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Comparison of multiple metagenomes
using phylogenetic networks based on
ecological indices
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Second-generation sequencing technologies are fueling a vast increase in the number and scope of
metagenome projects. There is a great need for the development of new methods for visualizing the
relationships between multiple metagenomic data sets. To address this, a novel approach is
presented that combines the use of taxonomic analysis, ecological indices and non-hierarchical
clustering to provide a network representation of the relationships between different metagenome
data sets. The approach is illustrated using several published data sets of different types, including
metagenomes, metatranscriptomes and 16S ribosomal profiles. Application of the approach to the
same data summarized at different taxonomical levels gives rise to remarkably similar networks,
indicating that the analysis is very robust. Importantly, the networks provide the both visual
definition and metric quantification for the non-rooted relationship between samples, combining the
desirable characteristics of other tools into one.
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Introduction

Metagenomics is the study of the genomic content of
a sample of organisms, obtained from a common
habitat or an environmental sample of microbes
using sequencing. Advances in the throughput and
cost-efficiency of sequencing technology are fueling a
rapid growth of the number and scope of metage-
nomics studies, resulting in a deluge of sequences.
Taxonomic analysis of such data sets has shown that
only a small number of prominent taxa appear in
most data sets, while the majority appear to be
present only in small numbers, in what has become
known as the rare biosphere (Sogin et al., 2006).

There is a great need for the development of new
methods for analyzing and comparing multiple
metagenomic data sets, using appropriate ecological
and statistical models. Explicitly, a tool that combines
the visualization of relationships with a metric of
distance in a single package, which includes appro-
priate ecological indices, without the need to fit
metagenomic data to a root evolutionary dendrogra-
matic relationship. The two main software engineer-
ing requirements are rapid computational analysis of
very large data sets and ease of use for researchers.

In this paper, we suggest a novel approach that
combines the use of taxonomic analysis, ecological
indices and non-hierarchical clustering to provide a
network representation of the relationships between
different metagenome data sets. The approach
proceeds as follows:

First, a taxonomic profile is computed for each
data set. Second, a matrix of pairwise distances is
determined using one of several possible ecological
indices (Legendre and Legendre, 1998). Finally, the
distances are represented using an appropriate
visualization technique. For reasons outlined below,
we suggest to use the non-hierarchical clustering
technique, neighbor-net (Bryant and Moulton, 2004).

In more detail, the first step is to produce a
taxonomic profile for each given metagenomic data
set. For DNA reads collected in a shotgun sequencing
approach, one possibility is to use theMEGAN program
(by Daniel H Huson and Stephan C Schuster (with
contributions fromAlexander FAuch, Daniel C Richter,
Suparna Mitra & Ji Qi) Algorithms for Bioinformatics,
Tuebingen University, Germany) (Huson et al., 2007),
which performs a taxonomic analysis of a metagenomic
data set based on a BLASTX (Altschul et al., 1990)
comparison of a data set against an appropriate
reference database such as NCBI-nr (Wheeler et al.,
2008). MEGAN creates taxonomic profiles at different
ranks of the NCBI taxonomy, and counts how many
reads are assigned to each taxon at the specified rank.
The current reference databases are still largely based
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on ‘model organisms’ and were not specifically
designed as reference databases for metagenomics, thus
BLAST-based analyses will be affected by the avail-
ability of good reference genomes in the database.
However, the approach described in this paper is not
tied to BLAST and such databases, as we show below
in a study comparing 16S ribosomal RNA data.

The next step is to compute a matrix of pairwise
distances from the taxonomic profiles using a
suitable ecological measure. After reviewing 27
different ecological measures (listed in Legendre
and Legendre, 1998), we chose six to use in this
study. The simplest and most common metric
measure is the ‘Euclidean distance’ (Equation 1),
which is computed using Pythagoras’ formula. The
distance (D) between two metagenome samples
(X, Y) can be calculated using,
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where xi and yi are the read counts for the ith taxon of the
respective metagenomic samples X and Y. It is domi-
nated by the highly abundant taxa and its value can
increase indefinitely with the number of descriptors.
The Kulczynski (Equation 2) (Odum, 1950) and Bray–
Curtis (Equation 3) (Bray and Curtis, 1957) distances are
slightly more sophisticated measures giving by
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The w2 (Equation 4) (Lebart et al., 1979) and Hellinger
(Equation 5) (Rao, 1995) distances are two probabilistic
measures that calculate the distance among sites using
species abundances. They are calculated as,
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While the ‘Bray–Curtis’ (Bray and Curtis, 1957) and
‘Kulczynski’ (Odum, 1950) measures also focus on the
most abundant taxa, the ‘w2’ (Lebart et al., 1979) and
‘Hellinger’ (Rao, 1995) distances are based on differences
in the proportions of taxa between the two data sets and
thus provide better representations of the taxon compo-
sition. Goodall’s similarity index (Goodall, 1964, 1966) is
a non-parametric measure specifically designed for
determining the pairwise similarity between observa-
tions of composite multivariate data sets.

