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Antarctic subglacial lake exploration:
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To date, wherever life has been sought on Earth,
it has almost always been found—from high in
the stratosphere (Imshenetskii et al.,, 1975, 1978,
1986; Wainwright et al., 2003) to deep in the ocean
trenches (Takamia et al., 1997; D’Hondt et al., 2004)
and even within the Earth’s crust itself (Pedersen,
2000). Microorganisms have also been found in
some of the most extreme environments. They have
been found to exist in ice, boiling water, acid, salt
crystals, toxic waste and even in the water cores of
nuclear reactors (Rothschild and Mancinelli, 2001).

Antarctic subglacial lake ecosystems have the
potential to be one of the most extreme environ-
ments on Earth, with combined stresses of high
pressure, low temperature, permanent darkness,
low-nutrient availability and oxygen concentrations
derived from the ice that provided the original
meltwater (Siegert et al., 2003), where the predomi-
nant mode of nutrition is likely to be chemoauto-
trophic. Yet, to date, the identification of significant
subglacial bacterial activity in the Arctic, beneath
glaciers (Skidmore et al, 2000, 2005) and in
subglacial lakes (Gaidos et al., 2004), as well as
extensive work on permafrost communities and
work in the deep sea, suggests that life can survive
and potentially thrive in these types of environment.
Microbial life has been shown to function at
gigapascal pressures (Sharma et al., 2002) and
bacteria recovered from the deep ocean at around
4000m have been shown to retain both structural
integrity and metabolic activity. They have shown
activity in the Antarctic at —17 °C (Carpenter et al.,
2000) and to exist in the pore spaces between ice
crystals (Thomas and Dieckmann, 2002).

It has been established for some time that viable
microbial life is found in glacial ice, although
estimates vary widely by study, geographical loca-
tion and procedure—from less than one viable
cellml™ in polar ice (Abyzov et al, 1982) to
6 x 107 cellsml ! in a Greenland ice core (Sheridan
et al., 2003). The identification of significant alpine
subglacial bacterial activity has already been ob-
served (Sharp et al., 1999), and distinct bacterial
communities have been characterized from beneath

Arctic glaciers (Bhatia et al., 2006). Elsewhere,
viable microorganisms have been recovered from 1
million-year-old Antarctic permafrost (Kochkina
et al., 2001), which makes it likely that prolonged
preservation of viable microorganisms may be
prevalent in Antarctic ice-bound habitats. Thus,
existing data strongly suggests that the Antarctic ice
sheet may harbour a time-specific microbiological
seed bank, which could provide a source of micro-
organisms to inoculate subglacial environments.

The Antarctic subglacial environment described
so far consists of around 145 subglacial lakes and
their interconnected watercourses (Siegert, 2005;
Siegert et al., 2005; Priscu et al., 2008), although
new lakes continue to be identified (Popov and
Masolov, 2007; Peters et al., 2008). In Antarctic
subglacial systems, 100cellsml™" (glacial ice) and
400 cellsml™" (accretion or glacial transition zone
ice) have been estimated from the ice above Lake
Vostok (Priscu et al., 2008). Indeed, all samples
in this accretion ice between 3541 and 3611m
depth were found to contain both prokaryotic and
eukaryotic microorganisms (Priscu et al, 1999;
Price, 2000; Poglazova et al., 2001; Christner et al.,
2001), and functional groupings have even been
described, such as the thermophilic chemoauto-
trophic Hydrogenophilus thermoluteolus (Lavire
et al., 2006). More recently, microbes have been
detected in sediments collected from beneath
the West Antarctic Ice Sheet (Lanoil et al., 2009) so
the potential for microbial life in Antarctic sub-
glacial lake systems is clear.

The estimated time of migration of microorgan-
isms through the ice into Antarctic subglacial lakes,
is of the order of 10000-50000 years—not long
enough for the evolution of completely new species,
but certainly long enough for novel biochemical,
physiological and morphological diversity to poten-
tially exist, or for the continued existence of relic
populations that may have become extinct else-
where. In such an extreme environment, the mere
presence of life in itself would be a major scientific
discovery, but there are reasons to expect that such
microorganisms would possess special or unique
adaptations to this unusual and potentially hostile
environment. Analysis of the metabolic activity and
capability or new physiologies (using a metage-
nomic or high-throughput sequencing approach)
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and bioenergetics through the analysis of biochem-
ical pathways of returned samples, will help to gain
a better understanding of the potential role of such
subglacial lake microorganisms in biogeochemical
cycling and in their functioning and control of
ecosystem processes, or indeed their biotechnological
potential (Raymond et al., 2008). In addition, the
climate record locked in subglacial lake sediments
has the potential to provide unique insights into
past changes in ecosystem function and adaptation.

