
ORIGINAL ARTICLE
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A central question in biology is how biodiversity influences ecosystem functioning. Underlying this
is the relationship between organismal phylogeny and the presence of specific functional traits. The
relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic
distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage
between phylogeny and the presence of specific functional traits. To identify the phylogenetic
conservation of specific traits in microorganisms, we developed a new phylogenetic metric—
consenTRAIT—to estimate the clade depth where organisms share a trait. We then analyzed the
distribution of 89 functional traits across a broad range of Bacteria and Archaea using genotypic and
phenotypic data. A total of 93% of the traits were significantly non-randomly distributed, which
suggested that vertical inheritance was generally important for the phylogenetic dispersion of
functional traits in microorganisms. Further, traits in microbes were associated with a continuum of
trait depths (sD), ranging from a few deep to many shallow clades (average sD: 0.101–0.0011 rRNA
sequence dissimilarity). Next, we demonstrated that the dispersion and the depth of clades that
contain a trait is correlated with the trait’s complexity. Specifically, complex traits encoded by many
genes like photosynthesis and methanogenesis were found in a few deep clusters, whereas the
ability to use simple carbon substrates was highly phylogenetically dispersed. On the basis of these
results, we propose a framework for predicting the phylogenetic conservatism of functional traits
depending on the complexity of the trait. This framework enables predicting how variation in
microbial composition may affect microbially-mediated ecosystem processes as well as linking
phylogenetic and trait-based patterns of biogeography.
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Introduction

Microorganisms control many biogeochemical pro-
cesses. Therefore, the pattern of microbial biodiver-
sity and the response to environmental changes are of
great interest. Indeed, a large body of literature
demonstrates that microbial community composition
varies over time and space and responds to environ-
mental changes (Horner-Devine et al., 2004; Fuhrman
et al., 2006; Allison and Martiny, 2008). However, the
overwhelming amount of microbial diversity and its
possible functional redundancy suggests that the
knowledge of microbial composition offers little
predictive power for microbial process rates. Thus,
it remains unclear how microbial community compo-
sition is related to ecosystem functioning.

The key to addressing this issue is the relation-
ship between phylogeny and functional traits
(Cadotte et al., 2008; Gravel et al., 2011). Predicting
changes in community composition and ecosystem
processes based on functional traits has received
considerable attention in plant ecology. Recently,
studies have found that the phylogenetic diversity of
a plant community is an important predictor of
plant productivity (Cadotte et al., 2008; Cavender-
Bares et al., 2009). These results suggest that plant
functional traits—especially those related to
productivity—are more commonly shared among
closely related species. Supporting this idea, a
microcosm study showed that more closely related
protists share more traits and that relatedness
affected the competition among coexisting organ-
isms (Violle et al., 2011). Thus, species richness or
diversity alone may be insufficient to understand
how community composition and assembly affect
the ecosystem function. Instead, we also need
information about the phylogenetic relatedness of
an organisms (Webb et al., 2002). But at least some
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studies have failed to measure a link between
phylogenetic relatedness and functional traits in
the plant communities (for example, Swenson et al.,
2012) and this can possibly be due to high variation
in the functional potential among closely related
lineages. Thus, the phylogenetic distribution and
clustering of functional traits may have effects on
both community assembly and functioning.

In a similar manner, the phylogenetic conserva-
tism of microbial functional traits can also be
considered (Philippot et al., 2010). Continuous traits
in microorganisms include salt tolerance or meta-
bolic activity at different temperatures, whereas
discrete traits include the metabolic ability to fix
nitrogen or CO2. If the traits are highly phylogeneti-
cally conserved, then they will be shared among
members of deep clades of microorganisms
(Figure 1—trait A). Alternatively, traits that are less
conserved will be found in small phylogenetic
clades (Figure 1—trait B). Finally, gene loss, con-
vergent evolution and lateral gene transfer can result
in the distribution of many traits across multiple
phylogenetic groups (Doolittle, 1999; Snel et al.,
2002), leading to random associations between
phylogenetic and functional relatedness (Boucher
et al., 2003) (Figure 1—trait C).

