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Development and quantitative analyses of a
universal rRNA-subtraction protocol for microbial
metatranscriptomics

Frank J Stewart1, Elizabeth A Ottesen1 and Edward F DeLong
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons
Laboratory, Cambridge, MA, USA

Metatranscriptomes generated by pyrosequencing hold significant potential for describing
functional processes in complex microbial communities. Meeting this potential requires protocols
that maximize mRNA recovery by reducing the relative abundance of ribosomal RNA, as well as
systematic comparisons to identify methodological artifacts and test for reproducibility across data
sets. Here, we implement a protocol for subtractive hybridization of bacterial rRNA (16S and 23S)
that uses sample-specific probes and is applicable across diverse environmental samples. To test
this method, rRNA-subtracted and unsubtracted transcriptomes were sequenced (454 FLX
technology) from bacterioplankton communities at two depths in the oligotrophic open ocean,
yielding 10 data sets representing B350Mbp. Subtractive hybridization reduced bacterial rRNA
transcript abundance by 40–58%, increasing recovery of non-rRNA sequences up to fourfold (from
12% to 20% of total sequences to 40–49%). In testing this method, we established criteria for
detecting sequences replicated artificially via pyrosequencing errors and identified such replicates
as a significant component (6–39%) of total pyrosequencing reads. Following replicate removal,
statistical comparisons of reference genes (identified via BLASTX to NCBI-nr) between technical
replicates and between rRNA-subtracted and unsubtracted samples showed low levels of differential
transcript abundance (o0.2% of reference genes). However, gene overlap between data sets was
remarkably low, with no two data sets (including duplicate runs from the same pyrosequencing
library template) sharing greater than 17% of unique reference genes. These results indicate that
pyrosequencing captures a small subset of total mRNA diversity and underscores the importance of
reliable rRNA subtraction procedures to enhance sequencing coverage across the functional
transcript pool.
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Introduction

Metatranscriptomic analysis using pyrosequencing
is dramatically improving our understanding of
gene expression in natural microbial communities
(DeLong, 2009; Poretsky et al., 2009; Shi et al.,
2009). In these analyses, cDNA is synthesized from
total RNA extracted from an environmental sample
and used directly for massively parallel shotgun
sequencing. Metatranscriptomes from functionally
diverse habitats, including seawater and soil, can
be sequenced using pyrosequencing methodologies

(GS 20 or GS FLX systems, Roche 454 Life Sciences,
Branford, CT, USA), yielding tens to hundreds of
thousands of sequence fragments from the RNA pool
(Frias-Lopez et al., 2008; Urich et al., 2008; Poretsky
et al., 2009). Such analyses provide detailed in-
formation on the taxonomic and functional diversity
in the transcriptionally active community, as they
simultaneously characterize both the ribosomal and
messenger RNA components of the transcript pool.
However, to advance the generic application and
utility of pyrosequencing-based transcriptomics to
microbial ecology studies, it is necessary to develop
quality assurance and methodological trouble-
shooting techniques that both enhance current
protocols and minimize bias in the interpretation
of the read data.

It is not yet clear to what extent pyrosequencing
methods capture the full breadth of expressed
functional genes in microbial community transcrip-
tomes. Indeed, pyrosequencing likely fails to
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capture many functionally important transcripts
that occur at low frequencies. This is particularly
true of data sets dominated by ribosomal RNA
sequences (for example, prokaryotic 5S, 16S and
23S rRNA, eukaryotic 18S and 28S). In the first
study of a marine microbial metatranscriptome
sequenced using pyrosequencing (Roche GS 20
system), rRNA reads represented 53% of total
sequences (Frias-Lopez et al., 2008). A similar study
using the same technology reported rRNA contam-
ination at 37% of total sequences (Poretsky et al.,
2009), following the application of two commercial
kits designed to enrich for mRNA (mRNA-ONLY
Prokaryotic mRNA isolation kit, Epicentre; MI-
CROBExpress Bacterial mRNA enrichment kit,
Ambion, Austin, TX, USA). Subsequent analyses
of marine transcriptomes using the Roche GS FLX
platform, which yields average read lengths (B200–
250 bp) over twice those produced via the GS 20
technology, have shown rRNA abundances that
often exceed 90% of total reads (DeLong lab,
unpublished data; Hewson et al., 2009b; Hewson I,
personal communication). The increase in rRNA
abundance observed with FLX-based technology
relative to GS 20 is likely due to differences in the
pyrosequencing protocols themselves. For example,
the FLX protocol includes a bead-binding purifica-
tion step that selects for longer transcripts, relative
to GS20, which may increase the relative rRNA
representation. As read lengths increase—the Roche
GS FLX Titanium reagents now facilitate average
read lengths greater than 400 bp—achieving ade-
quate sequencing depth of non-rRNA reads, primar-
ily mRNA, requires effective subtractive procedures
to minimize rRNA abundance. Ribosomal RNA
subtraction becomes particularly relevant as meta-
transcriptomics moves from a purely descriptive
phase to one in which the method is applied
experimentally to track low frequency changes in
gene expression, for example, in response to
environmental perturbations (DeLong, 2009).

Here, we introduce a sample-specific method for
the subtraction of rRNA from total RNA. The
method employs subtractive hybridization using
antisense rRNA probes transcribed in vitro from
PCR products amplified from coupled DNA
samples, thereby ensuring the specificity of the
probe mix. We tested this method by sequencing
rRNA-subtracted and unsubtracted transcriptomes
of open ocean bacterioplankton communities at two
depths in the North Pacific Subtropical Gyre (Sta-
tion ALOHA, North Pacific), showing a substantial
reduction in the targeted RNA fraction (bacterial 16S
and 23S rRNA). Our method can be generally ex-
tended to any microbial community sample,
and can be easily expanded to target other
rRNA transcripts, including those of archaea or
eukaryotes.

