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Experimental demonstration of chaotic
instability in biological nitrification
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Biological nitrification (that is, NH;—~NO; —NO3) is a key reaction in the global nitrogen cycle (N-
cycle); however, it is also known anecdotally to be unpredictable and sometimes fails inexplicably.
Understanding the basis of unpredictability in nitrification is critical because the loss or impairment
of this function might influence the balance of nitrogen in the environment and also has
biotechnological implications. One explanation for unpredictability is the presence of chaotic
behavior; however, proving such behavior from experimental data is not trivial, especially in a
complex microbial community. Here, we show that chaotic behavior is central to stability in
nitrification because of a fragile mutualistic relationship between ammonia-oxidizing bacteria (AOB)
and nitrite-oxidizing bacteria (NOB), the two major guilds in nitrification. Three parallel chemostats
containing mixed microbial communities were fed complex media for 207 days, and nitrification
performance, and abundances of AOB, NOB, total bacteria and protozoa were quantified over time.
Lyapunov exponent calculations, supported by surrogate data and other tests, showed that all
guilds were sensitive to initial conditions, suggesting broad chaotic behavior. However, NOB were
most unstable among guilds and displayed a different general pattern of instability. Further, NOB
variability was maximized when AOB were most unstable, which resulted in erratic nitrification
including significant NO; accumulation. We conclude that nitrification is prone to chaotic behavior
because of a fragile AOB-NOB mutualism, which must be considered in all systems that depend on

this critical reaction.
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Introduction

All microbial ecosystems are comprised of diverse
groups of organisms that fulfill similar ecological
interactions as macroscopic systems. Predation,
competition and mutualism are all enacted and
can result in complex behavior, including chaos
(May, 1974; Huisman and Weissing, 1999). For
example, recent experimental data showed that a
protozoan predator conditionally displayed chaotic
behavior in a two prey-one predator axenic culture
(Becks et al., 2005). Although this result is interest-
ing, real microbial communities are neither this
simple nor can be studied with such limited data
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(Juretschko et al., 2002; Wagner and Loy, 2002;
Turchin, 2003); a more practical question in real
ecosystems is whether guilds of populations that
perform important biochemical functions display
chaotic behavior as groups. Determining the possi-
bility of chaotic behavior in microbial guilds that
perform key functions, such as biological nitrifica-
tion, is critical to understanding sustainability of
such processes that have both environmental (for
example, the biogeochemical nitrogen cycle (N-
cycle)) and biotechnological (for example, waste
treatment processes) significance.

The goal of this work was to experimentally assess
the basis of stability in nitrification, including the
possibility of chaotic behavior. Nitrification was
chosen for study because it is ubiquitous in nature
and it is anecdotally known to be ‘unpredictable’
(Vitousek et al., 1997; Wagner et al., 2002; Rittman
and McCarty, 2003). Furthermore, chaotic instability
is a legitimate explanation for unpredictability since
this process involves two mutually dependent
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microbial guilds (ammonia-oxidizing bacteria (AOB)
that convert NH; to NO; and nitrite-oxidizing
bacteria (NOB) that convert NO; to NOj) that reside
in a mixed microbial community (Wagner and Loy,
2002; Rittman and McCarty, 2003), and such
mutualisms have been mathematically shown to
conditionally display chaotic behavior (Lopez-Ruiz
and Fournier-Prunaret, 2004). Finally, nitrifying-
bacteria are slow growers, nutritionally inflexible,
sensitive to inhibitors and less phylogenetically
diverse than many other key functional guilds
(Balmelle et al., 1992; Jonsson et al., 2000; Wagner
et al., 2002; Rittman and McCarty, 2003). As such,
destabilization can result in unrecoverable loss of
function, which can have major effects on natural
and engineered systems reliant on the reaction
(Vitousek et al., 1997; Jonsson et al., 2000).

The possibility of chaotic behavior in nitrifying
systems was suggested over 20 years ago (Dean,
1985); however, no experimental proof exists. This
has been largely due to inadequate detection
methods for monitoring specific microbial guilds
in real systems, and the general difficulty of gaining
enough and appropriate experimental data to satisfy
the needs of rigorous mathematical analysis (Turchin,
2003). With the advent of new molecular biological
tools (Daims et al., 2001; Coskuner et al., 2005;
Wagner et al., 2006), detection issues are less
restrictive, and mathematical methods exist for
calculating indicators of dynamic instability, such
as Lyapunov exponents (LEs), from short time series
data (Rosenstein et al., 1993, 1994). Nevertheless,
gaining ‘conclusive’ proof of chaotic behavior from
limited data is not trivial (Costantino et al., 1997;
Fussmann et al., 2000; Turchin, 2003). LEs can be
calculated from experimental results, but such expo-
nents only describe trends in stability and it is tenuous
to extend local LEs to the entire system. However,
experimental LEs, when supported by the mathema-
tical validation of determinism and nonlinearity in the
time series, can provide valuable insights into the basis
of stability in a process like nitrification.