The underlying mechanisms responsible for var-
iation in the phylogenetic dispersion of functional
traits are presently not clear. However, it is known
that central gene systems consisting of many inter-
acting proteins evolve more slowly and are less
likely to be transferred between organisms (Jain
et al., 1999; Pal et al., 2005; Shi et al., 2005; Wellner
et al., 2007). In contrast, genes associated with the
peripheral systems are more likely to be gained and
lost. Thus, we hypothesize that functional traits
based on complex genetic systems integral to the
organism evolve slowly and will be more phylogen-
etically conserved (Figure 1—trait A). This would
result in traits shared in phylogenetically deep
clusters. In contrast, simple traits consisting of few
interacting proteins will be more dispersed or
completely randomly distributed (Figures 1—trait

B and C). Here, traits would be shared in phylo-
genetically shallow clusters.

Different approaches have been proposed for
estimating evolutionary rate of change and phylo-
genetic dispersion of traits. This includes estimates
of character evolution using either maximum like-
lihood or Bayesian approaches. Alternatively, other
approaches compare the phylogenetic distribution
of a trait to random or Brownian Motion models of
evolution, such as Pagel’s lambda for continuous
traits and Purvis and Fritz’s D for discrete traits
(Pagel, 1999; Fritz and Purvis, 2010). Although these
tests quantify the rate of evolution or evaluate the
significance of phylogenetic clustering, they do not
estimate the phylogenetic relatedness of the clusters
of organisms sharing a trait—for example, in terms
of 16S rRNA sequence similarity. For instance, if a
given functional trait is associated with fine-scale
clusters with a low trait depth (tD), the relative
abundance of alpha- vs gamma-Proteobacteria may
not accurately predict this function in a community.
Thus, knowing the actual tD is important for linking
specific changes in microbial community composi-
tion with changes in the functional potential of a
community.

The aim of this study was twofold. First, we
developed a new phylogenetic metric—
consenTRAIT—that directly estimates the sequence
similarity of clusters of organisms sharing discrete
traits. Second, we used this test to examine the
distribution and degree of phylogenetic clustering of
a variety of microbial traits. To address the latter, we
analyzed two data sets. The first data set includes all
completely sequenced prokaryotic genomes. For
each genome, we identified the presence of genomic
subsystems underlying many ecologically relevant
functions like photosynthesis, CO2 fixation,
N-cycling, or growth on various organic carbon
sources. The advantage of this data set is that it
provides a broad overview of the metabolic potential
of many strains across many phylogenetic groups.
At the same time, many traits are associated with
genetic changes beyond the presence or absence of a
pathway, such as differences in regulation or
mutations in associated genes. Therefore, we also
analyzed a second data set of organic carbon usage
by hundreds of bacterial strains. This data set
provides phenotypic information on specific
traits for many closely related bacteria, but does
not cover as broad a phylogenetic range as the
genomic data set.

Using our new metric and these two extensive
data sets, we specifically asked three questions: Are
most traits phylogenetically randomly distributed?
If not, are different traits associated with different
levels of phylogenetic clustering? Finally, is the
degree of phylogenetic clustering of a trait correlated
with its molecular complexity? If so, this result
provides a biochemical basis for predicting the
phylogenetic conservatism and distribution of traits
in microorganisms.

Figure 1 Hypothetical phylogenetic distribution of functional
traits present in i clades including a trait A with a high tD, three
clades with trait B with a low tD, and five randomly distributed
lineages with trait C. Ri denotes the root node for each clade iwith
a given trait and the tD is the average 16S rRNA distance between
the root node and the strains in each clade sharing a trait.
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Materials and methods

Data sets
To identify the phylogenetic distribution of traits in
microorganisms, we analyzed two data sets. The
first data set consisted of 2229 prokaryotic genomes
(full Patric SEED database of 15 October 2010
(Snyder et al., 2007)). This covered 26 phyla
(Supplementary Figure S1). We then identified the
distribution of 19 genomic subsystems underlying
ecologically relevant functions. We used the SEED
annotation database (Supplementary Table S1),
which provided a uniform annotation for all
genomes (Overbeek et al., 1999, 2005). We used
the SEED API for all analyses (Disz et al., 2010).
Whenever possible, we manually checked and
edited the presence of each subsystem by searching
literature for assigned physiologies. We estimated
the number of genes underlying a trait as the genes
in a given SEED subsystem. For the second data set,
we retrieved data describing utilization patterns of
70 organic carbon substrates of 738 strains from
Biolog Inc. (Hayword, CA, USA) (Supplementary
Table S2). This data set covered five phyla
(Supplementary Figure S1). These carbon sources
ranged from C1 to polymeric compounds. The
molecular complexity as determined by the Bertz
Complexity Index (Bertz, 1981) of each carbon
substrate was recorded from http://pubchem.
ncbi.nlm.nih.gov/.