The increasing use of pyrosequencing-based
metagenomics and transcriptomics would also ben-
efit from explicit quality control tests to determine

the quantitative reproducibility of the data gener-
ated and to ensure reasonable extrapolations of read
abundance to in situ transcript abundance. Gomez-
Alvarez et al. (2009) showed that metagenomic data
sets generated using pyrosequencing contain sig-
nificant numbers (11–35% of total reads) of sequen-
cing artifacts in the form of replicate sequences.
These artificial replicates, putatively generated
during the emulsion PCR stage of pyrosequencing
(Briggs et al., 2007; Gomez-Alvarez et al., 2009), can
erroneously increase the apparent abundance of
transcripts from which these sequences derive. To
address these and other concerns related to the
reproducibility of expression profiles, we performed
a set of technically replicated pyrosequencing-based
transcriptomic analyses. These analyses determined
criteria for replicate removal, underscored the
potential for pyrosequencing artifacts (replicate reads)
to confound interpretation of transcript diversity
and abundance, and highlighted the potentially
limited extent to which standard sequencing depths
reveal the diversity of total transcript pools.

Materials and methods

Sample collection
Planktonic microorganisms were sampled from the
photic zone (25m and 75m) at Station ALOHA (221
450N, 1581 000W) as part of the Hawaii Ocean Time-
series (HOT) program (HOT-186 cruise, casts S2C27
and S2C30) in October 2006, as described in Shi
et al. (2009). Replicate seawater samples (1.8–2.0 l)
for RNA extraction were prefiltered through 1.6 mm
GF/A filters (47mm dia., Whatman, Kent, UK) and
collected onto 0.22 mm Durapore filters (25mm dia.,
Millipore, Billerica, MA, USA) using a peristaltic
pump. Filters were immediately transferred to
microcentrifuge tubes containing 300 ml RNAlater
(Ambion) and frozen at �80 1C. Less than 20min
elapsed between sample collection (arrival on deck)
and fixation in RNAlater. Samples for DNA extrac-
tion were collected from the same water sample
used for RNA collection as in Frias-Lopez et al.
(2008). For each sample, seawater (1.8–2.2 l) was
prefiltered through a 1.6 mm GF/A filter (125mm
dia., Whatman) onto a 0.22 mm Steripak-GP20 filter
(Millipore). The filter units were filled with lysis
buffer (50mM Tris-HCl, 40mM EDTA and 0.75M
sucrose), capped, and frozen at �80 1C until
extraction.

RNA and DNA isolation
Total RNA was extracted from filters using a
modification of the mirVana miRNA Isolation kit
(Ambion) as described previously (Shi et al., 2009).
Briefly, samples were thawed on ice, and the
RNAlater surrounding each filter was removed by
pipetting and discarded. Filters were immersed in
lysis/binding buffer (Ambion) and vortexed to lyse
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attached cells. Total RNA was then extracted from
the lysate according to the manufacturer’s protocol,
incubated (37 1C for 30min) with TURBO DNA-free
to remove genomic DNA, and purified and concen-
trated using the RNeasy MinElute Cleanup kit
(Qiagen, Valencia, CA, USA). Genomic DNA was
extracted from Steripak filters as described
previously (Frias-Lopez et al., 2008).

rRNA subtraction
Subtractive hybridization using sample-specific bio-
tinylated rRNA probes was used to remove bacterial
16S and 23S rRNA from total RNA samples (Figures
1 and 2). The probe synthesis reaction was adapted
from an in situ hybridization method by DeLong
et al. (1999) and combined with a subtractive
hybridization protocol similar to that of Su and
Sordillo (1998). Ribonucleotide probes targeting
bacterial 16S and 23S rRNA genes were generated
from community DNA samples collected in tandem
with each total RNA sample. Templates for probe
generation were first prepared by PCR using
universal primers flanking nearly the full length of
the bacterial 16S gene and B85% of the 23S rRNA
gene, with reverse primers modified to contain the
T7 RNA polymerase promoter sequence (Table 1;
DeLong et al., 1999; Hunt et al., 2006). PCRs
(50 ml each) included 100ng template DNA, 1ml of
Herculase II Fusion DNA Polymerase (Stratagene,

La Jolla, CA, USA), 1� Herculase reaction buffer,
10mM dNTP and 10 mM each of forward and reverse
primers. Reaction conditions were as follows: 2min
at 92 1C; 35 cycles of 20 s at 95 1C, 20 s at 39 1C (23S
reactions) or 55 1C (16S reactions), 75 s (16S) or 90 s
(23S) at 72 1C; 3min at 72 1C. Resulting products
were visualized via gel electrophoresis and purified
via the QIAquick PCR purification kit (Qiagen). The
above rRNA probe generation step can also poten-
tially be modified by generating amplicons via
reverse transcription (RT)-PCR, using RNA (rather
than DNA) as starting template. We deliberately
chose to amplify from the DNA pool, however, as
RT-PCR is less efficient at longer sequence lengths,
and we sought to maximize probe coverage along the
length of all rRNA genes.

Biotinylated antisense rRNA probes were gene-
rated by in vitro transcription (IVT) with T7 RNA
polymerase using T7 promoter-containing 16S and
23S amplicons as templates. IVT was conducted
using the MEGAscript High Yield Transcription kit
(Ambion), with the following modifications. Probes
for 16S and 23S rRNA were generated separately in
20ml reactions, each containing: 1� buffer, T7 RNA
polymerase, SUPERase � In RNase inhibitor (10U),
ATP (7.5mM), GTP (7.5mM), CTP (5.625mM), UTP
(5.625mM), biotin-11-CTP (1.875mM, Roche), bio-
tin-16-UTP (1.875mM, Roche) and 16S/23S DNA
template (250–500 ng). Reactions were run at 37 1C
for 4–5h, then DNAse digested with TURBO DNAse
(Ambion) for 15min at 37 1C. Products were purified
using the MEGAclear kit (Ambion). Assuming the
template amplicons used for IVT were B50% GC,
the biotin labeling density in the resulting 16S/23S
probes was B1 in 8 nucleotides.

Biotinylated rRNA probes were hybridized to
complementary rRNA molecules in the total RNA
sample. Hybridization reactions (50 ml), each con-
taining formamide (20%), 1� SSC buffer (0.15M
sodium chloride, 0.015M sodium citrate), SUPERase.
In RNase inhibitor (20U), template RNA (25m
B600ng; 75m B200ng), and equal amounts of 16S

Figure 1 Flowchart of the metatranscriptomic sample processing
pipeline, illustrating steps for the sample-specific subtraction
of bacterial ribosomal RNA (16 and 23S) from total RNA in an
environmental sample.