The computation of Goodall’s index involves a
number of steps. First, a so-called ‘partial similarity
measure’ is calculated between each pair of species.
Then for each pair of data sets, one computes the
proportion of partial similarity values belonging to
species i that are larger than, or equal to the partial
similarity of the pair of data sets being considered.
These proportions (pi) are combined for the n
species by computing the product (

Q
) of the values

relative to various species as
Q

¼
Qn

i¼1 pi. Finally
the similarity (S) between two data sets (X, Y) can be
obtained as the proportion of the products (

Q
)

that are larger than or equal to the product of the pair
of data sets (

Q
pair) considered. The equation is

giving by,
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See (Goodall, 1964, 1966; Legendre and Legendre,
1998) for further details.

By definition, Goodall’s index gives more weight
to differences between rare taxa than the other
indices, and should therefore be particularly suita-
ble for comparing microbial metagenomes (Sogin
et al., 2006).

There are two popular ways of representing
distance matrices graphically. The first, widely
applied in ecological studies, is to use a principal
component analysis (PCA) or non-metric multi-
dimensional scaling (NMDS) to obtain a two-
dimensional layout. The second, widely used in
evolutionary studies, is to use rooted trees com-
puted by a hierarchical clustering method (Rusch
et al., 2007). The advantage of a tree representation
is that it explicitly provides clusters of closely
related data sets. However, metagenomes are not
expected to evolve along a tree, rather numerous
environmental factors may affect data set composi-
tion, resulting in distances that reflect incompatible
signals. Although ordination methods do not suffer
from this problem, they do not explicitly link data
points into clusters and provide no metric against
which to determine the distance between data sets.
Hence, we suggest to use the neighbor-net method to
compute an unrooted phylogenetic network that
enjoys the advantages of both methods (Bryant and
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Moulton, 2004). Such networks are not restricted to
being a tree and are able to show incompatible
clusters.

In this study, we apply the approach outlined
above to marine metagenomes from three types of
studies; a mesocosm experiment (Gilbert et al.,
2008), a spatially structured data set (the Global
Ocean Survey) (Rusch et al., 2007) and a time-series
(Gilbert et al., 2009). Our study suggests that the
approach is robust as it produces networks that are
very similar across all ranks of the NCBI taxonomy
and, to a lesser extent, across different ecological
indices. We further establish that the use of Good-
all’s index provides the best results, given that
microbial communities tend to be rich in rare genes
and rare taxa (Sogin et al., 2006). Thus, Goodall’s
index may be most suitable for analyses that involve
rare taxa, whereas the w2 and Hellinger distances can
be considered when rare taxa have only a small role.

Materials and methods

All metagenomes and metatranscriptomes were
aligned against the NCBI-NR database using the
BLASTX tool (Altschul et al., 1990). The results
were imported into MEGAN (Huson et al., 2007),
using the ‘Import from BLAST’ option. To obtain
taxonomic profiles, MEGAN uses the lowest com-
mon ancestor algorithm that assigns each read to the
lowest common ancestor of the set of taxa that it hits
in the NR database. A MEGAN project file contains
all reads and all significant BLAST matches in a
binary and incrementally compressed format, which
is around 30% of the size of the original input files.
We then performed multiple comparisons using
various ecological indices and constructed networks
using the neighbor-net algorithm (Bryant and Moulton,
2004), as implemented in version 4 of MEGAN.