Phylogenetic tree reconstruction
An aligned 16S rRNA sequence associated with each
genome was retrieved from the Silva database
(Pruesse et al., 2007). For the carbon substrate
utilization data set, we matched the strain names
to entries in the Silva database in order to retrieve
16S rRNA sequences. A phylogenetic tree for each
data set was estimated using PHYLIP (DNA distance
with F84 correction, neighbor-joining, and 100
bootstraps) (Felsenstein, 2006) and RAxML (350
bootstraps) at the CIPRES science gateway
(Stamatakis et al., 2008). Unless otherwise noted,
the results displayed were estimated using the DNA
distance method.

Phylogenetic mapping of traits
For each trait from the two data sets, we determined
the tD, phylogenetic dispersion and frequency of
gene gain and loss. tD was estimated using a custom
designed algorithm—consenTRAIT: consensus ana-
lysis of phylogentic trait distribution. The script was
written in R using functions from the ‘ape’ and
‘adephylo’ packages (Paradis et al., 2004; Jombart
et al., 2010). To estimate tD, we first identified
the root node of clades where at least 90% of the
members shared the trait. We then estimated the
average consensus sequence distance (d) between
the root node (Rj) of n clades (j) sharing a given

trait and the m members (i) of clades (that is, the
leaves, Si):

tD¼ 1
n

Pn

j

1
m

Pm

i

dðSijÞ

This estimate was repeated for each bootstrap tree.
We attributed the presence of singleton entries (that
is, no neighbor sharing the trait) to undersampling.
Therefore, we scored tD for singleton entries using
half the distance to the nearest internal node, which
essentially assumes an equal likelihood of finding a
neighbor organism with or without the trait. We
included a non-parametric estimate for significant
clustering by randomly assigning traits 1000 times
(10 times to each bootstrap tree) to entries in the
phylogenetic tree as a null distribution. We then
compared the estimated tD to this null distribution.

We used the test developed by Fritz and Purvis,
(2010) to estimate the phylogenetic dispersion (D)
for discrete traits from the R package ‘caper’. We did
1000 permutation based on random or Brownian
motion patterns of evolution and compared the
observed phylogenetic pattern to these two distribu-
tions for each trait. Here, a Do0 suggests a highly
clustered trait, DB0 indicates a Brownian motion
mode of evolution, D¼ 1 suggests a random mode of
evolution and D41 suggests phylogenetic over-
dispersion (Fritz and Purvis, 2010). A trait was
assigned as non-random if the probability of match-
ing a random distribution was less than 50%. We
used the Lilliefors Test to examine for normality
(Lilliefors, 1967) and Pearson and Spearman corre-
lation analysis to test for significant correlations
between variables. This was done with Matlab
(Mathworks, Natick, MA, USA).

Character evolution rate
An estimation of trait gain and loss events was
performed based on a Wagner parsimony approach
using Count (Csuros, 2010). We used a likelihood
ratio of 1:4 for gene gain and loss events, respec-
tively, but also tested different ratios. These gave
comparable results (R40.9). We also estimated the
rate of trait change with a Bayesian approach using
SIMMAP version 1.5 (Bollback, 2006). We estimated
the rates using both the default priors as well as both
overall and bias priors estimated with a MCMC
analysis.

Results

To identify the phylogentic clustering of functional
traits in microorganisms, we analyzed the phyloge-
netic distribution of 89 functional traits across the
Bacteria and Archaea using both genotypic and
phenotypic data. Both data set contained a high
proportion of Proteobacteria, Firmicutes, Actinobac-
teria and Bacteriodetes but especially the genome
data set included many phyla (Supplementary
Figure S1). We first tested if any traits were
randomly distributed—potentially due to gene loss,
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lateral gene transfer or convergent evolution. We
found that 93% (83 out 89) of the traits were non-
randomly distributed, as predicted by consenTRAIT
(Po0.05) and the phylogenetic dispersion of dis-
crete traits metric (P(D)randomo0.5) (Figure 2).

Given that most of the traits were non-randomly
distributed, we next used consenTRAIT to identify
if tD varied among the traits. We found that tD ranged
from 0.0029–0.11 rRNA sequence distance (Figure 2,
Supplementary Table S1 and S2). As expected,
oxygenic photosynthesis was the trait with the
highest tD (median 0.11, mean 0.10) and only
occurred in one clade—the phylum Cyanobacteria
(Figure 3a). Methanogenesis was also found in only
a few, deep clades. Sulfate reduction was present in
20 clusters with a tD¼ 0.039 16S rRNA distance.

