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Phytoplankton carbon fixation gene
(RuBisCO) transcripts and air-sea CO2 flux
in the Mississippi River plume
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River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in
significant CO2 drawdown. To determine the relationship between expression of the major gene in
carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and
CO2 dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays,
phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the
Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated
by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at
least an order of magnitude greater than haptophytes, a-Synechococcus or high-light Prochlor-
ococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic
stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative
correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between
low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive
correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among
Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating
mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productiv-
ity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the co-
occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced
seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes
such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. Our work represents the
first attempt to relate in situmicrobial gene expression to contemporaneous CO2 flux measurements
in the ocean.
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Introduction

Perhaps the least understood components of the
global carbon cycle are those that involve the coastal
ocean. About half of the approximately 115pg of
carbon fixed by autotrophs annually is taken in by
marine organisms (Behrenfeld et al., 2001). It is
estimated that about 30% of anthropogenic CO2

emissions are absorbed into the oceans (Sabine
et al., 2004) and the ocean margins have recently
been shown to take up about 20% of this anthro-

pogenic CO2 (Thomas et al., 2004). Coastal seas,
estuaries and river plumes are a fundamental part of
the global carbon cycle because they link terrestrial,
oceanic and atmospheric carbon reservoirs. River-
dominated ocean margins are the most important
class of margins in terms of their impact on carbon
sequestration (Green et al., 2006). In addition, river-
born nutrients yield the highest rates of primary
production in the biosphere (Dagg et al., 2004).

The Mississippi is the Earth’s seventh largest river
by discharge, and its outflow into the Gulf of Mexico
creates a plume of elevated phytoplankton abun-
dance in the stratified and otherwise oligotrophic
Gulf waters. While Mississippi River water entering
the Gulf of Mexico has very high dissolved inorganic
carbon (DIC) concentrations and is believed to be a
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source of atmospheric CO2, the region of mixing
with oceanic water fosters high levels of primary
productivity and inorganic carbon uptake, resulting
in an area of estimated CO2 influx to the surface
ocean (Cai, 2003; Green et al., 2006; Lohrenz and
Cai, 2006). Evidence indicates maximum phyto-
plankton biomass and primary production occurs at
intermediate salinities (20–30) in the Mississippi
River plume (MRP), while productivity is light-
limited in very low salinity water and nutrient-
limited at the edges and outside the plume, where
seawater CO2 partial pressure (pCO2) increases and
approaches equilibrium with the atmosphere (Loh-
renz et al., 1999). Productivity rates of the MRP are
among the highest of river-influenced continental
shelf systems (Cai, 2003). Phytoplankton blooms
composed largely of chain-forming diatoms have
been documented (Bode and Dortch, 1996), particu-
larly in the low-salinity plume water. Picoplankton
such as Synechococcus and picoeukaryotes, while
generally still in greater abundance than larger
phytoplankton in the plume, appear to become
relatively more prominent in regions with salinity
around 30, as plume waters mix with the Gulf of
Mexico, while Prochlorococcus spp. are present in
high numbers outside the plume (salinity B35) in
oligotrophic Gulf of Mexico waters (Jochem, 2003;
Liu et al., 2004; Wawrik and Paul, 2004).

From a molecular standpoint, by far the most
common mode of inorganic carbon entry into the
biosphere is via the enzyme ribulose-1,5-bispho-
sphate carboxylase/oxygenase (RuBisCO). RuBisCO
sequences are somewhat conserved across evolution
yet still exhibit sufficient variation to enable
phylogenetic discrimination. Most phytoplankton
contain the form I type of RuBisCO, including
marine a-cyanobacteria such as Synechococcus
and Prochlorococcus (form IA), chlorophytes and
b-cyanobacteria (form IB), and chromophytic algae
such as diatoms and prymnesiophytes (form ID)
(Tabita, 1995, 1999) Although regulation of RuBisCO
activity is complex (Hartman and Harpel, 1994),
most phytoplankton actively transcribe their large
subunit genes (rbcL) daily, making rbcL mRNA a
good molecular indicator of carbon fixation poten-
tial (Pichard et al., 1996; Paul et al., 2000b). Much
work has focused on the measurement of rbcL
mRNA transcript abundances to gain information
about the occurrence and phylogenetic diversity of
active carbon-fixing organisms in the marine envir-
onment (Wyman et al., 2000; Paul et al., 2000a;
Wawrik et al., 2003, 2004; Corredor et al., 2004). Our
previous work on RuBisCO gene expression and
phytoplankton dynamics in the Gulf of Mexico has
revealed elevated form IA rbcL transcript and
primary productivity associated with offshore or
distal plume environments (Paul et al., 2000a;
Wawrik et al., 2003, 2004). However, this work has
largely excluded the most biologically active waters
of the MRP immediately to the south and west of the
delta, where other research has demonstrated pCO2

gradients that favor carbon flux to surface waters
whereby the plume may act as a carbon sink.

The analysis of rbcL transcript abundances is
important for giving not only an indication of
presence but also relative rbcL gene expression
levels from phytoplankton populations sampled.
Following development of a quantitative reverse
transcription PCR method for quantifying rbcL
mRNA (Wawrik et al., 2002), we have recently
described a suite of quantitative reverse trans-
cription PCR assays to quantify rbcL RNA from
Synechococcus, high-light Prochlorococcus, hapto-
phytes, and the heterokont group from the pre-
viously described assay which encompasses
diatoms, pelagophytes, pinguiophytes and dictyo-
chophytes (silicoflagellates) (John and Paul, 2007).
These groups were targeted initially because rbcL
mRNA clone library analysis from the Gulf of
Mexico identified diatoms, prymnesiophytes, a-
Synechococcus, and Prochlorococcus to be the
dominant-active carbon fixers in plume and oligo-
trophic waters (Wawrik et al., 2003; Wawrik and
Paul, 2004).

The inverse correlation between phytoplankton
biomass (as chlorophyll-a) and surface CO2 levels in
ocean margin environments has been demonstrated
recently in a coastal area of the Mediterranean Sea
(Huertas et al., 2005). Still, data on the relationship
between phytoplankton communities and pCO2

levels of the surface oceans are lacking, particularly
with respect to which members of the phytoplank-
ton community can be the most important in
effecting CO2 drawdown. In the current study, we
addressed the question of which major phyto-
plankton groups are present and active with respect
to CO2 dynamics in the MRP and northern Gulf
of Mexico. We employed a number of analyses,
including rbcL mRNA quantification using new
real-time PCR assays and form-specific hybridi-
zation probes, phytoplankton cell abundances by
flow cytometry and microscopic counts, primary
productivity measurements, and size fractionation of
samples along with underway and discrete inorgan-
ic carbon measurements to answer this question.