In the first study, we compared eight Plymouth
Marine Laboratory (PML)-Bergen data sets consist-
ing of four metagenomes (DNA) and four metatran-
scriptomes (complementary DNA (cDNA)), and
named these eight samples as follows: (1) Time1-
Bag1-DNA, (2) Time1-Bag6-DNA, (3) Time2-Bag1-
DNA, (4) Time2-Bag6-DNA, (5) Bag1-13May-cDNA,
(6) Bag1-19May-cDNA, (7) Bag6-13May-cDNA and
(8) Bag6-19May-cDNA (please refer to (Gilbert et al.,
2008) for details of nomenclature). All data sets were
randomly re-sampled to the smallest data set size to
allow inter-comparison (for example, Gilbert et al.,
2009). After opening all the data sets in MEGAN, the
‘compare’ menu item was used to generate a new
document that contains a comparison of all data
sets. We compared the taxonomical profiles (as
MEGAN files) of these eight data sets. Then, multi-
ple comparisons of the data sets were performed
using six different ecological distance measures
(Euclidean, Kulczynski (Odum, 1950), Bray–Curtis
(Bray and Curtis, 1957), Hellinger (Rao, 1995), w2

(Lebart et al., 1979) and Goodall’s index (Goodall,

1964, 1966) at each of seven taxonomic ranks
(‘kingdom’, ‘phylum’, ‘class’, ‘order’, ‘family’,
‘genus’ and ‘species’) to create a total of 42 networks
(Supplementary Figures S1.1, S1.2 and S1.3). The
distances were processed by the neighbor-net
algorithm (Bryant and Moulton, 2004) to obtain a
collection of unrooted phylogenetic networks.

In a second study, we used one random sub-
sample of the Sargasso Sea data (Venter et al., 2004)
and one sub-sample from the Sorcerer II Global
Ocean Sampling expedition data (GOS) (Rusch
et al., 2007) and the data and setup from the PML-
Bergen study, to visualize the comparison of multi-
ple marine metagenomes from different environ-
ments processed using different sampling and
sequencing strategies. All 10 data sets were ran-
domly re-sampled to the smallest data set size to
allow inter-comparison of taxonomic abundances
(for example, Gilbert et al., 2009). As in the first
study, we performed a multiple comparison of the
10 data sets using four of the distances (Goodall’s
index, Euclidean distance, Hellinger distance and w2

distance) at each of seven taxonomic ranks to create
28 additional networks (Supplementary Figures
S2.1, S2.2), Networks obtained using the Kulczynski
and Bray–Curtis distances looked very similar to the
networks obtained using Euclidean distance in the
previous study (Supplementary Figure S1), so we
dropped the Kulczynski and Bray–Curtis distances
from subsequent experiments.

In addition, multiple comparisons were per-
formed using four of the indices considering only
bacterial taxa at six taxonomic ranks, resulting in a
further 24 networks (Supplementary Figure S3.1).
For the Goodall’s index and Euclidean distance, the
numbers of sequences identified as bacterial were
randomly normalized to standardize the apparent
sequencing effort.

In a third study, we investigated the effect of
excluding rare taxa from the taxonomical profiles. In
this study, we analyzed the data at the class rank of
the NCBI taxonomy. We duplicated the six meta-
genomes (four Bergen metagenomes, one Sargasso
Sea sample and one GOS sample from the previous
study) and excluded all taxa that have an arbitrarily
selected abundance of o0.025% of the total com-
munity abundance from each data set. We then
compared these six truncated metagenomic data sets
using all six indices, resulting in six networks at the
level of class taxa (Supplementary Figure S4).

In a fourth study, we analyzed all 41 samples of
spatially structured GOS data. As with the previous
three studies, all 41 data sets were randomly re-
sampled to the smallest data set size. All data sets
were ‘blasted’ against the NCBI-NR database and the
result was imported to MEGAN. As for the Bergen
samples, we computed taxonomic profiles as
MEGAN files for all 41 GOS data sets. We down-
loaded the GOS data, from the CAMERA website
(Seshadri et al., 2007), we then normalized the data
sets to the smallest size to allow inter-comparison of
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taxonomic abundances. We performed the compar-
ison using Goodall’s index at the class rank
(Supplementary Figure S5). First, we compared all
the sites together (Supplementary Figure S5B) and
then only the coastal and open ocean sites (Supple-
mentary Figure S5C) to illustrate biogeographic
clustering based on the assumption that the coastal
sites may harbor a more diverse microbiota than the
open ocean sites.

In a final study, we analyzed the correlation
between 12 ‘16S ribosomal RNAV6 tag-pyrosequen-
cing’ data sets spanning 12 months of 2007 at a
continually monitored sampling site, L4, in the
Western English Channel (Gilbert et al., 2009). As
before, random re-sampling of these 12 samples was
carried out to identical sequencing depth, to allow
inter-comparison. As most operational taxonomic
units (OTUs) are not present in all samples
considered, we prepared an OTU abundance matrix
by adding zeros in which there were no representa-
tives for that sample.

