gave signals in all three depth zones,
but most signals in microcosms 1 and 2 were in
the oxic–anoxic interface. In three out of the four
microcosms, the upper 0.4mm was characterized by
a strong signal of probe O_Mmb562, which is indi-
cative for Methylosarcina. Also the largely redun-
dant probes Mmb303 and Mmb304 (Supplement 2)
gave consistently high signals, which suggested that
the activity of Methylosarcina was indeed high in
the surface zone (Supplement 3, microcosms 2–4).

To evaluate the potential role of sMMO, we
sampled two to three replicate microcosms after
2, 4 and 6 weeks, respectively. All mmoX sequen-
ces retrieved could be affiliated with type II MOB
of the genera Methylosinus and Methylocystis
(Supplement 4). No transcripts were found, whereas
a Methycella-specific assay even failed to produce
products from DNA suggesting that this genus is
missing (Supplement 4).

Discussion

Previous experiments with gradient microcosms
have already shown that focusing on the active
layer allows processes and interactions to be
analyzed in unparalleled detail (Murase and
Frenzel, 2007; Krause et al., 2010). While only
3mm thick, the soil layer in the microcosm was
considerably thinner and allowed a stronger focus
on the organisms of interest than in many other
experiments (Dumont et al., 2011, Siljanen et al.,
2011). Even working at a resolution of 1 cm dilutes
the active layer with the microbial seed bank in the
bulk soil and limits interpretability, regardless if
major soil compartments are sampled separately
(Eller et al., 2005). Dividing the soil further into
100-mm-thick layers brought an unprecedented reso-
lution that was sufficient not only to analyze the

Figure 3 Competitive t-RFLP analysis of a Methylobacter-related
fragment (tRF 508). Copy numbers of the pmoA gene and the
pmoA RNA/DNA ratio are shown with Sawitzky–Golay smooth-
ers (n¼ 5). The oxygen consumption rate was calculated from the
microprofile shown in Figure 1a using Berg’s program PROFILE
ver. 1.0 (Berg et al., 1998), considering the top 2mm.
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together with the rationale for selecting them are given in
Supplement 2.
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vertical position of different OTUs but also physio-
logical differences within one OTU. While applied
here to a laboratory system, this technique can also be
adapted to retrieve real-time snapshots from sediment
surfaces using freeze cores (Macumber et al., 2011).

Using the pmoA gene as a functional and phylo-
genetic marker for MOB, we analyzed genes and
transcripts at the sub-mm scale along a depth profile
from the soil surface down into the anoxic zone.
As predicted from oxygen microprofiles, methano-
trophic activity was indeed located at the oxic–
anoxic interface. Using pmoA transcripts as a
proxy for species-specific activity, we correlated
the transcript-to-gene ratio of specific methanotroph
taxa to methane-driven respiration.

Transcripts of mmoX, a gene encoding for a
subunit of sMMO found as a second monooxygenase
in some MOB, could not be detected, even if the
gene was found (Supplement 4). MOB of the genus
Methylocella lack pmoA, but has mmoX (Dedysh,
2009). This genus was previously thought to be
acidophilic, but could recently be detected in
circum-neutral environments, too (Rahman et al.,
2011). However, it was undetectable in the paddy
soil under study (Supplement 4). Hence, pmoA is
a reliable functional and phylogenetic marker for
this microcosm experiment.

Concentration profiles and activity
At the oxic–anoxic interface, oxygen is not only
used for the direct mineralization of organic matter
but also for the re-oxidation of end products from
anaerobic processes (Brune et al., 2000). In fresh-
water environments, methane is most important and
may be the dominant oxidation substrate at the
interface. Our microcosms were designed to model
this situation, but can in principle be re-configured
to focus on other redox processes or to study the
interaction between different competing processes.

The 16 oxygen microprofiles measured (4 per
microcosm) showed the same characteristics: a near-
linear decrease in oxygen concentration down to a
depth of about 1.3mm, followed by a pronounced
curvature before the concentration reached zero at
about 1.8mm depth (Figure 1a). The concomitant

methane concentrations at the oxic–anoxic interface
were most probably in the lower micromolar range
(Gilbert and Frenzel, 1998). The methane sensors
built for previous work (Rothfuss et al., 1994; Gilbert
and Frenzel 1998) do not achieve the sub-mm
resolution required for this experiment. While
further miniaturization is feasible, the detection
limit would decrease proportionally, making a
sensitive analysis impossible. Membrane-inlet mass
spectrometry (Lloyd et al., 1986; Lloyd et al., 1996;
Beckmann et al., 2004) suffers from the same
constraints, and the development of a microscale
biosensor for methane (Damgaard and Revsbech,
1997) has been discontinued. Hence, interpretation
has to rely on oxygen microprofiles alone.