Methods

RNA sampling and rbcL gene transcript quantification
Sampling was performed aboard the R/V Pelican
in July 2005. For mRNA, seawater samples (450–
750ml) were collected from 3m depth using an
electric submersible pump (Rule, White Plains, NY,
USA). Phytoplankton were filtered onto 0.45 mm
Durapore HVLP filters (Millipore, Billerica, MA,
USA) and filters were stored in 2ml polypropylene
cryotubes previously filled with 0.3ml of muffled
200 mm low-protein-binding zirconium oxide grind-
ing beads (OPS Diagnostics, Bridgewater, NJ, USA)
and 750 ml RLT buffer (Qiagen, Valencia, CA, USA)
with 10ml/ml b-mercaptoethanol (Sigma, St Louis,
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MI, USA). Samples were frozen and stored in liquid
nitrogen for the duration of the cruise, and stored at
�801C upon return to the lab until analysis.

RNA purification was performed in the lab using
the RNEasy extraction kit (Qiagen) on a vacuum
manifold with on-column DNA digestion using
RNAse-free DNAse (Qiagen) according to manufac-
turer’s instructions. Columns were rinsed twice
using 750 ml RPE buffer rather than the recom-
mended 500 ml to ensure adequate removal of
guanidinium-containing buffers RW1 and RLT from
the sides and ledge in the columns. Columns were
centrifuged at 16 100 g for 2min to dry following
RPE rinses. RNA was eluted using 50 ml room
temperature RNAse-free H2O. Purified RNA was
diluted up to 10-fold to reduce the possibility of PCR
inhibition by compounds co-purified with the RNA.
PCR oligonucleotides employed were as reported
previously (John and Paul, 2007; Supplementary
data). Reactions were performed using the Taqman
One-step RT-PCR master mix kit (Applied Biosys-
tems, Foster City, CA, USA) on an ABI Prism 7700
Sequence Detector real-time PCR instrument (Ap-
plied Biosystems). PCR reactions were composed of
primers at concentrations of 400nM each, with
primers pooled in assays with multiple primers
(thereby giving total concentrations ranging from
400nM to 2 mM, depending on the assay), probes at
concentrations of 125nM for single-probe assays and
75nM each for two-probe assays (150 nM total),
1.25 ml Multiscribe reverse transcriptase (from Taq-
man kit), 25 ml 2�Taqman master mix, 10 ml tem-
plate in RNAse-free H2O, and the balance to 50 ml
with RNAse-free H2O. Thermocycling conditions for
heterokonts were as follows: 451C hold for 30min,
951C hold for 10min, then 40 cycles of 951C for 20 s,
521C for 60 s and 721C for 60 s; haptophytes, high-
light Prochlorococcus and Synechococcus were
performed at 451C hold for 30min, 951C hold for
10min, then 40 cycles of 951C for 20 s, 541C for 60 s
and 721C for 60 s.

Data were analyzed using the Sequence Detection
Systems software version 1.9 (Applied Biosystems).
Standard curve reaction templates were created
from our clone libraries of rbcL genes (Wawrik and
Paul, 2004) and reactions consisted of a pool of three
in vitro transcripts from the target clade. Standard
curves encompassing five orders of magnitude were
generated for each PCR run. Results were inter-
preted in terms of mass of transcript RNAs made
using the Quant-iT Ribogreen kit (Invitrogen, Carls-
bad, CA, USA). Each RNA extraction was analyzed
for all four assays by performing reactions in two
groups according to annealing temperature and
holding the extracted RNA on ice during the interim
while the first round of PCR was running. Average
values for the respective groups were calculated
using data from two separate samples.

RNA extraction and sample analyses for dot-blot
hybridization were performed as has been described
previously (Wawrik et al., 2003; Corredor et al.,

2004). Briefly, RNA was purified using RNeasy
columns and dot blots were quantitatively analyzed
using antisense 35S-labeled probes for form IA, form
IB and form ID rbcL. Quantitative standard curves
were created from dilutions of sense in vitro
transcripts made from the respective probe template
sequence. Standard curve dilutions were blotted in
the same manner as environmental samples and
probed with respective riboprobes along with
environmental sample blots. Samples were analyzed
in duplicate.

Productivity and photophysiology
For photophysiology analysis, samples taken in
Teflon-lined Niskin bottles were immediately trans-
ferred to 1-liter light-shielded, acid-washed poly-
ethylene bottles. Samples of 650ml were spiked
with 0.108mCi of 14C-bicarbonate (Amersham Bio-
sciences, Piscataway, NJ, USA). Aliquots (40ml) of
spiked water were transferred to 40-ml borosilicate
EPA vials and incubated in a photosynthetron
apparatus (CHPT Mfg, Georgetown, DE, USA) at in
situ temperature and at irradiances ranging from 0
(dark sample) to 1000 mEm�2 s�1. Time-zero sample
blanks were immediately filtered before commence-
ment of incubation. Following incubation (1–2 h),
samples were sequentially filtered onto 2 and 0.2 mm
25-cm membrane filters and treated with 250 ml 10%
HCl to drive off unfixed [14C]bicarbonate. After 24 h,
10ml of scintillation fluid was added, and sample
radioactivity was determined by liquid scintillation
counting in the channels ratio mode. The resulting
data were plotted in PE (productivity vs irradiance)
curves. The biomass (chlorophyll-a) normalized
photosynthetic parameters aB (light-limited slope),
PB
max (light saturated rate) and bB (photoinhibition

slope) were computed using the exponential for-
mulation of Platt et al. (1990). Samples for chlor-
ophyll-a analysis (200ml) were sequentially filtered
through 2 and 0.2 mm membrane filters, frozen in
liquid nitrogen and then ground in 5ml 90%
acetone solution in a Potter–Elvejhm grinder using
a glass fiber filter to assist in cell disruption.
Fluorescence analysis was performed following the
method of Welschmeyer (1994).