We compared samples taken from the marine
community over several months using Goodall’s
index in combination with neighbor-net based on all
unique OTUs (Supplementary Figure S6.A), then
excluding OTUs found on only one occasion
(Supplementary Figure S6.B), and finally consider-
ing only the OTUs found every time (Supplementary
Figure S6.C). In addition, we prepared the PCA and
NMDS plots using the same OTU data for OTUs
present in two or more occasions. For the PCA
analysis, we used the raw data and for the NMDS
calculation we used a computed Bray–Curtis matrix
(Supplementary Figure S7: for a more detailed
method please refer to Gilbert et al., 2009).

Results and discussion

Study 1: comparison of eight marine samples from an
ocean acidification study
For the PML-Bergen analysis, all six selected
ecological indices produce almost identical placements

of the eight samples within a neighbor network,
with only minor differences in the distances
between samples (see Figure 1 and Supplementary
Figure S1). The placement of these PML-Bergen
samples conforms to reported biological and experi-
mental relationships (Gilbert et al., 2008), with the
metagenomes being well separated from the meta-
transcriptomes, and the samples from the peak of
the induced phytoplankton bloom (Time1 or 13
May) being more separated from the samples
after the collapse of the phytoplankton bloom
(Time2 or 19 May) than each group is to
itself. Interestingly, for the time 2 or 19 May
metagenomes, the opposite is true with the differ-
ences between these being greater than their
similarity to samples within the time 1 metagen-
omes. This is indicative of the extremely different
ecology of the mesocosm samples that existed
after the collapse of the bloom. This was brought
about by the experimental methodology used, in
which immediately after the collapse of the bloom
Bag1 was re-bubbled with CO2 and Bag6 was re-
bubbled with air. This significantly altered the
community composition and hence forced these
samples apart (for more information refer to Gilbert
et al., 2008).

Study 2: comparison of multiple marine metagenomic
samples from different studies
To confirm that the Bergen-PML network was robust
to the inclusion of additional samples, we added
two additional marine metagenomes as ‘decoys’.
The first was a subset of reads taken from the pooled
Sargasso Sea study (Venter et al., 2004) and the
second was a subset of the larger GOS (Rusch et al.,
2007). To allow an accurate comparison, a random
subset of 96 201 sequences (the size of the smallest
mesocosm data set (Gilbert et al., 2008)) was
extracted from each study. After computing net-
works with four indices (Figure 2; Supplementary
Figure S2), we confirmed that the eight PML-Bergen

Figure 1 Network obtained using Goodall’s index showing the comparison of eight PML-Bergen samples (four metagenomes and four
metatranscriptomes) considering all nodes at the class rank of the NCBI taxonomy.
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samples remain in their original groupings and that
the two decoys are placed at a distance from them.
Interestingly, there are clear differences between the
networks based on the Euclidean distance, wherein
the decoys are much more distantly related to the
PML-Bergen samples than for the Goodall’s index
(Figure 2; Supplementary Figure S2), we hypothe-
size that this is due to the biases induced by the
vast rare biosphere and the way each index handles
low-abundance sequences. The networks based on
the Hellinger and w2 distances (Supplementary
Figure S2) are also similar. The GOS sample appears
to cluster more closely to the PML-Bergen samples
than the Sargasso Sea sample, as the GOS
sample (random sub-sample of all GOS samples) is
heavily enriched from coastal study sites, whereas
the Sargasso Sea is an oligotrophic open ocean
(Venter et al., 2004).

Study 3: multiple metagenome/metatranscriptome
comparisons considering only bacterial nodes
When only bacterial taxa are considered, the
Sargasso Sea data set appears to be more similar to
the other data sets than it does when all taxa are
considered. This is because the Sargasso Sea
sample contains a much smaller number of eukar-
yotic reads compared with the other data sets.
This reflects the similar water sampling procedures
(for example, filter size) for the GOS (Rusch et al.,
2007) and mesocosm (Gilbert et al., 2008) data sets,

resulting in organisms of a similar size range
being analyzed; whereas the Sargasso Sea study
used a different sampling procedure (Venter et al.,
2004), which excluded micro-eukaryotes. In this
study, the networks computed using Goodall’s
index (Figure 3; Supplementary Figure S3) and
Hellinger distance (Supplementary Figure S3)
maintain a very similar layout over all ranks of the
NCBI taxonomy for the 10 metagenome data sets,
whereas the networks using Euclidean distance
(Supplementary Figure S3) and w2 distance (Supple-
mentary Figure S3) show more variability.
Strikingly, unlike the first and second studies,
the PML-Bergen metagenomes tend to group to-
gether by time, with time 1 (13 May) being more
similar to each other than to time 2 (19 May), and
vice versa. This suggests that the post-bloom
bubbling treatment of these bags had a greater
effect on the eukaryotic and archaeal communities
than the bacterial communities. This is possible
as a result of the bubbling-induced lysis of
eukaryotic cells.