Figure 2 Size distribution of total RNA in unsubtracted and
rRNA-subtracted portions of the HOT-186 25m sample.
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and 23S rRNA probes at a final template-to-probe
ratio of 1:2 (mass, per probe), were denatured at 70 1C
for 5min and incubated at room temperature (RT) for
3min. Biotinylated double-stranded rRNA was then
removed from the sample by hybridization (10min at
RT) to streptavidin-coated magnetic beads (New
England Biolabs, Ipswich, MA, USA; 50ml aliquot,
washed 3� in 1� SSC), followed by separation on a
magnetic rack (2min) and removal of the rRNA-
subtracted supernatant via pipet. An additional 50ml
1� SSC was applied to the beads for washing,
separated as above, and pooled with the original
supernatant. The pooled products were purified via
the RNeasy MinElute Cleanup kit (Qiagen). Subtrac-
tion efficiency was evaluated by monitoring the
removal of 16S and 23S peaks from total RNA profiles
using a 2100 Bioanalyzer and the RNA 6000 Pico chip
kit (Agilent, Santa Clara, CA, USA; Figure 2).

Minor updates to this protocol were implemented
following characterization of the Station ALOHA
(HOT 186) samples. The fully optimized and
updated protocol is included as a pdf file in the
Supplemental Online Materials. In brief, (1) an
initial wash with 0.1N NaOH was incorporated into
the streptavidin bead preparation steps to ensure
complete removal of RNases, (2) the denaturation/
hybridization step was changed from 5min at 70 1C
followed by 3min at RT to 5min at 70 1C followed
by a step-down procedure with 1min each at 5 1C
intervals from 651C to 25 1C, and (3) probes for
archaeal and eukaryotic large and small subunit
rRNA were incorporated into the protocol (see
Supplementary text and Supplementary Table S3
for primer design and sequences), and additional
streptavidin-coupled beads were used to ensure
complete removal of these additional probes.

RNA amplification and cDNA synthesis
rRNA-subtracted and unsubtracted total RNA
(B35–80ng) was amplified using the MessageAmp
II-Bacteria kit (Ambion) as described previously
(Frias-Lopez et al., 2008; Shi et al., 2009). Briefly,
total RNA was polyadenylated using Escherichia
coli poly(A) polymerase. Polyadenylated RNA was
converted to double-stranded cDNA via reverse
transcription primed with an oligo(dT) primer
containing a promoter sequence for T7 RNA poly-

merase and a recognition site for the restriction
enzyme BpmI (T7-BpmI-(dT)16VN, Table 1). cDNA
was then transcribed in vitro at 37 1C (25m for 7 h,
75m for 14h), yielding large quantities (10–100ug)
of single-stranded antisense RNA. Amplified RNA
(B5–10ug aliquot) was then converted to double-
stranded cDNA using the SuperScript III First-
Strand Synthesis System (Invitrogen, Carlsbad, CA,
USA) with priming via random hexamers for first-
strand synthesis, and the SuperScript Double-
Stranded cDNA synthesis kit (Invitrogen) for sec-
ond-strand synthesis. cDNA was then purified with
the QIAquick PCR purification kit (Qiagen), digested
with BpmI for 2–3h at 37 1C to remove poly(A) tails,
and used directly for pyrosequencing.

Pyrosequencing and technical replicates
Before sequencing, poly(A)-removed cDNA was
purified via the AMPure kit (Beckman Coulter
Genomics, Danvers, MA, USA). Purified cDNA was
used for the generation of single-stranded DNA
libraries and emulsion PCR according to established
protocols (454 Life Sciences, Roche). Clonally
amplified library fragments were then sequenced
on a Genome Sequencer FLX System (Roche).

To produce a technically replicated transcrip-
tomic analysis, equal aliquots of the HOT-186 75m
total RNA sample were separated and used inde-
pendently for rRNA subtraction, RNA amplification
and pyrosequencing—see samples 75m A and B,
unsubtracted and rRNA-subtracted (Table 2). All
sample processing parameters were kept consistent
across replicates.

Data analysis
Ribosomal RNA-derived reads were identified using
BLASTN to compare all reads against an rRNA
database composed of both prokaryotic and eukar-
yotic small and large subunit rRNA nucleotide
sequences (5S, 16S, 18S, 23S and 28S rRNA) from
available microbial genomes and sequences in
the ARB SILVA LSU and SSU databases (http://
www.arb-silva.de). Reads producing alignments
with bit scores greater than 50 were identified as
rRNA sequences and removed from pyrosequencing
data sets.

Table 1 Primers used for PCR to generate bacterial 16S and 23S rRNA probes and for reverse transcription of polyadenylated cDNA

Locus Primer Sequence (50 to 30)

16S 27F AGAGTTTGATCCTGGCTCAG
1492R_T7a GCCAGTGAATTGTAATACGACTCACTATAGGGACGGCTACCTTGTTACGACTT

23Sb 189F GAASTGAAACATCTHAGTA
2490R_T7a GCCAGTGAATTGTAATACGACTCACTATAGGGCGACATCGAGGTGCCAAA

poly(A)c T7-BpmI-(dT)16VN GCCAGTGAATTGTAATACGACTCACTATAGGGGCGACTGGAGTTTTTTTTTTTTTTTTVN

aSee DeLong et al. (1999) for design of primers appended with T7 promoters (underlined above).
b23S primers are based on those of Hunt et al. (2006).
cTarget molecules containing poly(A) residues; used for reverse transcription before RNA amplification.
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Non-rRNA sequences were checked for replicate
sequences using the open-source program CD-HIT
(Li and Godzik, 2006) according to the protocol of
Gomez-Alvarez et al. (2009). Replicates were
defined as sequences sharing greater than 99%
nucleotide identity, with an allowable length differ-
ence of 1 bp, and a requirement that the first 3 bp of
the replicate sequences be identical. This cutoff was
chosen by comparison of multiple pyrosequencing
runs prepared from a single pyrosequencing library
(sample 75m A, rRNA-subtracted), as a conservative
measure that significantly reduced the size of
sequence clusters appearing at high frequency in
one sequencing run but at low frequency in repeat
sequencing runs (Supplementary Table S1 and
Figure S2). Additional details on criteria for identi-
fying replicates can be found in the Supplementary
Online Material.