Carbonate chemistry analyses
Shipboard CO2-parameter analyses were performed
using an automated flow-through multiparameter
instrument (Wang et al., 2007). The instrument takes
complete measurement of air pCO2, seawater pCO2,
DIC and pH every 7min. Detailed procedures of the
spectrophotometric measurements of these carbon
parameters have been presented previously (Byrne
et al., 2002; Wang et al., 2007). Briefly for pCO2, an
internal alkalinity standard with a sulfonephthalein
indicator (phenol red) is enclosed inside a liquid
core waveguide made of Teflon AF 2400 capillary
tubing (DuPont, Wilmington, DE, USA), which
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forms the long pathlength spectrophotometric cell
during measurements. CO2 samples are directed to
flow surrounding the liquid core waveguide, which
also serves a CO2-permeable membrane. The inter-
nal standard indicator solution reaches CO2 equili-
brium with sample across the liquid core
waveguide, solution pH is measured with a spectro-
photometer, and pCO2 is then calculated. The
internal indicator solution is renewed for each
measurement. pCO2 measurements are calibrated
against known pCO2 gas standards. For DIC mea-
surements, sampled seawater is first acidified using
3N HCl to convert all inorganic carbon species to
CO2, which is subsequently measured using bromo-
cresol purple as the indicator. DIC measurements are
calibrated with Certified Reference Material (CRM)
from Dr AG Dickson at the Scripps Institution of
Oceanography (La Jolla, CA, USA). All measure-
ments and calibrations are conducted at a constant
temperature (251C) using a water thermostat. The
system is also equipped with a pressure gauge for
measurement of atmospheric pressure and a CTD for
measurements of temperature and salinity of water
samples. The entire system and its measurement
sequence are fully automatic and controlled by a PC
through a custom interface. The measurement
precisions are 71 matm for water and atmospheric
pCO2, and 72 mmol kg�1 for DIC.

During field measurements, seawater samples
were pumped into the ship using an on-board water
pump with an inlet about 3m below the surface. The
multiparameter CO2 system withdrew water from
the underway stream through a peristaltic pump.
Atmospheric sample air was pumped from the front
of the ship about 10m above sea surface and was
directed to the underway CO2 system. Results of
seawater pCO2 measured at 251C were corrected to
the field temperature based on thermodynamic
calculation of the carbonate system. During the
survey, calibrations of pCO2 and DIC were con-
ducted occasionally to assure that no drift occurred.
For hydrographic casts and time series monitoring,
discreet samples of DIC were collected in stoppered
glass bottles free of headspace and preserved with
saturated HgCl2. These DIC samples were subse-
quently measured on board using the underway CO2

system described above.

Phytoplankton cell counts
Samples for phytoplankton cell counts were con-
centrated by reverse filtration (Dodson and Thomas,
1978) using 1 mm pore-sized polycarbonate filters.
Typically, 400ml was concentrated to approxi-
mately 25ml of which 5ml was counted on a Zeiss
inverted microscope following the procedures out-
lined by Hasle (Dodson and Thomas, 1978). The
entire chamber was counted at 100� for larger
species while two to four chamber transects were
counted at 400� for smaller species. Species
identifications were based on descriptions in the

Tomas manual of phytoplankton identification
(Tomas, 1997). Samples for flow cytometry were
processed in the lab of Lisa A Campbell at Texas A
and M University according to protocols described
previously (Campbell, 2001).

Diel drift study
A Lagrangian drift study was performed to measure
diel changes in rbcL transcript abundances and the
other parameters. A drogued drift buoy was de-
ployed and followed for over 24h. Samples from 3m
were taken every 4h as described above for RNA
analyses and photophysiological parameters. Sur-
face water pCO2 and DIC were also measured using
the underway CO2 system described above.

Results

Surface seawater characteristics in study region
Locations of sampling stations are shown in Figure 1
and Table 1. Station 1 was just off the Florida Shelf
in oligotrophic waters (not shown in Figure 1).
Stations 3, 4 and 6 were in the area of greatest river
influence, evidenced by satellite ocean color, sali-
nity and chlorophyll-a. Stations 6 and 7A–F were
part of a Lagrangian study, thus were rather close in
proximity. The salinity of sampling stations ranged
from 30.1 to 35.9 (Table 1). Satellite-estimated
chlorophyll content of surface water within the
sampling area (Figure 1a) indicates highly produc-
tive waters were present at the time of sampling.
Seawater DIC and pCO2 for all stations ranged from
1911 to 2031 mmol kg�1 and 188–437matm, respec-
tively; both generally increased with salinity,
although the station with lowest pCO2 (Station 4)
did not have lowest DIC concentrations. Atmo-
spheric pCO2 over sampling stations (corrected to
100% humidity) was fairly constant at 37073 matm.
Underway carbon measurements were used to chart
spatial dynamics of surface water pCO2 (Figure 1b).
Low seawater pCO2, well below atmospheric levels,
was observed in the plume region, resulting in an
area of estimated CO2 drawdown (Stations 3–7).
Conversely, in the oligotrophic waters outside the
MRP, a small degree of CO2 efflux was observed
(Stations 1, 2 and 8).

These parameters allow the categorization of
sampling stations into two basic surface marine
regimes (Figure 2): (1) a ‘plume’ area characterized
by lower salinity from 30 to 32, surface pCO2 from
under 200 to just over 300 matm and CO2 flux into
the surface ocean from the atmosphere, elevated
chlorophyll-a, and elevated maximum photosyn-
thetic rate (Pmax); and (2) the open, oligotrophic Gulf
of Mexico with salinity over 34, pCO2 over 400 matm,
and much lower chlorophyll-a and Pmax measure-
ments. The size distribution of photosynthetic cells,
indicated by chlorophyll-a content, also varied
between these two regimes (Figure 2b); larger cells
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(42mm) contained the bulk of total chlorophyll-a
within the plume, while outside it the photosyn-
thetic biomass was dominated by picoplankton
o2 mm.