Study 4: the effect of rare taxa
To study the effect of rare taxa on such analyses, we
excluded all taxa having an abundance of o0.025%
from each of the six metagenomes examined above
(now excluding the four metatranscriptomes). The
resulting truncated data sets were then compared
with the original full data sets. We observe that the

Figure 2 Network obtained using Goodall’s index showing the comparison of 10 marine samples (randomly re-sampled Sargasso Sea
and GOS samples together with the eight PML-Bergen samples) considering all nodes at the class rank of the NCBI taxonomy.
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placement of the original metagenomes remains the
same in all the networks computed. The networks
based on the Euclidean, Kulczynski and Bray–Curtis
distances are unable to distinguish between the
original and truncated metagenomes, placing them
at identical locations in the network (Supplemen-
tary Figure S4; left column). Networks obtained
using the w2 and Hellinger distances place the
truncated samples close to the original metagen-
omes, but on separate branches (Supplementary
Figure S4; right column). Only the network based
on Goodall’s index was able to represent the correct
branching within the data sets (Figure 4; Supple-
mentary Figure S4). Interestingly, we observed that

the distances between the original and the truncated
data sets are roughly proportional to the percentages
of community change.

Study 5: comparison of the 41 GOS data sets
We applied our approach to the geospatially struc-
tured GOS data (Rusch et al., 2007) and computed
two networks using Goodall’s index, one consider-
ing all 41 sites and the second considering only
the open ocean and coastal sites (Supplementary
Figure S5). Both networks show a star-like structure,
reflecting a high level of diversity in the data.
Spatially related samples tend to cluster together,

Figure 3 Network obtained using Goodall’s index showing the comparison of 10 marine samples (randomly re-sampled Sargasso Sea
and GOS samples and the eight PML-Bergen samples) considering only bacterial nodes at the class rank of the NCBI taxonomy.

Figure 4 Comparison of six marine metagenomes (randomly re-sampled Sargasso Sea and GOS samples together with the four
PML-Bergen metagenomes) with six truncated copies from which all rare taxa were excluded, analyzed at the class level of the NCBI. The
displayed network is obtained using Goodall’s index.
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with the open ocean samples showing apparently
fewer sample-specific taxa than the coastal ones.

Study 6: comparison of 16S ribosomal RNA time series
data from Western English Channel
To show the use of our method on 16S ribosomal
RNA tag-pyrosequencing data sets, we applied it to
the OTUs obtained from a continually monitored
sampling site in the Western English Channel
spanning February–December 2007 (Gilbert et al.,
2008). A comparison based on all 12 393 OTUs from
this time-series data set using Goodall’s index leads
to a highly unresolved network (Supplementary
Figure S6.A), which reflects the high abundance of
rare taxa in the data across monthly samples. A more
informative network can be obtained by excluding
the OTUs found on only one occasion (considering
2666 OTUs, B22%) from the analysis (Supplemen-
tary Figure S6.B). A network based only on those
OTUs present in all data (71 OTUs, B0.5%) shows
similar clusters, but as a result, a proportion of the
distance information is lost (Supplementary Figure
S6.C). This network visually captures both the
relationships between the samples and the season-
ality of the data set as previously described less
adequately using traditional NMDS methods
(Gilbert et al., 2009). This analysis highlights the
robust nature of Goodall’s index in marker-based
metagenomic studies, as well as the importance of
identifying rare taxa in these data sets.

Finally to establish the benefits of using this
network representation, we prepared PCA and
NMDS plot based only on those OTUs present in
more than one time points (Supplementary Figure
S7). Unlike the NMDS plot, the network representa-
tion (Supplementary Figure S6.B) provides a clear
visualization of the distances between the different
data sets, and unlike the PCA analysis it suggests
possible sample groupings. An obvious direct
benefit is that the network representations provide
a mix of the visual sensitivity of NMDS and
PCA with the quantitative nature of classical
dendrograms.

Availability
A program for computing ecological indices from
taxonomical profiles (called MEG2DIST) is available
as open source from the website http://www-ab.
informatik.uni-tuebingen.de/software/megan/meg
2dist.

The code is completely integrated into version 4
of MEGAN, which is available from the website:
http://www-ab.informatik.uni-tuebingen.de/software/
megan.
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