Non-rRNA sequence reads were compared with
the National Center for Biotechnology Information
non-redundant protein database (NCBI-nr, as of 1
February 2009) using BLASTX. Top BLASTX hits
with e-values less than 1� 10�5 were used for
nr-protein designations. Reads with multiple, equal
hits were assigned to the reference protein (hit) with
the highest number of previously assigned reads.
The total number of reads assigned to each reference
protein was tracked through all analyses for con-
sistent assignment between pyrosequencing runs.
Statistically significant differences (two-tailed
Po0.05) in the expression levels (abundances) of
nr-designated transcripts were determined in pair-
wise comparisons between data sets using the
method of Audic and Claverie (1997, AC test),
which accounts for variation in database size and

assumes a Poisson distribution for the number
of transcripts representing a given gene. P-values
were adjusted using a false discovery rate (FDR)
correction to account for potential false positives
because of multiple comparisons, as in Benjamini
and Hochberg (1995).

Nucleotide sequences generated in this study are
available from the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) under accession
# SRA012008.

Results and discussion

Pyrosequencing read statistics
A total of 1 786 949 sequence reads representing
B350Mbp over 10 pyrosequencing runs were
generated from rRNA-subtracted and unsubtracted
samples from depths of 25 and 75m in the open
ocean photic zone (Table 2). Reads with significant
BLASTN hits (bit score 450) to either prokaryotic or
eukaryotic rRNA sequences represented 80–88% of
total reads in unsubtracted samples. Of these,
bacterial rRNA represented 74–83% of total reads
(Table 2), with archaeal and eukaryotic rRNA
representing 0.9–1.4 and 3.5–4.8%, respectively.
The high percentages of rRNA reads observed
here are consistent with experimental evidence
suggesting that rRNA accounts for B80–90% of
total RNA in a typical bacterium (Wendisch et al.,
2001). Indeed, upon transitioning to the 454 GS
FLX-sequencing system, the percentage of rRNA
observed in unsubtracted cDNA data sets derived
from marine bacterioplankton has averaged 88% in
our lab (range: 74–97%; n¼ 20 FLX cDNA data sets),

Table 2 Read numbers and statistics

Sample S/Uc Rund Readse Percentage of rRNA readsa Percentage of non-rRNA readsb

Bacteria Archaea Eukaryota

All LSU SSU LSU SSU LSU SSU All Uniquef nr hitsg

25m U 1 138269 88.1 64.9 18.3 0.8 0.1 3.2 0.8 11.9 10.3 4.7
S 1 195031 51.5 29.3 5.4 4.4 0.1 11.4 0.8 48.5 45.5 20.4

2 366790 51.7 29.5 5.3 4.6 0.2 11.4 0.8 48.3 44.6 19.5
75m A U 1 63091 80.3 61.5 13.9 1.3 0.1 3.0 0.5 19.7 12.5 3.1

2 199 807 82.7 64.3 13.6 1.1 0.1 3.0 0.6 17.3 14.8 3.3
75m A S 1 99 275 61.2 43.8 1.4 3.7 0.3 10.0 1.9 38.8 23.9 7.3

2 206 823 60.2 44.7 1.2 3.2 0.3 8.7 2.0 39.8 36.3 9.3
75m B U 1 40 732 80.5 60.9 13.4 1.3 0.1 4.2 0.6 19.5 11.8 3.6

2 225 507 81.9 63.7 12.4 1.2 0.1 3.7 0.8 18.1 16.1 4.9
75m B S 1 251624 54.5 37.0 1.2 3.4 0.3 10.0 2.4 45.5 40.0 11.0

aPercentage of total pyrosequencing reads with significant (bit score 450) BLASTN hits to prokaryotic (bacteria, archaea) or eukaryotic small
(SSU: 16S, 18S) and large (LSU: 5S, 23S, 28S) subunit rRNA.
bNon-rRNA reads, as a percentage of total pyrosequencing reads.
cS, bacterial rRNA subtracted via hybridization, U, rRNA unsubtracted from sample,
dIndependent emulsion PCRs and pyrosequencing runs generated from the same library.
eTotal number of sequence reads per run.
fNon-rRNA reads without replicates; see Materials and Methods for replicate criteria.
gNon-replicate, non-rRNA reads with significant (e-value p1�10�5) BLASTX hits to proteins in the NCBI non-redundant database (nr).
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underscoring the necessity for an effective rRNA
subtraction approach when using our linear
amplification protocol.

rRNA subtraction
Subtractive hybridization to sample-specific rRNA
probes lowered bacterial rRNA abundance by
40–58% relative to unsubtracted samples, reducing
bacterial rRNA to 35–46% and total rRNA to
52–61% of pyrosequencing reads (Table 2, Figure 2,
Supplementary Figure S3). In response, the fraction
of non-rRNA reads in each data set increased up to
fourfold, raising the proportion of reads with
significant BLASTX hits to NCBI-nr proteins from
3.1–4.9% in unsubtracted samples to 7.3–20.4% in
subtracted samples (Table 2). Bacterial 16S rRNA
showed a greater proportional decrease in abun-
dance than 23S rRNA following rRNA subtraction
(Table 2), which may be due to a combination of
broader coverage across diverse bacterial phyla by
the 16S primers relative to the 23S primers, and to
differences in the extent to which 16S and 23S
primer sets span the full length of the target
molecules (B95% of 16S rRNA, B85% of 23S
rRNA). As our probe sets targeted only bacterial
rRNA, the relative percentages of archaeal and
eukaryotic rRNA reads increased approximately
three to fivefold (between 3.5–4.8% and 10.7–
12.2% of total reads, respectively; Table 2). How-
ever, among those reads not identified as bacterial
rRNA, the percentage represented by archaeal and
eukaryotic rRNA reads did not differ substantially
between unsubtracted (25–29%; mean: 23.8%) and
subtracted (20–29%; mean: 26.6%) samples,
suggesting little non-specific probe binding but
emphasizing the need to implement additional
probe sets to target these rRNA fractions.