We calculated oxygen consumption using Berg’s
program PROFILE ver. 1.0 (Berg et al., 1998) and a
sediment diffusion coefficient measured in this
paddy soil (Rothfuss and Conrad, 1994; Noll et al.,
2005). The algorithm calculates the zone-specific
respiration rate using Fick’s second law (Figure 3).
Assuming constant porosity, the respiration rate
at the surface was modest, followed by an area
where no significant respiration took place. High
values contributing 89% of the total oxygen respi-
ration were calculated for the zone above the
interface (Figure 3). Assuming a stoichiometry of
CH4:O2¼ 1:2, the total respiration of 36.6 nmol
O2 cm

� 2 h�1 corresponded to a methane oxidation
rate of 18.3 nmol CH4 cm

� 2h� 1.

t-RFLP patterns and quantification
In community profiling studies of MOB, t-RFLP
analysis targeting the pmoA gene has a long
tradition (Horz et al., 2001; Hoffmann et al., 2002;
Mohanty et al., 2007). The results, however, depend
on the choice of primer sets. Compared with the
682r reverse primer (Holmes et al., 1995), the reverse
primer mb661r (Costello and Lidstrom, 1999; Bourne
et al., 2001) covers methanotroph diversity, but
not the homologous amoA gene encoding for a
subunit of ammonium monooxygenase. Further-
more, primer mb661r seems to be superior for
resolving type I diversity (Bourne et al., 2001;
Lüke et al., 2010).

Table 1 Average number of pmoA gene copies and transcripts in the three different depth zones defined in Figure 4

Depth zone (mm) pmoA copies pmoA transcripts

P-value P-value

(107 g�1) Anoxic–oxic interface Surface (107 g�1) Anoxic–oxic interface Surface

Surface (0–0.8) 4.6 o0.05 n.a. 1.3 o0.01 n.a.
Anoxic–oxic interface (0.8–2) 16.1 n.a. o0.05 44.9 n.a. o0.01
Anoxic (2–3) 1.5 o0.01 o0.005 2.8 o0.001 0.3

Abbreviation: n.a., not applicable.
P-values are for t-tests comparing averages per depth zone.
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When we compared DNA- and RNA-based com-
munity profiles, we found striking differences
between the extant (DNA-based) and active (RNA-
based) populations (Figure 1). The extant popula-
tion changed consistently with depth in all four
microcosms studied (Figure 2). Virtually no tran-
scripts of type II MOB were found, but a Methylo-
bacter-like OTU (tRF 508) was most prominent
around the oxic–anoxic interface (Figures 1b and
c). Taking transcription as a proxy for activity, this
dominance suggested a corresponding localization
of Methylobacter-specific methane oxidation. This
conclusion, however, depends largely on the high
fraction of unspecific tRFs derived from ribosomal
RNA. While this large fraction of false-positive
tRFs suggested an extremely low content of pmoA
mRNA compared with rRNA, it is only a tentative
measure. We therefore adapted a cPCR assay (Han
and Semrau, 2004) and used it to quantify the
most prominent Methylobacter-like OTU (tRF 508;
Figure 3).

cPCR has rarely been applied in microbial ecology
(Han and Semrau, 2004), but it has certain advan-
tages, in particular if combined with t-RFLP. t-RFLP
alone gives only relative values. Provided adequate
standards can be constructed, t-RFLP can easily
be modified to retrieve truly quantitative data. In
addition, RT-cPCR helps in overcoming the varia-
bility inherent to the RT step (Freeman et al., 1999).
In the particular case of pmoA, RT-cPCR helped
in circumventing the problem with unspecific
RT-PCR products; the latter had restriction sites
that were different from those of the OTU of interest.
Some limitations of t-RFLP still apply, for example, a
limited phylogenetic resolution and the co-occurrence
of particular tRFs in more than one phylotype. Hence,
a decent sequence database is a must. However,
cPCR combined with t-RFLP has the major advan-
tage that not only quantification but also other tasks
such as community analysis (t-RFLP, microarray)
and sequencing can be based on the same assays,
whereas covering different MOB types by qPCR
requires different primer sets (Kolb et al., 2003).

In the anoxic zone below 2mm, the pmoA copy
number was low and may correspond to the initial
numbers present in the dry soil when the experi-
ment was started. The slightly higher copy number
in the top zone suggested that growth had taken
place there at least for some time (Table 1). The
maximum transcript:gene ratio coincided with the
highest respiration rate, but was localized slightly
deeper in the soil than the maximum pmoA copy
number (Figure 3). If we consider two pmoCAB
operons per cell (Semrau et al., 1995), the Methylo-
bacter-affiliated OTU had up to 18 transcripts per
cell (Figure 3). The half-life of pmoA mRNA is
unknown. The half-life of other mRNAs may be as
short as 30 s, but could also be much longer
depending on the environment and the growth
state (Arraiano et al., 2010; Steglich et al., 2010).
However, we are confident that we preserved the

in situ mRNA content by shock freezing the soil
with liquid nitrogen when still in the microcosm.