Phytoplankton cell numbers
Two types of phytoplankton cell count data were
obtained: picophytoplankton (Prochlorococcus, Sy-
nechococcus and picoeukaryotes) were enumerated
by flow cytometry, from both the o2 mm and whole
(unfiltered) size fractions, while microphytoplank-
ton such as diatoms, dinoflagellates, Trichodes-

mium and microflagellates (which were not
differentiated into auto- or heterotrophic organisms,
see Methods) were counted by light microscopy
from preserved samples. Figure 3 shows micro-
plankton and picoplankton (whole fraction) counts
as a function of surface water pCO2. Synechococcus
cells were in greatest abundance in the plume, and
ranged from about 1� 108 l�1 to a peak of over
6� 108 l�1 at Station 7F at the end of the diel study.
Synechococcus cell abundance in high pCO2, oligo-
trophic waters was o3% of the maximum abun-
dance we measured (Figure 3a). Prochlorococcus
were more numerous far outside the plume (Stations
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Figure 1 (a) Composite SeaWiFS image of estimated surface chlorophyll-a concentrations during cruise dates in July 2005. Sampling
stations are shown, with 1 oligotrophic station out of view (Station 1). Station 7� was not sampled for data reported here. (b) Estimated
CO2 flux (based on Wanninkhof parameterization (Wanninkhof, 1992)) over the MRP area, showing sampling sites and cruise track
within or near the plume. The negative sign of numbers in the lower panel indicates the direction of pCO2 flux is from atmosphere to
surface ocean. Two sampling sites far outside the MRP are not shown (Stations 1 and 8). MRP, Mississippi River plume.
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1 and 8), reaching a maximum of 8� 107 l�1, but
were still present in the plume at about one-third
of their highest concentrations. Picoeukaryote cell
concentrations were much greater in low pCO2

water. All three picoplankton classes were primarily
in the o2 mm fraction, with the average ratio of cells
o2 mm being 93% for Prochlorococcus and 100% for
Synechococcus and picoeukaryotes, but showing no
clear relationship to sampling location (Supplemen-
tary data). All three picoplankton classes were in
greater abundance than diatom cells, which were
the most numerous larger phytoplankton in the
plume except at Station 5 (where they were in
equal abundance to microflagellates, Figure 3b,
note difference in scale). Of the diatoms in the
plume area (pCO2 below B300 matm), 96–99% were
tentatively identified as Pseudo-nitschia (G Vargo,
personal communication). Dinoflagellates were also
dramatically greater in the plume than outside it,
and the decrease of pCO2 with increasing diatom
and dinoflagellate numbers is visible in the scatter-
plot of Figure 3b. In oligotrophic water, diatoms
were far less abundant, and were not found at
Station 1. Except at Station 5, microflagellates
numbers were fairly consistent within and outside
the plume.

RuBisCO RNA concentrations
RuBisCO RNA transcripts quantified by quantitative
PCR (qPCR) were averaged for each group for the
two oceanic regions (Figure 4a), from the whole and
size-fractionated samples. rbcL RNA from the het-
erokont group was in greatest abundance in plume
stations (Stations 3–7, Figure 4a, also Supplemen-
tary data). Again, the heterokont group does not
encompass all heterokonts, but rather a group with
related rbcL genes primarily consisting of diatoms

(Bacillariophyta), and including pelagophytes
(Pelagophyceae), pinguiophytes (Pinguiophyceae), and
some silicoflagellates (Dictyochophyceae). Whole-
fraction heterokont rbcL transcripts were approxi-
mately 10� more abundant than the other analyzed
groups in the plume, and 50� more abundant than
from the o2 mm fraction (Figure 4a). High-light
Prochlorococcus rbcL RNA concentrations were
very low in the plume, but increased in non-plume
stations (Stations 1, 2 and 8) to equal abundance
essentially with the other four groups (B10pg l�1).
Picocyanobacterial (Prochlorococcus and Synecho-
coccus) rbcL RNA occurrence was nearly equal
between the whole and o2mm fractions, indicating
again that picocyanobacteria cells were in the
o2 mm fraction.

Results of diel sampling from this study (Figure 4b
and Supplementary data) and from our and others’
previous work (Pichard et al., 1996; Paul et al., 1999,
2000b; Wyman, 1999) demonstrate that much of the
cellular RuBisCO RNA pools fluctuate daily, with
peak concentrations tending toward early morning
hours. Diel variability here was most pronounced for
the heterokont group rbcL RNA (Figure 4b), with the
minimum concentration only about 10% of the
maximum (other rbcL clades’ diel results shown
in Supplementary data). With the exception of
Station 4 in the plume and three diel time points,
samples were collected between 0600 and 1300
Eastern Daylight Time (Table 1). The averages in
Figure 4a omit these stations so that samples are
better constrained with respect to time and differ-
ences between water masses are more defined.
Indeed, RNA concentrations from Station 4
(sampled 15:30) were relatively lower than other
plume stations for all analyzed groups (station-by-
station rbcL RNA values are shown in Supplemen-
tary data).

Table 1 Locations of sampling stations from R/V Pelican cruise from 14 to 19 July, 2005, and accompanying DIC and productivity
measurement values

Station Salinity Latitude Longitude Sampling time
(EDT) (hours)

DIC
(mmol/kg)

pCO2

(matm)
pCO2 air
(matm)

Chlorophyll-a
(mg l�1)

Pmax

(mgC l�1 h�1)

4 30.1 28.750 N 89.700 W 1530 1980 188 367 2.10 7.15
3 30.9 28.645 N 89.775 W 0915 1911 218 373 1.82 4.51
6 31.6 28.715 N 89.040 W 1245 1953 293 369 1.86 2.81
7A 31.3 28.691 N 88.998 W 1841 1930 267 366 1.73 5.94
7B 31.4 28.691 N 88.975 W 2230 1940 272 367 1.68 2.81
7C 31.5 28.657 N 88.960 W 235 1941 282 368 1.54 4.94
7D 32.0 28.633 N 88.948 W 0639 1949 303 368 0.97 0.76
7E 32.0 28.620 N 88.947 W 1025 1955 306 369 0.55 5.71
7F 31.8 28.610 N 88.947 W 1433 1956 310 372 0.80 2.38
5 32.0 28.715 N 89.307 W 0908 1949 283 371 1.64 6.91
2 34.2 28.385 N 89.250 W 1015 2013 412 368 0.27 0.99
8 35.7 29.096 N 86.647 W 0900 2023 430 370 0.14 0.70
1 35.9 28.098 N 85.389 W 0800 2031 437 372 ND ND

Abbreviation: DIC, dissolved inorganic carbon.
All data reported were taken from samples at a depth of 3m to reflect surface water characteristics. Atmospheric pCO2 values were corrected for
100% humidity. ND: not determined, samples were not analyzed for specified parameter at that station. Stations listed in order of increasing
salinity except for Stations 6–7F, which were part of a diel drift study.
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We also made measurements of rbcL RNA
concentrations using dot-blot hybridization with
radiolabeled riboprobes consistent with previous
studies on RuBisCO RNA in the marine environ-
ment (Supplementary data). There was good
relative agreement between heterokont rbcL RNA
measured via PCR and form ID rbcL RNA by
hybridization, although PCR-derived RNA concen-
trations were somewhat greater. However, there
was poor agreement in the relative trends
between stations when comparing Synechococcus
or Prochlorococcus PCR values and form IA
RNA hybridization values. Rather, forms IA
and IB hybridization values paralleled each other
closely.