These deeply clustered traits were the exceptions,
however. The vast majority of traits examined were
found in clusters of a depth less than 0.02 rRNA
sequence distance. For example, nitrogen fixation
was found in 54 clusters (Figure 3a) with a more
intermediate level tD ofB0.018 16S rRNA distance.
At the finest scale, both the analysis of genomic and
phenotypic data sets revealed that the ability to
grow on a particular carbon source was generally
seen in shallow clusters (Figures 2 and 3). In the
phenotypic data set, growth of each of the 70 organic
carbon sources was associated with a tDo0.011 16S
rRNA distance (Figure 2b and Supplementary Table
S2). The genomic data largely supported this view as
we here observed the potential for growth on several
carbon sources in clades with tDo0.017 16S rRNA
distance (Figure 2a). We also found many traits
located in clusters of one, in which no neighbors
shared the trait. This finding suggests that we have
still significantly undersampled microbial genomics
and phenotypic diversity (assuming at least some
clonal replication of the genome).

Next, we tested if trait complexity was correlated
with the phylogenetic dispersion and depth of
microbial traits. For the genomic data set, the
number of genes underlying a trait was used as an
indicator of trait biochemical complexity. We
observed a significant relationship between trait
complexity and phylogenetic dispersion (Figure 4a).
Complex traits encompassing many genes like
oxygenic photosynthesis and methanogenesis were
extremely clumped (Doo0) (Figure 4a and
Supplementary Table S2). Other traits including
nitrogen and CO2 fixation, anoxygenic photosynth-
esis and sulfate reduction displayed a clumped
distribution consistent with a Brownian motion
model of evolution (DB0). Finally, traits like carbon
substrate utilization were dispersed in a mode
between a Brownian motion and a random model
(0oDo1), suggesting that the ability to grow on
different carbon compounds is quite dispersed
(Dmean¼ 0.48, N¼ 71, Supplementary Table S2).
Further, we observed that trait complexity was
significantly correlated to tD for both the Pearson
and Spearman correlation tests (Figure 4b). Thus,

traits encoded by many genes were shared among
deeper clades than traits encoded by fewer genes.
The only clear exception to this trend was aerobic
methane oxidation, which was associated with a few
deep clades despite requiring only three genes.

For the phenotypic carbon substrate utilization
data set, we used the Bertz molecular complexity
index of the carbon substrate as a measure of trait
complexity (Bertz, 1981). The Bertz complexity
index takes into account not only the compound
size but also the bond types and overall structure.
We found that molecular complexity was signifi-
cantly correlated with phylogenetic dispersion
(R2¼ 0.07, PB0.03)—albeit with a low degree of
variance explained. In contrast, we did not find a
significant relationship between tD and complexity
of substrate (Supplementary Table S2), likely due
to low variability in tD (all tDo0.011 16S rRNA
distance).

As one should expect, the overall variation in
dispersion and tD among all traits was significantly
driven by the number of trait gain and loss events as
estimated using a maximum parsimony approach
(Po0.0001, Pearson correlation). In contrast, when
we measured the rate of trait changes (that is,
the character evolutionary rate) across the tree with
a Bayesian approach, we did not observe any
correlation.

We also evaluated the influence of the phyloge-
netic technique on both the Purvis and Fritz’s D and
consenTRAIT by comparing the values based on a
DNA distance and a maximum likelihood method
tree. The values were highly correlated for the two
phylogenetic techniques (R240.9, Po1� 10�20) and
both supported a correlation between trait complex-
ity and either phylogenetic dispersion or tD.

Discussion

In this study, we aim to identify the distribution and
degree of phylogenetic clustering of microbial traits.
To address this, we developed a new algorithm—
consenTRAIT. In contrast to past metrics testing for
a phylogenetic conservation of traits, the aim of
consenTRAIT is to estimate the phylogenetic depth
of clades where members share a trait. Furthermore,
it can identify the actually sequence divergence
defining ecologically coherent units (at least in
respect to one trait) rather than the taxonomic level
associated with a trait. The latter has been done in
some recent studies of plants due to the lack of a
detailed phylogenetic tree (Prinzing et al., 2001;
Swenson and Enquist, 2009). For microorganisms,
however, there is an abundance of sequence data
and organisms are mostly classified based on
phylogeny and this can be used directly for the
consenTRAITanalysis. This is important as it allows
for a direct comparison with phylogenetic trees and
can guide the threshold for defining operational
taxonomic units (OTU). Instead of requiring that all
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(b) Phenotypic traits identified based on the ability to used specific organic carbon substrates. Black dots denote non-random
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members in clade share a trait, we decided to use
90% membership threshold to account for unusual
genome configurations for example, a cyanobacter-
ium losing the ability to perform oxygenic photo-
synthesis (Zehr et al., 2008). It is worth noting that

increasing the % threshold value for membership of
a clade will commonly result in smaller tD values,
whereas a decrease will have the opposite effect.