The subtraction of rRNA occurred non-uniformly
along the length of rRNA transcripts. For example,
among the rRNA reads remaining in the subtracted
sample, the proportion mapping to the central
region of the 23S rRNA (Bbp 1000–2500) decreased
relative to the unsubtracted sample, whereas the
proportion mapping to the terminal region (Bbp
2500–2900) increased substantially (by B50%;
Supplementary Figure S1). This pattern may be
caused in part by the exclusion of the terminal
400 bp of the B2900 bp 23S rRNA gene by our probe
set (Table 1), although a clear, but as of yet
unexplained, bias toward 30 23S rRNA reads was
also observed in the unsubtracted sample. A shift in
the relative abundances of reads representing
varying regions of the 16S rRNA was also apparent
following subtraction, with a noticeable propor-
tional increase in reads mapping to the 50 16S rRNA
region (Supplementary Figure S1). These patterns
indicate differential subtraction efficiencies along
the rRNA transcripts, and therefore the potential
that these molecules had been fragmented in the
pre-subtracted samples.

After developing and testing the rRNA subtraction
protocol described above, we have applied our
method to a diverse range of samples and further
optimized it to include primer sets targeting both
archaeal and eukaryotic rRNAs (see Supplementary
Table S3). Using this revised protocol, rRNA
abundance in microbial community cDNAs has
averaged 36% of total reads (range: 28–55%) across
10 different bacterioplankton samples from three
distinct oceanic regions (Table 3; see Supplementary
Figure S3 for a representative total RNA profile
following domain-specific rRNA subtraction). We
have also applied the method to a pure monoculture
of actively growing Dokdonia sp. using 16S and 23S
rRNA probe sets that perfectly match this target
species. For this pure culture, our method success-
fully reduced rRNA to an average of 8% of the total
cDNA reads (range: 3–11%; n¼ 3; see Supple-
mentary Table S3 for primers).

In addition to the method presented here, several
commercial rRNA reduction protocols are also now
available. One commonly used commercial product,
the MICROBExpress Bacterial mRNA enrichment
kit (Ambion), employs a subtractive hybridization to
proprietary oligonucleotide probes, followed by
rRNA removal via bead-immobilized capture oligo-
nucleotides (in contrast with sample-specific, near
full-length probes and biotin-streptavidin capture in
our protocol). Although the MICROBExpress kit has

Table 3 rRNA abundance in metatranscriptomic profiles of
diverse samples following subtractive hybridization

Sample Primersa Total
reads

rRNA
reads

Percentage

rRNA
Pure culture
Dokdonia sp., rep 1 Dok 630260 65 339 10.4
Dokdonia sp., rep 2 Dok 195278 4859 2.5
Dokdonia sp., rep 3 Dok 91437 10 784 11.8

Bacterioplankton
Bermuda, tropical
20m B 511525 146530 28.6
50m B 365838 87 240 23.8
100m B 519951 143907 27.7

OMZ, experimental incubation
OMZ t0 BAE 27300 9805 35.9
OMZ t1 BAE 105274 58 240 55.3
OMZ t2 BAE 64463 29 590 45.9

Monterey Bayb

10m sample WCR3 BAE 248016 82 932 33.4
10m sample WCR5 BAE 238635 90 767 38.0
10m sample WCR6 BAE 235339 82 501 35.1
10m sample BAC16 BAE 102024 40 833 40.0

aProbe: B, bacterial 16S and 23S (primers in Table 1); A, archaeal 16S
and 23S; E, eukaryotic 18S and 28S; Dok, Dokdonia strain-specific
16S and 23S (A, E, and Dok primers in Supplementary Table S3).
bArchaeal 16S probe excluded—PCR yielded multiple bands.
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been shown to be compatible for rRNA subtraction
from a variety of bacteria, the efficiency of rRNA
removal using this method can vary widely for
community RNA samples (for example, Poretsky
et al., 2005; McGrath et al., 2008; Hewson et al.,
2009a, b), as well as for single-species analyses
(for example, Yoder-Himes et al., 2009). Indeed,
oligonucleotide capture probes used in this method
are predicted to be sensitive to target sequence
variability known to be present in microbial com-
munity rRNAs, and the manufacturers explicitly
state that the commercial kit is only partially
compatible, or even incompatible, with a variety of
microorganisms, including all Archaea (http://
www.ambion.com/techlib/misc/microbe.html). An-
other commercial rRNA removal strategy, the mRNA-
ONLY kit (Epicentre), uses specific exonucleases
to selectively digest rRNA, but not mRNA. A
potential complication of the exonuclease method
in the mRNA-ONLY protocol is its potential to
catalyze secondary, non-50 monophosphate RNAse
activity that may degrade specific mRNA transcripts
in addition to the rRNA (Epicentre website). In a
recent analysis of a microbial community associated
with a Trichodesmium bloom, the mRNA-ONLY kit,
used in conjunction with the MICROBExpress kit,
was unable to reduce rRNA abundance below
94% of total FLX-based reads (Hewson et al.,
2009b; Hewson I, personal communication), again
suggesting potentially high variability in commer-
cially available protocols. Recognizing the potential
limitations of these protocols is important in
selecting or developing rRNA subtraction methods
for microbial transcriptome analyses.

Other alternatives to commercially available sub-
traction techniques have also been explored. Noting
mixed results with the MICROBExpress method,
McGrath et al. (2008) proposed physical removal of
rRNA bands from RNA samples by agarose gel
electrophoresis and extraction. Although effective,
this technique requires large starting concentrations
of RNA and may bias functional gene expression
profiles by eliminating mRNA transcripts that co-
migrate with the rRNA fraction. Gilbert et al. (2008)
reported low rRNA representation in a metatran-
scriptomic survey following amplification of the
cDNA via multiple displacement amplification
(MDA) using the GenomiPHI V2 kit (GE Healthcare,
Piscataway, NJ, USA). However, this kit is optimized
for amplification of genomic DNA, and has not been
extensively tested for reproducibility and bias when
used for amplification of short cDNA fragments.
Indeed, numerous studies have shown that even
for single template genomic DNA, MDA using f29
polymerase amplifies unevenly across different loci,
suggesting that the reliability and utility of MDA for
quantitative analyses is uncertain at best (Bergen
et al., 2005; Ballantyne et al., 2007). Recently,
Armour et al. (2009) proposed a novel rRNA
depletion method based on the use of a computa-
tionally defined subset of hexameric primers that

exclude target rRNA sequences during cDNA synth-
esis from total RNA. Although potentially effective
in low-complexity samples or single-species mono-
cultures, this method, as for most published rRNA
subtraction procedures, is not easily extrapolated to
complex metatranscriptomic samples with diverse
rRNA pools. A definitive comparison of rRNA
removal protocols from previously published meta-
transcriptomic studies is not feasible, as previous
studies did not include unsubtracted controls for
comparison, used distinct cDNA synthesis and
downstream pyrosequencing preparation protocols
and analyzed microbial communities with differing
compositions.