Data comparisons and correlations
To determine which parameters covaried, Pearson
correlation coefficients were determined for the
many parameters measured at the various stations.
The most salient correlation analyses are shown in
Table 2. For rbcL mRNA concentrations, only
samples taken from 0600 to 1300 were considered,
due to the strong diel periodicity in mRNA message
levels we observed.

Heterokont rbcL RNA measured by PCR and
microscopic cell counts of diatoms were highly
correlated, as were heterokont rbcL RNA and the
sum of diatom and microflagellates. These relation-
ships are documented graphically in Figure 5 for
emphasis. While a strong relationship existed

Figure 2 (a) Mean values of surface (3m) salinity, pCO2, Pmax (maximum photosynthetic potential) and chlorophyll-a in plume and
open Gulf of Mexico stations. Error bars indicate standard deviation. Plume stations were defined as having salinity 30–32, open ocean
stations defined as having salinity 434. (b) Relative distribution of chlorophyll-a between cell size fractions above and below 2 mm
diameter with respect to salinity. At lower salinity stations, chlorophyll-a was predominantly in cells 42mm, conversely most
chlorophyll-a was in picoplankton o2 mm at open ocean, high salinity stations.
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between diatom cell counts and heterokont rbcL
RNA overall, the relationship weakens in very
oligotrophic water (Stations 1 and 8) where diatoms
were undetected at Station 1 (approximately o1 per
80ml or 13 per l) and only 200 cells l�1 at Station 8,
yet heterokont rbcL RNAwas still present. Since the
heterokont qPCR assay also detects rbcL transcripts
from pelagophytes (some of which are flagellates, for
instance Pelagomonas) and silicoflagellates (dictyo-
chophytes), it is likely that these organisms made up
a larger or the entire portion of quantified hetero-
kont rbcL RNA in waters where diatoms were largely
absent. Indeed, the slope of the regression on
heterokont rbcL RNA and the sum of diatom and
microflagellate cells reveals a nearly 1:1 relationship
on a logarithmic scale (appropriate considering the
enormous scale of variability), so it is also possible a
significant portion of the microflagellates in oligo-
trophic water were pelagophytes or silicoflagellates.

In contrast, Figure 5c shows a large spread in
abundance of high-light Prochlorococcus rbcL RNA
but a relatively small range of Prochlorococcus cells
enumerated by flow cytometry. The values of rbcL
RNA below B1� 103.5 fg l�1 all were from plume
samples, while those greater than this were from the
open Gulf of Mexico.

Correlations between diatoms or microflagellates
and form ID rbcL RNA by hybridization were less
robust, with R-values of around 0.7 (data not
shown). The picoeukaryotes, which were primarily
in the o2 mm size fraction, were not well correlated
to the o2 mm fraction heterokont rbcL RNA, and
were only moderately correlated to haptophyte rbcL
RNA (o2mm; Table 2). These picoeukaryotes may be
any of a number of different photosynthetic organ-
isms, including prasinophytes (which have form IB
RuBisCO and were not specifically targeted with
real-time PCR), but it does not appear a large portion
of them were chromophytes targeted by our real-
time PCR assay.

Chlorophyll-a and Pmax correlation to rbcL RNA
were strongest for the heterokont group; Pmax also
strongly correlated with diatom cell numbers.
Relationships between salinity and rbcL RNA
concentrations revealed high-light Prochlorococcus
rbcL RNA to be positively correlated to salinity,
and heterokont rbcL RNA to be negatively corre-
lated. Surface pCO2 and DIC were positively
correlated with salinity and negatively correlated
with chlorophyll-a. Pmax also was negatively corre-
lated to pCO2; although less robust than salinity
and chlorophyll, the regression is significant at
Po0.01.

From the PCR-derived rbcL RNA concentrations,
heterokont rbcL and high-light Prochlorococcus rbcL
RNAs both had strong correlations to pCO2 (and
DIC, not shown), with heterokont values negatively
correlated and Prochlorococcus rbcL RNA positively
correlated. Diatom cell abundance also had a
significant negative correlation to pCO2, while
Prochlorococcus cells did not. Synechococcus and
haptophyte rbcL RNA also showed statistically
significant relationships with pCO2, but with R-
values of �0.584 and �0.630, respectively, neither
had as strong a relationship as that from the
heterokont group and high-light Prochlorococcus.
rbcL RNA concentrations measured by dot-blot
hybridization also showed strong negative relation-
ships to pCO2: forms IA (r¼�0.8484), IB
(r¼�0.9241) and ID (r¼�0.8831). However, the
actual concentrations of forms IA and IB were much
lower than those of form ID, which paralleled
heterokont rbcL RNA trends from station to station
(Supplementary Data).

Figure 6 highlights the differing nature of the
relationship between high-light Prochlorococcus
and heterokont rbcL RNA with pCO2. Essentially
two regimes existed with respect to pCO2 levels:
plume stations where pCO2 was below atmospheric
concentrations and an estimated influx of CO2