The soil surface in the microcosms was character-
ized by high oxygen (Figure 1) and low methane
concentrations. Before we sampled the soil for
molecular analysis, 318ppmv methane had accumu-
lated in the headspace, which corresponds to 400nM

methane in the pore water near the soil surface.
Hence, MOB living in the top layers of the micro-
cosms were exposed to this or a slightly higher
methane concentration immediately before shock
freezing. However, the Methylobacter-affiliated OTU
had less than one transcript per cell (Table 1), which
suggested that this situation was rather unfavorable.
In the anoxic zone, however, the Methylobacter-
affiliated OTU had nearly four transcripts per cell
(Table 1). Our microcosm design aimed at producing
a planar system varying only with depth. Micro-
electrode measurements have a high spatial reso-
lution (o0.1mm, corresponding to ca. 0.53 nl),
whereas the molecular data refer to the entire area
of the microcosm (28.3 cm2, 0.28ml per layer).
However, the 16 oxygen profiles were so reproduci-
ble that we can rule out spatial heterogeneities.
Hence, factors other than locally deviating oxygen
penetration depth must be responsible for the high
transcript:gene ratio below the oxic–anoxic inter-
face. The nitrite-reducing methanotroph, ‘Candidatus
Methylomirabilis oxyfera’ is able to generate O2 from
NO via dismutase (Ettwig et al., 2010; Strous, 2011).
However, we have no indication that Methylo-
bacter possesses this trait, and nitrite was not
detectable in another microcosm experiment with
the same soil (Krause et al., 2010). Recently devel-
oped microelectrodes (Revsbech et al., 2009;
Revsbech et al., 2011) have demonstrated nanomolar
oxygen concentrations in areas that have been
considered anoxic so far. However, the design of
our microcosms includes a trap to remove any
oxygen that might have diffused into the lower
compartment (Murase and Frenzel, 2007). Hence,
oxygen may have been present in trace amounts in
the methane-rich ‘anoxic’ zone below the oxic–
anoxic interface, but diffusive transport of oxygen to
MOB must have been negligible, if it occurred at all.
Therefore, the mRNA:DNA ratio points to a differ-
entiated physiological status of the cells depending
on depth and a surprisingly high number of
transcripts in the anoxic zone.

Microarray analyses
Although the microarray analysis leads to essen-
tially the same conclusions as t-RFLP analysis, the
higher phylogenetic resolution of the microarrays
may allow differentiation down to the species level
(Stralis-Pavese et al., 2011). First developed for
DNA-based analyses, the microarray has been
successfully applied to study pmoA transcripts
(Bodrossy et al., 2006; Chen et al., 2007; Krause
et al., 2010). Here we used it to refine the transcript
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analysis (Figure 4, Supplement 3). The microarray
design follows a multiple-probes approach. This has
significant advantages and may help in detecting
groups not yet covered by a specific probe by
another, more conserved and general probe. A certain
degree of redundancy also helps to exclude false-
positive hybridization signals, but may introduce
a bias in ordination analyses if a particular
phylotype hybridizes with more than one probe.
Hence, we used only mutually exclusive probes
with a well-defined phylogenetic coverage for
ordination analysis. These probes and a few others
showing obvious spatial patterns are listed in
Supplement 2. The ordination (non-metric multi-
dimensional scaling, Figure 4) gave a clear separa-
tion between the surface, oxic–anoxic interface and
bottom zones.

The only signal that could be associated with type
II MOB was most probably false positive, as the
respective probe hybridizes also with different rice
paddy clusters (Lüke et al., 2010) belonging to type I
(Supplement 3); the general probes for type II gave
no signal. Type II MOB have been described as more
abundant than type I but as contributing to methane
oxidation mainly under high-methane concentra-
tions, whereas type I may thrive if the methane
source strength decreases (Henckel et al., 2000).
This, however, may be a misconception: even at
a high source strength, that is, high-methane
production rates, methanotrophic activity shapes
counter-gradients, resulting in a steady state with
concomitantly low oxygen and methane concentra-
tions at the oxic–anoxic interface. Thus, not methane
concentration but rather the energy flow through a
population may be the decisive factor (Krause et al.,
2012). Type II MOB may occasionally become active
in such a situation, but the controlling factor(s) are
unknown (Krause et al., 2010). However, extinguish-
ing 97.5% of all microbiota stimulates the exponen-
tial growth of type II MOB, which eventually become
by far the dominant group (Ho et al., 2011). Hence,
thanks to their robust resting stages (Whittenbury
et al., 1970a, b), type II MOBmay apply a sit-and-wait
strategy, taking advantage of changing situations
that may be a catastrophe for others.