The protocol we describe here offers some
potential advantages over the existing rRNA-sub-
traction procedures noted above. The method can
be easily tailored to synthesize sample- or taxon-
specific probes targeting either specific strains or a
broad array of archaeal, bacterial and eukaryotic
rRNAs. Although we chose to target only bacterial
rRNA for the initial development of this method, the
protocol can be expanded to include both archaeal
and eukaryotic rRNA probe sets generated using the
broad-specificity primers listed in Supplementary
Table S3. The method can also be applied to less
complex, non-environmental samples (for example,
experimental cultures or consortia). If necessary for
such samples, taxon-specific primers can be used in
place of universal primers for probe generation, as
shown for a Dokdonia culture analyzed in our lab
(Table 3 and S3). When followed by a linear RNA
amplification step, this subtractive protocol can be
used with relatively small amounts of starting
material; in our hands, subtraction of rRNA from
as little as 20ng total RNA has yielded amounts of
mRNA-enriched template sufficient for amplifica-
tion and pyrosequencing. As the protocol imple-
mented here biases the composition of any rRNA
reads remaining after subtraction (as does any rRNA
subtraction procedure), our method is specifically
designed for maximizing coverage of the functional
RNA pool, potentially identifying unique or inter-
esting transcripts that can inform or suggest more
targeted gene-specific studies to follow.

Replicate reads
Sequencing artifacts in the form of replicated
sequences are a common source of error in pyro-
sequencing data sets (Briggs et al., 2009; Gomez-
Alvarez et al., 2009). Careful identification and
removal of such sequences, which can account
for more than 30% of pyrosequencing reads
(Gomez-Alvarez et al., 2009), is therefore essential
for accurately extrapolating observed read abun-
dance to in situ DNA or RNA abundance. Replicates
are hypothesized to originate during the emulsion
PCR step of pyrosequencing. Incomplete emulsion
can result in the attachment of a single PCR
product to multiple beads (Briggs et al., 2009;
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Gomez-Alvarez et al., 2009), which upon sequen-
cing results in an increase in the number of observed
occurrences of that sequence in the data set. In an
idealized case, sequences generated from identical,
replicated template molecules would share start and
stop sites, resulting in identical sequence along their
full length. However, sequencing errors and quality
trimming result in the generation of non-identical
sequences of different lengths from identical
template molecules. The challenge therefore is to
differentiate imperfectly sequenced artificial repli-
cates from legitimate sequences derived from
multiple, similar DNA fragments.

Gomez-Alvarez et al. (2009) calculated that, for
the genomic DNA of an idealized microbial com-
munity, the probability of multiple reads starting at
the same position in a randomly sheared metagen-
ome analysis is extremely low (B1� 10�10). These
authors therefore identify artificial replicates as
sequences (of potentially varying lengths) sharing
greater than 90% nucleotide identity and having
identical beginning sequences (over the first 3 bp).
This definition is likely robust for microbial com-
munity DNA, but is perhaps overly conservative for
microbial community transcriptomes. Unlike ran-
dom genomic DNA fragments, transcripts have
clearly defined start and stop sites and routinely
occur in multiple copies per cell. As a result, criteria
for identifying replicates from metatranscriptomes
must, to the greatest extent possible, distinguish
artifacts from legitimate re-sampling of multiple
transcripts originating from the same gene.

We analyzed pairs of sequencing runs (indepen-
dent emulsion PCR and sequencing reactions
generated from the same adaptor-ligated template
library) to establish criteria for replicate removal
from our transcriptomic libraries, identifying repli-
cates as sequences differing by no more than 1bp in
length, sharing 99% nucleotide identity, and having
identical start sites (first 3 bp) (see Supplementary
Online Text, Supplementary Table S1 and Figure
S2). Using these criteria, re-sampled transcripts
were rare (0.3–3.4% of sequences) compared with
artificial replicate transcripts (6–39% of sequences).
Though clusters of replicate reads were identified in
all samples examined, the percentage of replicated
reads to total reads (replicate frequency) varied
greatly among the 10 different pyrosequencing runs
(Table 2). Substantial variation occurred even
between multiple runs generated via independent
emulsion PCR and sequencing reactions from the
same template library. Notably, replicate frequency
varied between runs from 9% to 38% and 14–36%
in the rRNA-subtracted and unsubtracted 75m A
samples, respectively, and from 11% to 39%
between runs of the unsubtracted 75m B sample
(Table 2). In each of these comparisons, replicate
frequency was negatively correlated with the num-
ber of total reads per run, suggesting a link between
artifact generation and the efficiency of the
emulsion PCR and pyrosequencing steps. This

immediately suggested important criteria for quality
control and assessment of individual sequencing
runs.

The presence of these replicates can bias the
apparent diversity of the transcript pool. For
example, before removal of replicate sequences the
slopes of rarefaction curves describing the number
of unique non-redundant (nr) peptide reference
genes identified per data set as a function of
sequencing depth differed notably between repeated
runs (1 and 2) of the subtracted 75m A samples
(Table 2; Figure 3). Removal of replicate sequences
eliminated this discrepancy, yielding highly similar
rarefaction curves. Together, these data indicate that
artificial replicates are a common and potentially
biasing component of pyrosequencing-based tran-
scriptomic data sets. However, effective criteria for
replicate removal may vary among samples of
differing taxonomic complexity and functional state.
Though not yet routine in pyrosequencing-based
analyses, systematic comparisons of technically
repeated pyrosequencing runs may help delineate
sample-specific criteria for replicate removal.