Figure 3 (a) Cell counts of picoplankton derived from flow
cytometry vs surface pCO2, showing Prochlorococcus, phycoery-
thrin-containing Synechococcus and picoeukaryotes. (b) Micro-
plankton counted by light microscopy, showing diatoms,
combined auto- and heterotrophic microflagellates, dinoflagel-
lates and Trichodesmium. Note difference in scale between 3A
and 3B. Synechococcus were the most abundant cell type
throughout plume-influenced waters, but were outnumbered by
Prochlorococcus at stations with salinity 435. Diatoms were the
most abundant microplankton type in plume stations except at
Station 5, but not observed from Station 1 samples.
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Figure 4 (a) Average rbcL RNA concentrations per liter of the four groups measured by qPCR, in the whole (unfiltered) and o2 mm size
fractions. Replicate samples from the multiple stations are included. Means are grouped by MRP (salinity 30–32) and open Gulf of
Mexico (salinity 434) stations. The heterokont group detects rbcL RNA from diatoms, pelagophytes, dictyochophytes (silicoflagellates)
and pinguiophytes, which have closely related rbcL genes. Only high-light Prochlorococcus are detected by the qPCR assay. Error bars
show standard deviation. Only samples taken from 0600 to 1300hours are included, which is all except Station 4 and three diel time
points (see Table 1). (b) Diel cycle rbcL RNA concentrations per liter from the heterokont group in whole and o2 mm size fractions,
measured by qPCR. Other groups diel cycles shown in Supplementary Data. Behind the diel trend, there appeared to be mixing with
lower productivity water, as indicated both by the difference between consecutive 1200 time points here and decreasing chlorophyll-a
measurements over the course of the diel sampling (1.86–0.80mg l�1, Table 1). MRP, Mississippi River plume; qPCR, quantitative PCR.
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occurred, and non-plume stations where seawater
pCO2 was moderately greater than atmospheric
levels and a small efflux occurred. RuBisCO tran-
scripts from the two groups also fall into these
respective regimes, with the two essentially equal in
non-plume stations and dramatically divergent in
plume stations. A log-linear negative relationship
between heterokont rbcL RNA and surface seawater
pCO2 is shown in Figure 6. The opposite relation-
ship was observed for high-light Prochlorococcus
rbcL RNA, which reveals a highly significant
positive regression (Po0.0001, r2¼ 0.69). Although
the extremely low concentrations of rbcL RNA in the
plume and lack of intermediate pCO2 measurements
between 300 and 400 matm result in a distribution of
Prochlorococcus rbcL RNA vs pCO2 that does not
appear linear, when the data are considered in light
of plume vs open Gulf of Mexico samples, the
difference between the two regimes is clear. RuBis-
CO RNA transcripts from Synechococcus and
haptophytes did not show such a distribution as
that from Prochlorococcus or the heterokont group
with respect to pCO2 (correlation coefficient R-
values of 0.58 and 0.63, respectively).

Discussion

The surface water chemical characteristics mea-
sured allow us to categorize the sampling stations
into ‘plume’ stations (those with salinities between
30 and 32 and pCO2 under 310 matm) and ‘non-
plume’ stations (those with salinities greater than 34
and pCO2 greater than 400 matm). Our plume
stations fall in the salinity range that other MRP
papers characterize as a mixing zone, containing
higher salinity than the water masses with greatest
productivity (Lohrenz et al., 1999). Nonetheless,
data from these stations provide a good evaluation of
the relative trends of RuBisCO gene transcript
concentrations among the evaluated phytoplankton
groups in relation to surface CO2 partial pressures.

The following pieces of evidence indicate that
diatoms are the most important phytoplankton
group whose productivity drives the CO2 drawdown
found in the MRP region. (1) We found an over-
whelming dominance of heterokont rbcL transcripts
quantified by real-time PCR in the plume stations,
on average 10� greater than the next closest
group (Figure 4a). Our heterokont PCR assay

Table 2 Highlights of relationships among data sets indicated by Pearson correlation coefficients (R)

Parameters compared Correlation
coefficient (R)

n Significance
of regression (Pox)

Seawater rbcL RNA concentrations and cell counts
Log diatom cells vs log heterokont rbcL RNA (PCR) 0.98 12 1.0E�08
Log auto- and heterotrophic microflagellates cells vs log heterokont rbcL RNA
(PCR)

0.77 14 0.002

Log sum of diatom+microflagellates vs log heterokont rbcL RNA (PCR) 0.96 14 1.0E�07
Log Synechococcus cells vs log Synechococcus rbcL RNA (PCR) 0.73 22 0.003
Log picoeukaryote phytoplankton o2mm vs log o2 mm haptophyte rbcL RNA
(PCR)

0.67 18 0.009

Log picoeukaryote phytoplankton o2mm vs log o2 mm heterokont rbcL RNA
(PCR)

0.42 18 0.09

Log Prochlorococcus cells vs log HL Prochlorococcus rbcL RNA (PCR) 0.60 18 0.01
Log dinoflagellate cells vs log form IB rbcL RNA (dot blot hyb.) 0.92 12 1.0E�04
Log Prochlorococcus cells vs log form IA RNA (dot-blot hybridization) �0.72 16 0.002
Log Synechococcus cells vs log form IA RNA (dot-blot hybridization) 0.44 16 0.09

Productivity/chlorophyll concentrations and phytoplankton parameters
Chlorophyll-a vs log heterokont rbcL RNA (PCR) 0.89 16 1.0E�05
Pmax vs heterokont rbcL RNA (PCR) 0.72 16 0.003
Pmax vs diatom cells 0.97 7 0.001

Seawater chemical parameters and phytoplankton/biological parameters
Salinity vs log heterokont rbcL RNA (PCR) �0.91 18 1.0E�06
Salinity vs log HL Prochlorococcus rbcL RNA (PCR) 0.86 18 1.0E�05
pCO2 vs log heterokont rbcL RNA (PCR) �0.90 18 1.0E�05
pCO2 vs log HL Prochlorococcus rbcL RNA (PCR) 0.83 18 1.0E�04
pCO2 vs log diatom cells �0.89 7 0.01
pCO2 vs log Prochlorococcus cells 0.46 12 Not significant
pCO2 vs Chlorophyll-a �0.88 12 0.001
pCO2 vs Pmax �0.72 12 0.01

Other
pCO2 vs salinity 0.97 13 1.0E�07

All samples compared were from surface water (3m). Comparisons involving rbcL RNA included data points from samples taken between 0600
and 1300hours Eastern Daylight Time, to limit variability due to diel turnover of rbcL mRNA transcripts. HL Prochlorococcus¼ ‘high-light’
Prochlorococcus. Comparisons not involving RNA include all surface stations, except where data was not recorded (see Table 1).
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detects diatom, pelagophyte, pinguiophyte, and
most silicoflagellate rbcL transcripts with equal
efficiency (John and Paul, 2007). (2) The heterokont
rbcL RNA concentrations are negatively correlated
to surface water pCO2 levels (Figure 6). (3) The
heterokont rbcL gene expression signal correlates
very closely to diatom and the sum of diatom and

microflagellate cell abundances, better than to
microflagellates alone (Figure 5 and Table 2). (4)
Among the microplankton counted by light micro-
scopy, diatoms were in greatest numbers in the
plume, except at Station 5, where microflagellates
were equally numerous (Figure 3). It is not known
which portion of these flagellates were photoauto-
trophs because of the method used for their
enumeration. However, the importance of micro-
flagellates in the composition of total ‘heterokont’
rbcL RNA abundances appears to be most important
in the open, non-plume stations with very
low numbers of diatoms. (5) Heterokont rbcL
mRNA, diatom and microflagellate cell counts,