Type I MOB may have benefited from the rather
constant conditions in the microcosms. Probes indi-
cative for Methylobacter gave positive signals in the
oxic–anoxic interface and the anoxic zone (Supple-
ment 3), but much less so in the surface zone. This
corresponds to the quantification with cPCR/t-RFLP
(Figure 3), which revealed a higher mRNA:DNA
ratio in the anoxic zone than in the surface zone.
The role of type II MOB and Methylobacter is
surprisingly similar to that found in a seasonal
study on an alpine meadow (Abell et al., 2009), in
which type II MOB remained largely unaffected by
season and environment but nevertheless repre-
sented the dominant MOB. Methylobacter-related
MOB, however, were found to be responsible for the
majority of methane oxidation.

Probes indicative for Methylosarcina gave signifi-
cant signals in the surface zone (Supplement 3),
which suggested activity at high oxygen concentra-
tions (245–132mM) and low methane concentrations
(ca. 400nM). This is much higher than the atmo-
spheric methane concentration (1.8 ppmv, corre-
sponding to 2.3 nM), but cultures of and sequences
affiliated to Methylosarcina have so far only been
retrieved from high-methane environments, such as
lake sediments, rice paddies and landfills (Wise
et al., 2001; Kalyuzhnaya et al., 2005; Henneberger
et al., 2011; Lüke and Frenzel 2011). Apparent
Km constants in environments with high source
strength are usually 41mMCH4 (Conrad, 1996), but
some cultivated MOB, in particular Methylocystis
strains, may grow for an extended period at 120nM

CH4 and less (Knief and Dunfield, 2005). For
Methylosarcina-like MOB, however, activity at low
methane concentrations has not yet been reported.

Conclusions

As shown before, only a restricted subset of a
diverse methanotroph community was active, and
most activity was confined to a zone 0.67-mm thick.
However, our experiment showed how different
OTUs within a single guild can share the same
microenvironment, thereby exploiting different
niches. We hypothesized that activity would be
highest immediately at the oxic–anoxic interface
separating MOB according to substrate availability.
This was indeed the case, with a Methylobacter-
affiliated OTU and dominating overall methane
oxidation located at the oxic–anoxic interface. This
OTU seems to be well adapted to the oxic–anoxic
interface, where oxygen and, presumably, methane
concentrations are in the micromolar range. This
OTU was not active at the surface with its high
oxygen but only nanomolar methane concentra-
tions. In contrast, transcripts of a Methylosarcina-
affiliated OTU were associated with this surface
layer, which suggested an adaptation to oligotrophic
conditions.
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Eller G, Krüger M, Frenzel P. (2005). Comparing field and
microcosm experiments: a case study on methano- and
methylotrophic bacteria in paddy soil. FEMS Microbiol
Ecol 51: 279–291.

Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot
S, Kuypers MMM et al. (2010). Nitrite-driven anaero-
bic methane oxidation by oxygenic bacteria. Nature
464: 543–548.

Freeman WM, Walker SJ, Vrana KE. (1999). Quantitative
RT-PCR: pitfalls and potential. Biotechniques 26:
112–125.

Frenzel P, Rothfuss F, Conrad R. (1992). Oxygen profiles
and methane turnover in a flooded rice microcosm.
Biol Fert Soils 14: 84–89.

High-resolution spatial analysis of methanotrophs
A Reim et al

2137

The ISME Journal



Frenzel P, Thebrath B, Conrad R. (1990). Oxidation of
methane in the oxic surface layer of a deep lake
sediment (Lake Constance). FEMS Microbiol Ecol 73:
149–158.

Gilbert B, Frenzel P. (1998). Rice roots and CH4 oxidation:
the activity of bacteria, their distribution and the
microenvironment. Soil Biol Biochem 30: 1903–1916.

Graham DW, Chaudhary JA, Hanson RS, Arnold RG.
(1993). Factors affecting competition between type-I
and type-II methanotrophs in two-organism, contin-
uous-flow reactors. Microbiol Ecol 25: 1–17.

Han JI, Semrau JD. (2004). Quantification of gene
expression in methanotrophs by competitive reverse
transcription-polymerase chain reaction. Environ
Microbiol 6: 388–399.

Henckel T, Roslev P, Conrad R. (2000). Effects of O2 and
CH4 on presence and activity of the indigenous
methanotrophic community in rice field soil. Environ
Microbiol 2: 666–679.
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