We have deliberately not discussed the average
membership number in each clade sharing a trait as
we expect this number to be directly linked to
sampling effort. In other words, if a group of very
closely related organisms has been sequenced or
typed with Biolog, then we should expect to find a
high number of members in a clade sharing a trait.
An example of this could be E. coli. On the other
hand, in phyla with few analyzed strains, we will
likely find clades of one with a specific trait.

We find that more than 93% of the traits are
significantly non-randomly distributed (Figure 2),
suggesting that even in the presence of many well-
documented examples of lateral gene transfer,
vertical inheritance is generally important for the
distribution of functional traits in microorganisms.
The traits considered are distributed in phylogenetic
clusters with a continuum of depths. Thus, diversity
at all phylogenetic levels is relevant for the func-
tioning of a microbial community. Complex func-
tions like photosynthesis, methanogenesis, and
sulfate reduction are more phylogenetically con-
served and found in a few deep clades. Previous
studies found that habitat association, pH and soil
moisture optimum are also associated with deep
clades (Kowalchuk and Stephen, 2001; Fierer et al.,
2007; Philippot et al., 2010; Lennon et al., 2012;
Placella et al., 2012). Thus, there is a clear evidence
for specific traits associated with deeper clades.

In contrast, most traits we examine arose or
disappeared more recently—either by mutation or
gene gain and loss—and are shared among a few
closely related organisms. This includes finding
many traits in individual lineages with no sister taxa
sharing the trait. This suggests that we have still
undersampled microbial diversity, and that many
traits might be associated with even finer-scale

Oxy. Photosynthesis

Melibiose utilization
N2 fixation

Raffinose
Citrate

Serine

a b

Figure 3 Phylogenetic distribution of functional traits (red lines) in Prokaryotes. (a) Phylogenetic distribution of the traits oxygenic
photosynthesis, nitrogen fixation and utilization of melibiose based on annotated genomic subsystems in the SEED database. (b)
Phylogenetic distribution of the traits raffinose, citrate, and serine utilization based on observed growth in Biolog substrate utilization
plates. The phylogenetic trees are based on a 16S rRNA alignment from the Silva database and estimated in Phylip using a distance based
matrix (F84 correction), neighbor-joining, and 100 bootstraps (Felsenstein, 2006).
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diversity. Thus, our estimate for tD should be
considered an upper bound for many functions. In
particular, traits associated with the assimilation of
small organic carbon sources are highly phylogen-
etically dispersed. This result is consistent with
observations of wide variation among the strains of
E.coli, Acinetobacter, Vibrio, etc., in their ability to
use particular carbon substrates (Sarma et al., 2004;
Keymer et al., 2007; Vieira et al., 2011). Previous
studies have identified other phylogenetically dis-
persed bacterial traits like nutrient acquisition
(Martiny et al., 2006) and particle colonization
(Hunt et al., 2008). Here, these traits are also
associated clusters of a small tD.