Figure 5 Relationships between measured rbcL RNA concentra-
tions per liter and cell counts for (a) heterokont rbcL RNA and
diatoms, (b) heterokont rbcL RNA and the sum of diatoms and
microflagellates, and (c) cell counts for Prochlorococcus cells and
high-light Prochlorococcus rbcL RNA. The figures depict data
from samples taken from 0600 to 1300hours only. On (b), diatoms
make up the larger fraction of the sum in plume stations (those on
the higher end of the scale), while microflagellates compose most
or all of the sum from oligotrophic open Gulf of Mexico stations
(on the lower end of distribution). For Prochlorococcus (c), the
clustering among samples from plume stations and those outside
the plume is apparent, with the open Gulf of Mexico samples
having greater than 1�103.5 fg rbcL RNA per liter. All the values
below this are from the MRP stations. MRP, Mississippi River
plume.

Figure 6 Correlation of rbcL mRNA concentrations to seawater
pCO2 for samples from 0600 to 1300hours Eastern Daylight Time,
showing heterokont ( ) and high-light Prochlorococcus (K) rbcL
RNA concentrations, with log-linear regressions placed right and
left, respectively. The divergence of data from plume and open
Gulf of Mexico stations is apparent, in that outside the plume in
higher pCO2 water, the heterokont group and Prochlorococcus
rbcL RNA concentrations are similar. In the plume, at lower pCO2

p300matm, heterokont rbcL RNA abundance is dramatically
greater than that of Prochlorococcus. The values for Prochlor-
ococcus are extremely low, at the limits of detection for the qPCR
assay, and are not resolved as accurately, thus giving rise to the
observed spread along the low end of this logarithmic scale.
qPCR, quantitative PCR.
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chlorophyll-a, and pCO2 all share strong correla-
tions to each other (Table 2). (6) Pmax values, a
measure of primary productivity in the water mass,
were best correlated to both the heterokont rbcL
RNA abundance and diatom cell counts (Table 2).
(7) Although picoeukaryotes were in considerably
greater abundance than diatoms throughout the
sampling region, including the MRP, they were
principally in the o2 mm size fraction (Supplemen-
tary data), that only represented a small fraction
(B2%) of the heterokont rbcL mRNA signal (Figures
3 and 4). Also, the heterokont rbcL signal is poorly
correlated to the picoeukaryote cell abundance
(Table 2). (8) Plume Synechococcus rbcL RNA
concentrations were much lower than those of the
heterokont group, in spite of the high Synechococ-
cus cell counts, and were not well correlated to
seawater pCO2 data (Figures 3 and 4a).

This evidence thus supports our conclusion that
(42mm) eukaryotes, particularly diatoms, were
responsible for the carbon fixation and CO2 draw-
down we and others (Cai, 2003; Lohrenz and Cai,
2006) have observed in the MRP, and not picoplank-
ton such as Synechococcus or picoeukaryotes which
exist in much greater numbers throughout the
plume area. Our findings also support the existing
paradigm of MRP phytoplankton community dy-
namics, which dictates that production led by
diatoms is prevalent in the mid-salinity plume
where river water mixes with the Gulf of Mexico
(Bode and Dortch, 1996; Lohrenz et al., 1999; Liu
and Dagg, 2003; Liu et al., 2004; Wawrik and Paul,
2004; Wawrik et al., 2004).

In contrast to the observations of the heterokont
group’s rbcL expression, levels of high-light Pro-
chlorococcus rbcL mRNA decreased dramatically
with reduced pCO2 partial pressure. Prochlorococ-
cus rbcL RNA was not even detectable at Station 4
with the lowest pCO2, in spite of a very low limit of
detection for this assay, which is in the order of 1–10
total copies; we also note that this may partially be
due to the late-day sampling time. Yet, compared to
the variability of high-light Prochlorococcus rbcL
RNA, Prochlorococcus cell counts varied relatively
little. The difference in mean rbcL RNA concentra-
tion (per liter) is about 25-fold between oligotrophic
stations and plume stations (Figure 4a) and the total
range is over 1000-fold (Figure 5c). However,
Prochlorococcus cell counts varied only by a factor
of about three, being greater outside the plume. If the
amount of rbcL RNA per Prochlorococcus cell is
estimated, those outside the plume contained an
average of over 14� more rbcL RNA per cell, all else
being equal.

It is possible that Prochlorococcus cells observed
in plume expressed a variant of rbcL not detected by
our PCR assay probe and primers. However, form IA
rbcL RNA detected by probe hybridization appar-
ently did not provide an indication of Prochloro-
coccus activity in the plume either, based on the
very poor correlation to cell numbers, and it is

unlikely that these would be low-light Prochloro-
coccus ecotypes since samples were taken from 3m.
We hypothesize that the Prochlorococcus popula-
tions in the plume are in an inactive state, possibly
the result of advection into low salinity and high
nutrient water. Form IA rbcL transcripts measured
by dot-blot hybridization (Supplementary data)
decrease with higher salinity, and appear to repre-
sent gene expression from non-Prochlorococcus and
Synechococcus organisms, perhaps that of chemo-
lithotrophic bacteria. Others have described high
rates of nitrification in mid-salinity MRP water
(Pakulski et al., 1995); nitrifying chemoautotrophic
bacteria may be responsible for much of the form IA
rbcL detected by hybridization. It may also be that
form IA rbcL RNA values were influenced by cross-
hybridization to form IB or the highly abundant
form ID transcripts present. Given the very large
differences in concentrations, even a small degree of
cross-hybridization would skew apparent form IA
rbcL RNA values.

The evidence we present here supports the
concept that diatoms, and possibly other chromo-
phytic eukaryotes such as pelagophytes (that is, at
Station 5), are able to capitalize most effectively on
the high levels of nutrients input to the surface
waters of the northern Gulf of Mexico by the
Mississippi River, and maintain a high rate of
carbon fixation under situations of depressed pCO2

in these productive ocean waters. To succeed in
such situations, blooming marine phytoplankton
populations must be able to rapidly utilize the
available nitrogen input, tolerate the reduced sali-
nity and light conditions, maintain adequate in-
tracellular inorganic carbon stores, and reproduce
quickly enough to offset zooplankton grazing. Liu
and Dagg (2003) have found evidence of saturated
zooplankton grazing on phytoplankton in the 5–
20mm and 420 mm fractions, but not on the ‘ultra’
fraction (o5 mm) in the Mississippi River plume,
suggesting that microzooplankton are better able to
control o5 mm phytoplankton populations. This
may partially explain the ‘success’ of diatoms in
the Mississippi River plume. However, it is un-
known how this would apply to even smaller
organisms such as Synechococcus and Prochloro-
coccus.