Statistical comparison of transcript abundances in
technical replicates
Validation of rRNA subtraction and computational
replicate removal methods required statistical
determination of changes in transcript abundance
with a high degree of taxonomic resolution. Statistical
comparisons of metagenomic and transcriptomic

Figure 3 Rarefaction curve for HOT-186 75m sample AS. The
number of unique nr reference genes identified via BLASTX (at
e-values p1�10�5) is shown as a function of sequencing depth.
Runs 1 and 2 represent multiple pyrosequencing runs from the
same adapter-ligated sample library, before and after removal of
replicate sequences.
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profiles have largely focused on gene clusters
and functional groupings rather than individual
genes (Rodriguez-Brito et al., 2006; Frias-Lopez
et al., 2008; Huson et al., 2009; Poretsky et al.,
2009). However, this approach potentially lacks the
resolution to detect changes in expression of
specific transcripts (for example, due to the non-
specific binding of rRNA probe to an mRNA
transcript during subtractive hybridization). Here,
to assess the impact of rRNA subtraction and
replicate removal on expression profiles, non-rRNA
transcripts were mapped to specific protein se-
quences in the NCBI-nr database, and the relative
abundances of transcripts matching single reference
genes were compared between data sets (Table 4,
Figures 4 and 5). Dalevi et al. (2008) showed that a
similar mapping approach accurately represented
the functional and taxonomic characteristics of
B100 bp DNA fragments; we expect an even greater

degree of assignment accuracy given our longer
average read length (4200bp). A statistical test from
the expressed sequence tag literature was then
applied to identify differentially represented refer-
ence genes (AC test; Audic and Claverie 1997),
along with a FDR minimizing test (Benjamini and
Hochberg, 1995) to correct for the large number of
comparisons (Po0.05). We used this test to examine
the reproducibility of transcriptional profiles
generated by pyrosequencing, and the effect of
rRNA subtraction on the abundance on non-rRNA
transcripts.

Removal of replicate sequences was key to the
generation of reproducible transcriptional profiles
(see starred data sets in Table 4). For example, the
variation between rarefaction curves generated from
the raw sequencing data from the rRNA-subtracted
75m A sample (Figure 3) was also reflected
in reference gene abundances; 144 genes were

Table 4 Dataset (DS) comparisons—non-rRNA sequences mapped to non-redundant (nr) NCBI reference sequences

DS compareda Total refsb Refs unique to DSc Percentage
Refs sharedd

Refs w/ sig. diff.
abundancee

Percentage of Reads in sig. diff. refsf

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

25m S1 25m S2 21011 33097 13 261 25 347 16.7 0 0 0
25m U 25m S 4110 46358 1732 43 980 4.9 13 7.0 4.0
75m AS1* 75m AS2* 4278 11040 2978 9740 9.3 144 27.0 4.1
75m AS1 75m AS2 4231 11011 2939 9719 9.3 30 11.0 7.5
75m AU1 75m AU2 1275 4193 975 3893 5.8 6 2.7 0
75m BU1 75m BU2 1086 6794 747 6455 4.5 2 0.8 0
75m AS* 75m BS* 14018 14860 10 434 11 276 14.2 75 15.0 8.5
75m AS 75m BS 13950 14790 10 384 11 224 14.2 7 7.2 5.8
75m AU* 75m BU* 5213 7586 3955 6328 10.9 14 3.0 3.5
75m AU 75m BU 5168 7541 3918 6291 10.9 0 0 0
75m U 75m S 11459 25174 7166 20 881 13.3 3 1.5 1.9
25m all 75m all 48 090 32340 36 341 20 591 17.1 306 18.0 22.0

aAs listed in Table 2, where *represents data set comparisons without removal of replicate sequences and samples without a specified run number
(that is, 25m S) represent comprehensive data sets of all runs associated with that sample (that is, 25m S1 and 25m S2 combined).
bTotal number of reference genes identified via BLASTX of non-rRNA reads against the NCBI non- redundant (nr) database (e-value p1� 10�5).
cReference genes present in only one data set.
dDistinct nr-reference genes shared between data sets, as a percentage of total distinct reference genes identified via BLASTX of the two data sets
under comparison.
eReference genes differing significantly in abundance (reads per reference) between data sets (Po0.05).
fPercentage of total reads matching (via BLASTX) reference genes that differ significantly in abundance.

Figure 4 Relative abundance of NCBI-nr reference genes in rRNA-subtracted pyrosequencing 75m A data sets. Reference genes
representing 40.1% of the 75m A library are shown in descending order. Their abundance in a replicate library (75m B rRNA-
subtracted) is shown in red. Reference genes with significantly different abundances are labeled with a FDR-corrected P-value.
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identified as ‘differentially expressed’ between the
two sequencing runs (Table 4). Removal of replicate
sequences reduced this to just 30 references with
significantly different abundances. The majority of
these differences involved genes represented by
very few (or zero) reads in one of the two data sets.
Replicate removal may therefore have the most
significant effect on apparent differences between
low abundance transcripts, for which even small
numbers of artificial replicates may have a dispro-
portionately large effect on apparent expression
level.

A thorough analysis of the reproducibility of
metatranscriptomic profiles must also take into
account experimental variation, as the generation
of transcriptomic libraries from extracted total RNA
requires extensive processing steps, including linear
amplification in our procedure that might introduce
variability into the observed transcriptional profile.
To address this issue, we subdivided the total RNA
sample from 75m to generate four samples (unsub-
tracted and rRNA-subtracted samples A and B),
which were processed in parallel to examine the
reproducibility of resultant transcriptomic data sets.
For the unsubtracted 75m sample, no nr reference

genes were differentially expressed between repli-
cates A and B (Table 4). For the rRNA-subtracted
75m sample, following removal of replicate reads,
only 0.03% (7 of 25 174) of total identified refer-
ences were differentially expressed (Table 4; Sup-
plementary Table S1). Of those genes represented by
greater than 0.1% of the sequence reads in the
subtracted 75m A data set (n¼ 42), only three varied
in expression between replicates (Table 5, Figure 4).
As observed in comparisons of replicate runs from
a single template library, the majority of the
significant differences between the full technical
replicates involved relatively low abundance refer-
ence genes having significantly higher representa-
tion in one of the two data sets (Table 5).