With the advent of molecular techniques, micro-
bial ecology has entered a golden age of advance-
ment and discovery. We have also reached the point
at which technology can tackle one of the final
frontiers of exploration in the search for life on
Earth. It is now financially, logistically and practi-
cally possible to study Antarctic subglacial lake
systems. Significant challenges still remain, how-
ever, particularly with respect to obtaining samples
from such a remote and hostile environment, while
preventing contamination (Vincent, 1999) of both
the samples themselves and the subglacial environ-
ment (either microbiologically or chemically)—
particularly as Antarctic subglacial lake systems
are believed to be hydraulically interconnected
(Price et al, 2002), and in the unambiguous

interpretation of microbiological material obtained.
However, progress is being made on each of these
fronts: resources have been made available for
access at Lake Vostok and Lake Ellsworth www.nerc.
ac.uk/press/releases/2009/03-ellsworth.asp (Figure 1),
methods are already under development in analo-
gous systems to effectively sample these environ-
ments (Doran et al., 2008), particularly with respect
to the potential for contamination (Alekhina et al.,
2006) and an initial assessment has already been
made on what is needed to responsibly explore
Antartic subglacial lake environments (National
Research Council, 2007).

We are now, therefore, in a position to ask some
very interesting questions of these systems, such as:
do the Antarctic subglacial lake environments
contain life, and if so, what, where and how? What
can subglacial lake microorganisms tell us about the
distribution and evolution of microbial life in on
Earth? What are the biogeochemical resources of this
unique gene pool? What unique historical climate
change record is locked within subglacial lake
sediments, and how do Antarctic subglacial lakes
interact with and influence the overlying ice sheet?
To address these questions, developments and
improvements in key techniques can now be

Figure 1 The location of Lake Ellsworth and Lake Vostok in West and East Antarctica, respectively.
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applied to subglacial lake samples. These include:
microscopy; fluorescent and electron microscopy
(linked to specific gene probes), molecular biology;
genomic DNA extracted from material obtained and
used to construct metagenomic libraries (to screen
for new physiologies), physiology and biochemistry
(to investigate biogeochemical cycling), direct cul-
ture and biomarkers or tracers (Wackett, 2007).

Advances in molecular technology have vastly
improved life detection limits, such that microscopy
and PCR are now capable of detecting individual
cells per ml, or the DNA itself at 0.1-0.2ul™". To
date, 16S rDNA-based community reconstruction
has shown sequences between 6-93 from Lake
Vostok accretion ice (though this figure is known
to include contaminants). Adopting a culture-based
approach from Antarctic ice cores, 0, 2 and
10 cfuml™" have been isolated from Dyer Plateau,
Siple Station and Taylor Dome respectively (Christ-
ner et al., 2000), and 1-16 cfuml~* from a Dronning
Maud Land ice core (Pearce, unpublished data).
Radiolabelled substrates can yield uptake rates at
the level of several hundred cells (Karl et al., 1999).
However, not one approach is likely to provide a
complete unbiased picture of the microorganisms
residing in a sample or their relative numbers, and
the design of specific, clean sampling strategies is
extremely important.

Although Antarctic subglacial lakes were identi-
fied almost 40 years ago (Robin et al., 1970), we are
only now at a stage where the exploration of
Antarctic subglacial ecosystems is a reality, and this
will open a new frontier in microbial ecology. Initial
results from Lake Vostok accretion ice, access into
Arctic subglacial lakes and preliminary work with
shallow Antarctic subglacial systems, suggests we
are about to enter an exciting phase in Antarctic
subglacial lake research. Perhaps most significantly,
if Antarctic subglacial lake ecosystems are found
to be sterile, it would be a major discovery in itself.

D Pearce is at British Antarctic Survey, Natural
Environment Research Council, Cambridge, UK.
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