Flow cytometer and microscopic counts per-
formed for our study revealed numbers of cyano-
bacteria and picoeukaryotes much greater than the
larger diatoms and microflagellates (by 10- to 100-
fold). Yet, rbcL RNA concentrations corresponding
to cyanobacteria were much lower in the plume than
for the 42mm heterokont group (by 10- to 100-fold).
Naturally, due to their size, the amount of RubisCO
RNA and carbon fixation potential per cyanobacteria
or picoeukaryote cell would be less than the larger
eukaryotic phytoplankton. But differential grazing
rates would not explain the disconnect between
Prochlorococcus cell numbers and rbcL RNA con-
centrations between plume and non-plume stations
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(the estimated 14� greater amount of rbcL RNA per
Prochlorococcus cell outside the plume).

One hypothesis that merits further investigation is
whether the success of some phytoplankton in
highly productive nutrient plumes is enabled by
efficient carbon concentrating mechanisms (CCMs).
Diatoms have been shown to possess multiple CCMs
and an ability to regulate active inorganic carbon
uptake under conditions of reduced CO2 (Giordano
et al., 2005). These CCMs include external (peri-
plasmic) carbonic anhydrases, which convert HCO3

�,
generally the dominant inorganic carbon species in
marine water, into CO2 which is more readily
transported across the cell membrane, and inducible
active CO2 and HCO3

� transport mechanisms (Bur-
khardt et al., 2001; Matsuda et al., 2001). Prochlor-
ococcus, which are adapted to oligotrophic
environments with DIC concentrations of at least
2mM, as in our non-plume stations, apparently have
limited CCM capabilities, particularly the high-light
Prochlorococcus with their highly reduced genomes
(Badger and Price, 2003; Badger et al., 2006). Their
inability to enhance inorganic carbon uptake under
the reduced pCO2 levels found in more productive
waters may be a significant reason they cannot
sustain carbon fixation, resulting in reduced rbcL
transcription. Thus, we present a conceptual model
on the relationship of freshwater input, CCMs,
phytoplankton community dynamics, and marine
carbon dynamics in the MRP and possibly other
river plumes: nutrient-laden freshwater mixes with
the Gulf of Mexico, larger phytoplankton such as
diatoms capitalize and grow rapidly in the mid-
salinity waters as turbidity decreases, while efficient
CCMs allow sustained carbon fixation in the face of
reduced external pCO2. The result is surface ocean
CO2 drawdown and regional flux of atmospheric
CO2 to the sea. Prochlorococcus cells, which were
possibly carried into the mixing area on the south-
ern fringe of the MRP from oligotrophic regions by
the Loop Current, are unable to sustain carbon
fixation in the low CO2 water due to relatively
inefficient uptake, possibly compounded by in-
creased turbidity, excessive nutrients, and low
salinity, and enter a relatively senescent state of
low rbcL gene expression.

These results constitute the first attempts to
describe relationships between carbon fixation gene
expression among phytoplankton communities and
oceanic/atmosphere CO2 fluxes. Molecular methods
such as we present here have the potential to be
employed more rapidly and with higher throughput
as biotechnology platforms such as PCR arrays or in
situ genosensors develop. The underlying intent for
our measurement of carbon fixation gene expression
markers from environmental samples is to provide a
phylogenetically specific indication of productivity,
or at least its potential, from the microbial commu-
nity present. Covariance between the heterokont
group rbcL mRNA concentrations and carbon fixa-
tion (as Pmax) was less robust than with pCO2 or

chlorophyll concentrations. A regression of samples
taken from 0600 to 1300hours shows a significant
relationship (P¼ 0.003) but an r2 of only 0.48.
Perhaps due to the complexity of RuBisCO activity
regulation, ecosystem dynamics, and offset temporal
cycles, quantitative relationships between environ-
mental rbcL transcript levels and net primary
productivity or photosynthetic rates have not always
been easy to resolve. Nonetheless, meta-analysis
using results from several different studies reveals a
good overall correlation between rbcL transcript
abundances and carbon fixation (as either net
primary productivity or maximum photosynthetic
potential [Pmax]) on a logarithmic scale, with an r2 of
0.602, highly significant at Po0.00001 (Figure 7,
with data from this paper, Wawrik et al., 2002, 2003,
2004; Corredor et al., 2004).

Measurement of rbcL mRNA from the environ-
ment appears to be good for characterizing large-
scale differences found among differing oceanic
environments such as river plumes and other coastal
areas with the open ocean, and for determining the
active carbon-fixing organisms based on gene se-
quence specificities. The current techniques still
require refinement, particularly enhancing phyloge-
netic specificity of heterokont oligonucleotides to
differentiate between diatoms, pelagophytes, and
other chromophytes, and development of additional
assays for important phytoplankton such as various
prasinophytes, low-light Prochlorococcus, auto-
trophic dinoflagellates, and even some HAB-form-
ing species. Still, analyses of this type continue to
show promise, and with the use of real-time PCR for
RNA, we can achieve an unsurpassed level of
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Figure 7 Relationship of measured carbon fixation, as net
primary productivity or maximum photosynthetic potential
(Pmax), to rbcL mRNA from dominant form or rbcL type measured.
Data from (Wawrik et al., 2002, 2003, 2004; Corredor et al., 2004);
this study. Sample locations were Gulf of Mexico and mid-
Atlantic coast of United States (LEO-15, (Corredor et al., 2004)).
rbcL data were from form IA hybridization analyses (Wawrik
et al., 2003, 2004) or heterokont quantitative reverse transcription
PCR assay originally described in Wawrik et al. (2002) and used
for data from that paper (Corredor et al., 2004), and adapted assay
used for this study.
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quantitative sensitivity and specificity. Continued
development and application of gene expression
techniques will hopefully enable enhanced under-
standing of the underlying physiologic mechanisms
regulating community dynamics and important
ecological phenomena such as carbon flux and
marine productivity.
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