As one would expect, tD of each trait is significant
correlated to phylogenetic dispersion and the num-
ber of gene gains and losses. Thus, the consenTRAIT
metric provides a similar ranking of phylogenetic
conservatism as other approaches. However, con-
senTRAIT also identifies the phylogenetic level
where one should expect to find ecologically
coherent clusters. Thus, our approach and results
have significant implications for how to analyze and
interpret microbial diversity patterns. To under-
stand, which biotic or abiotic factors control the
distribution and functioning of microbial diversity,
an OTU is usually defined arbitrarily. Defining an
OTU can be done either explicitly by grouping
lineages using a sequence similarity of 97% to
cluster groups or implicitly by linking an OTU to a
peak with techniques like ARISA (automated rRNA
intergenic spacer analysis), T-RFLP (terminal-
restriction fragment length polymorphisms), or
phospholipid fatty acid profiles. Thus, most techni-
ques rely on a fixed definition of an OTU but the
advantage of consenTRAIT is that this algorithm
identifies the average clade depth where organisms
share a trait. Thus, it enables you to evaluate if a
microbial taxon is ‘defined’ at a sequence similarity
level that is meaningful in comparison with the
phylogenetic dispersion of relevant traits. This may
not always be at the phylogenetic level whereby
standard techniques define taxa. It is, however,
important to recognize that the consenTRAIT metric
estimates the phylogenetic distance between the tips
and the last common ancestor of a clade with a given
trait, whereas clustering algorithms like MOTHUR is
based on the inter-lineage distance (Schloss et al.,
2009). For example, if a clade only contains two
members with 3% sequence dissimilarity, the
average distance between each tip and the clade
root node would be 0.015. Thus, a trait with
tD¼ 0.015 will be expected to show most variation
among OTUs defined by 97% sequence similarity. In
our study, we identify many traits associated with
tDo0.015 including the utilization of many small
carbon molecules, whereas functions related to
photosynthesis or central functions in the nitrogen
or sulfur cycle are found in clusters above this
threshold. Thus, OTUs will contain a mixture of
lineages with and without most small carbon

molecule usage traits if defined using a 97% 16S
rRNA sequence similarity cutoff. A result of this is
that studies that aim to investigate how microbial
diversity varies among gradients of these kinds of
carbon substrates should only expect to observe
patterns using a much finer genetic resolution.
Similarly, traits associated with broad clades may
not come out significant if your taxa are defined at a
much finer level. Our study suggests that diversity at
a range of phylogenetic levels can be relevant for the
functioning of the community, and different func-
tions are related to different phylogenetic cluster
sizes. Thus, broad changes in the taxonomic
composition of a community might influence the
functioning of traits associated with deep clusters,
but unlikely to have a big effect on traits associated
with shallow microdiverse clusters and vice versa.
To account for this, we need a flexible classification
of microbial taxa to understand the distribution and
functioning of the full spectrum of phylogenetic
diversity.

We hypothesized that genetic complexity of a trait
could possibly influence the trait dispersion and
depth. We find support for this relationship in the
genomic data set examined even though many other
factors beyond complexity-likely influence the
phylogenetic distribution of traits (for example,
selective pressures and interactions between traits).
The association of specific functional traits with
different phylogenetic levels has previously been
described in microorganisms. For example, the
marine cyanobacterium Prochlorococcus can
broadly be divided into two groups based on their
ability to grow under high and low light levels
(Moore et al., 1998). Light adaptation is likely a
complex trait as it involves many interaction
proteins. The high-light adapted clade can be further
divided into a low and high iron group (Rusch et al.,
2010), and the high iron group can be subdivided
into high and low temperature adapted cells
(Johnson et al., 2006). Finally, nitrate and phosphate
assimilation genes are associated with shallow
clades (Martiny et al., 2009a,b). Nutrient uptake
capabilities are possibly more simple traits as they
involve clusters of a few genes. Thus for Prochlor-
ococcus, specific traits are clearly dispersed differ-
ently phylogenetically, and this variation might be
linked to difference in the complexity of the trait.
The variation is not exclusive to microorganisms.
Prinzing and co-workers find that among plants in
Europe, tolerance of extremes in soil moisture was
associated with higher taxonomic levels than were
those for temperature or light (Prinzing et al., 2001).
Similarly, tree height and seed mass are linked to
broader phylogenetic groups in comparison with
other functional traits in trees (Swenson and
Enquist, 2009).

The linkage between traits and complexity offers a
framework for predicting the phylogenetic distribu-
tion of specific traits as well as the resilience and
robustness of specific microbe-mediated ecosystem
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processes to environmental changes. If the traits are
distributed among few phylogenetic clades, shifts in
community composition may strongly alter the
associated ecosystem process (Schimel et al.,
2005). In contrast, communities may be resilient to
changes if a trait is distributed among many groups.
However, there are potentially millions of microbial
taxa (Torsvik et al., 1990) and a multitude of important
traits, so it is likely impossible to map all relevant
traits to all phylogenetic lineages of microorganisms.
Our findings offers a way to begin to estimate how
broad or narrow phylogenetically distributed a trait is
based on the genetic and biochemical complexity of
the function. This can help to predict how changes in
microbial biodiversity may affect ecosystem function-
ing and how resilient a community is to a particular
perturbation. Considering the important role micro-
organisms has in many ecosystem processes, this
understanding is critical for predicting future changes
in global biogeochemical cycles.
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