Statistical comparison of rRNA-subtracted and
unsubtracted samples
Having established the reproducibility of transcrip-
tional profiles generated during metatranscriptomic
analyses, we examined bias potentially introduced
during the removal of rRNA by subtractive hybridi-
zation. Subtractive protocols have the potential to
alter functional gene expression profiles if removal

Figure 5 Relative abundance of NCBI-nr reference genes in HOT-186 25m pyrosequencing data sets with and without rRNA
subtraction. Reference genes representing 40.1% of the unsubtracted library are shown in descending order. Their abundance in the
library generated from post-subtraction RNA is shown in red. Reference genes with significantly different abundances are labeled with a
FDR-corrected P-value.

Table 5 NCBI-nr reference genes differing significantly in abundance between technical replicates A and B of the rRNA-subtracted HOT-
186 75m sample

nr reference genes Percentage of BLASTX hitsa P-valueb FDRc

75m A 75m B

EDZ60346: proteorhodopsin (Candidatus Pelagibacter sp. HTCC7211) 0.125% 0.004% 4.6E-10 1.2E-05
ZP_01223243: flagellar protein (marine gamma proteobacterium HTCC2207) 0.144% 0.025% 3.1E-07 2.6E-03
ZP_01612947: hypothetical protein ATW7_13848 (Alteromonadales bacterium TW-7) 0.091% 0.004% 2.2E-07 2.7E-03
ZP_01048944: RNA polymerase sigma-70 factor (Cellulophaga sp. MED134) 0.072% ND 6.1E-07 3.9E-03
YP_001090510: ammonium transporter (Prochlorococcus marinus str. MIT 9301) 6.591% 5.743% 2.6E-06 1.3E-02
YP_001483709 bacteriochlorophyll synthase (Prochlorococcus marinus str. MIT 9215) 0.061% ND 5.3E-06 2.2E-02
YP_002126505: CN5-related N-acetyltransferase (Alteromonas macleodii ‘Deep ecotype’) 0.068% 0.004% 1.2E-05 4.4E-02

aPercentage of the total number of significant hits to nr (e-value p1�10�5) via BLASTX of non-rRNA reads.
bP-value as calculated in Audic and Claverie (1997) for pairwise tests of differential abundance.
cP-values following an FDR-correction for multiple tests (Benjamini and Hochberg, 1995).
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of non-rRNA transcripts occur because of non-
specific probe binding. In the 25m sample, only
0.03% of total nr reference genes (13 of 48 090 total,
which includes 2378 shared between data sets
þ 45 712 unique to either data set) showed signifi-
cantly different abundances between subtracted and
unsubtracted samples (Table 4). Of these, five were
represented at abundances greater than 0.1% of
total reads in the unsubtracted data set (Figure 5). In
the 75m sample, only 0.01% (3 of 32 340) were
differentially represented. These low levels of
variation are within the range observed between
replicate pyrosequencing runs derived from inde-
pendent emulsion PCRs using template from the
same adapter-ligated library (0–0.2% of genes
differentially expressed for comparisons 25m S1
vs S2, 75m AS1 vs AS2, AU1 vs AU2, BU1 vs BU2,
Table 4). This suggests that these differences are due
to stochastic variation introduced during pyro-
sequencing, and that the subtractive hybridization
protocol does not significantly alter the apparent
expression profile generated from transcript
libraries.

Conclusions

A distinguishing characteristic of community DNA
and RNA sequencing efforts is the high complexity
of the resulting sequence data. For example, in this
study, pyrosequencing of a single sample of sea-
water collected at 25m generated 266 859 unique
non-rRNA sequences (including runs from both
rRNA-subtracted and unsubtracted libraries),
117 809 (44%) of which had significant hits to
48 090 unique nr reference proteins. An initial,
half-plate run derived from the RNA-subtracted
portion of the 25m sample yielded 21 011 nr
references, of which only 17% were recaptured in
a second full-plate run, which contained nearly
twice as many sequences (Table 4). Indeed, no two
data sets analyzed in this study, including data sets
generated from the same single-stranded library,
shared more than 17% of unique nr reference genes
(range: 5–17%). This suggests that the vast majority
of unique transcripts in the RNA pool may be
un-sampled due to stochastic variation in the pyro-
sequencing procedure. Sequencing depth can there-
fore clearly limit the analytical capability of meta-
transcriptomic analyses. Deeper sequencing not
only increases the likelihood of sampling novel
transcripts but also facilitates statistically signifi-
cant comparisons of transcripts appearing across
multiple data sets (for example, experimental treat-
ments). This is particularly relevant for low-abun-
dance transcripts that constitute the majority of
diversity in the mRNA pool.

Though changes in the transcriptional profiles of
highly expressed genes yield important insight into
microbial communities (for example, Frias-Lopez
et al., 2008; Hewson et al., 2009b), the relatively

shallow extent to which pyrosequencing captures
gene-level diversity among functional transcripts
increases the need to optimize message recovery.
Ribosomal RNA represented 80–88% of sequences
recovered from the ocean samples analyzed in this
study. Given the mRNA transcript diversity encoun-
tered here, the presence of rRNA at such high
proportions hinders the detection of potentially tens
to hundreds of thousands of unique functional
transcripts via a standard 454 pyrosequencing run.
Even incremental reductions in the rRNA pool can
therefore substantially increase our knowledge of
genes expressed at low frequency. When analyzing
expression at such resolution, it becomes increas-
ingly important to distinguish sequencing artifacts
from genuine variation in transcript abundance.
This analysis, along with other recent studies (for
example, Gomez-Alvarez et al., 2009), highlights the
need for meaningful criteria for identifying and
removing artificially replicated sequences that
confound statistical comparisons of expression. Com-
parisons between technically replicated libraries
constitute an effective method for establishing such
criteria and should become more commonplace in
pyrosequencing-based analyses. Upon removal of
sequencing artifacts, transcriptomic pyrosequencing
data sets appear highly reproducible and, in con-
junction with rRNA-subtraction methods that
maximize message recovery, can provide new in-
sights into the diversity and dynamics of less
abundant transcripts. This is particularly relevant
as microbial metatranscriptomics is increasingly
used to monitor community responses to experi-
mentally induced perturbations, some of which may
elicit subtle, but important, functional changes in
non-dominant community members.
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