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Introduction

With present estimates that suggest that more than
99% of microorganisms in different environments
are resistant to our collective efforts to cultivation,
environmental genomics seems to be the way to
explore those hidden treasures (Béjà, 2004). The
use of fosmid (F1 origin-based cosmid vector) and
bacterial artificial chromosome (BAC) cloning vec-
tors to clone environmental HMW DNA has facili-
tated the way to reach DNA fragments from
unknown bacterial and archaeal groups (Rondon
et al., 2000; Béjà et al., 2000a). These approaches
have led to the identification of different metabolic
pathways, among which is the finding of proteorho-
dopsins in marine bacteria (Béjà et al., 2000b).
Recently, these libraries have also been used to
estimate the diversity and metabolic potential of
given environments (DeLong et al., 2006; Legault
et al., 2006; Martı́n-Cuadrado et al., 2007).

Different studies have indicated that these
libraries do contain a certain bias against the
abundant cosmopolitan SAR11 group (Rappé and
Giovannoni, 2003), with very few hits to SAR11
rRNA-containing clones (Béjà et al., 2000a; Suzuki
et al., 2004; DeLong et al., 2006; Gilbert et al., 2008;
Pham et al., 2008). This under-representation was
originally suggested (Béjà et al., 2000a) to be
attributed to the possible presence of ‘toxic genes’
in the region surrounding the SAR11 rRNA and the
effect of ‘clonability’ (Sorek et al., 2007) to the
Escherichia coli host cells. Indeed, previous reports
have shown that the expression of genes cloned on
BAC vectors can lead to an altered phenotype in
the recombinant clones (Rondon et al., 1999). The
possibility will always exist that, in any given
population, some microbial DNA fragments may
harbor genes toxic to E. coli, which will be under-
represented in BAC libraries. Alternatively, this
bias was recently attributed (Temperton et al., 2009)

to the very low GC content of the currently available
SAR11 core genomes (29.1–29.7% GþC; (Giovannoni
et al., 2005; Wilhelm et al., 2007)), which may
cause a fragmentation problem during the cloning
procedure.

We here analyzed B10 000 random BAC ends
from a recently analyzed Mediterranean BAC library
(Sabehi et al., 2005; Feingersch et al., in prepara-
tion), this time with respect to SAR11 clone
representation and possible bias.

Results and discussion

According to top BLASTx analysis of more than
10 000 random BAC ends with expectation cutoff
values of p1� 10�50, the Mediterranean BAC library
was composed of 18% SAR11-containing BACs
(40% of ends in the Mediterranean Sea library were
assigned to Alphaproteobacteria, of which 45%
were SAR11) (Feingersch et al., in preparation).
These estimates fit previous abundance measures
of the SAR11 clade in Mediterranean coastal waters
during the summer (B20% of 40,6-diamidino-
2-phenylindole counts; Alonso-Sáez et al., 2007).

BAC ends were recruited on different ‘Candidatus
Pelagibacter ubique’ genomes (HTCC1062, HTCC1002
and HTCC7211) and, as could be seen in the
example in Figure 1a, fragments were recruited
almost evenly across the entire ‘Cand. P. ubique’
HTCC1062 genome except to the already known
regions of hypervariability (Rusch et al., 2007;
Wilhelm et al., 2007; Gilbert et al., 2008). To check
for possible bias against low-GC fragments, GC%
content plots of the different ends were constructed.
As could be seen in Figure 1b, the library was
mainly composed of two different BAC-end popula-
tions, one population with a GC content above 50%
and the other with a GC content of about 32%. Ends
recruited on the ‘Cand. P. ubique’ HTCC1062,
HTCC1002 and HTCC7211 genomes were clearly
assigned to the low-GC BAC-end population (gray
area in Figure 1b). When the SAR11-recruited ends
were BLASTed again, the proportion of SAR11 in
alphaproteobacterial hits rose from 45% (18% of
total hits) to 90% (78% of total hits) (Figure 1c). This
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indicates that the population of low-GC ends in our
BAC library is mostly composed of SAR11-like
clones.

It is interesting to note that only one BAC end
(out of 53 rRNA-containing ends) gave an SAR11
affiliation (Feingersch et al., in preparation). This
discrepancy between low proportions of SAR11
rRNA-containing BAC ends (1.9%) and the high
proportion of SAR11 seen in the BLAST hits was
also observed in surface stations of the ALOHA
community genomics fosmid project (DeLong et al.,
2006). As already proposed by us in the year 2000,
genes linked to the rRNA operon in SAR11 chro-
mosomal DNA might be toxic to E. coli, even when
present as a single copy on the BAC vector (Béjà
et al., 2000a). However, it is important to note
that no evident toxic protein candidate emerged in
the different SAR11 genomes that are currently
available and there is yet no proven mechanistic
explanation for these observations.

On the basis of our analyses, we suggest that the
SAR11 group might be under-represented in fosmid
and BAC libraries due to possible bias against toxic
effects of some of their proteins and not as a result of
the very low GC content of the SAR11 core geno-
mes (29.1–29.7% GþC (Giovannoni et al., 2005;
Wilhelm et al., 2007)) as suggested by Temperton
et al. (2009). As there are many uncertainties in
our current understanding of cloning biases as well
as possible biases embedded in pyrosequencing,
further sequencing and analyses of other BAC and
fosmid libraries will be needed to resolve the
SAR11-cloning bias enigma.
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