In this study, three aerobic chemostats were fed
complex liquid media at different dilution rates;
AOB, NOB and total bacteria, and protozoan guilds
were monitored over time using real-time PCR and
direct enumeration, respectively. Chemostats were
employed because community stability is influ-
enced by dilution rate (Dean, 1985; Funasaki and
Kot, 1993; Vayenas and Pavlou, 1999; Kooi and Boer,
2003), and complex (non-selective) growth media
were used because we wanted to examine nitrifica-
tion within a realistic mixed microbial community.
This approach made guild quantification and math-
ematical analysis more difficult, but it also permits
the study of guild dynamics in a quasi-natural
setting. Finally, chemostat dilution rates were
chosen to differentially stress nitrifying guilds in
different reactors, and nitrification efficiency was
quantified to assess microbial function relative to
guild stability.
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Materials and methods

Experimental design and reactor operations

Three highly controlled aerobic bioreactors (B Braun
Biotech, Goettingen, Germany) were seeded with a
combination of domestic wastewater from an ac-
tively nitrifying wastewater treatment plant (33%)
and simulated wastewater (67%; see Supplementary
Information for composition). The reactors were
then fed simulated wastewater (only) in parallel for
over 300 days, initially operated as batch and fill-
and-draw units to increase biosolids levels, and then
as chemostats with dilution rates of 0.1, 0.3 and
0.83day", respectively (Supplementary Informa-
tion). Although no replicate reactors were employed
in the experimental design (largely due to cost and
operational practicality), the three reactors were
monitored in fine detail with a high-level quality
control, which ensured as much stationarity as
possible in the non-replicate reactors. As examples,
media were prepared identically every 2—3 days in
20-L carboys retained in a 4°C refrigerator. The feed
carboy was fitted with a drawtube that passed
through a port in the refrigerator wall to pumps that
fed the same media in parallel to each reactor at
carefully regulated rates. The actual volume of
media removed differed among reactors, but carboy
feed volumes and reactor effluent volumes were
logged daily to verify proper operation of the pumps
and validate flow rates. Lines were replaced weekly
with clean and presterilized lines.

Biostat i Twin Controllers continuously monitored
dissolved oxygen (DO) and pH, and regulated
reactor operations. Compressed air was provided to
the reactors through sterile filters (Gelman 0.2 ym
PTFE; Pall Corporation, East Hills, NY, USA) at
rates required to maintain constant DO levels.
Twin-paddles were operated at 60r.p.m. to promote
oxygen mass transfer and ensure solids were
suspended in each reactor. Reactor temperature
and DO were maintained at 25°C and ~7.0mg/l,
respectively, and a condensation unit was used to
minimize liquid evaporation.

Sample collection and chemical routine analysis

The reactors were sampled very systematically to
quantify guild abundances and reactor performance
over time. Physical-chemical conditions were mon-
itored using real-time sensors (for example, pH, DO,
temperature) and by the collection of composite liquid
samples for daily chemical analyses. Liquid samples
were continuously collected using a sipping sampler
located at the water surface of each reactor, which was
connected to a peristaltic pump leading to effluent
collectors that were kept at 4°C. Composite samples
were retrieved each morning and processed for daily
chemical analysis, which included total nitrogen (TN),
total and volatile suspended solids (TSS and VSS),
NH,-N, NO;, NOs, chemical oxygen demand and
alkalinity (APHA et al., 1998).



To verify that the sipper was not biasing samples,
bulk solution samples were intermittently collected
from mid-depth in each reactor through separate
sampling ports. Correlation analysis on biosolids
levels (that is, TSS/VSS) was performed on samples
from each source to verify that sipped versus
manually withdrawn samples provided the same
information. The two methods significantly corre-
lated (t-test, P<0.05). As an additional precaution
against the retention of solids in the reactors (as
biofilms or large floc), reactor mixing rates were
increased to 500r.p.m. for 5min each day, immedi-
ately after composite sample collection, to resus-
pend solids and scour the reactor walls before
commencement of the next sampling cycle.

Biological sample processing and analysis
Samples for quantifying protozoa and bacterial
guilds in the reactors were collected every 2 days.
However, different preparation methods were used
in protozoa enumeration and real-time PCR quanti-
fication of bacterial guilds. For protozoa, a 10-ml
aliquot of unfiltered sample was removed and stored
at 4°C in 1% Lugol’s solution before direct micro-
scopic counting using inverted microscopy (Olympus
at x 200 magnification). Each protozoa was tallied
(and identified when possible) and sized using a
calibrated Whipple grid. Protozoa counts for each
sample were collated by number and size, which were
used to calculate biovolumes according to Ruttner-
Kolisko (1977) and biomasses according to Fry (1990).
Procedures for molecular biological analysis of
bacterial abundances are described in Supplementary
information. In summary, three 2.0-ml subsamples
were removed from collected biomass samples
(parallel to protozoa samples), and DNA was
extracted from the pellets using the DNeasy Tissue
kit with lysozyme pretreatment (Qiagen, Valencia,
CA, USA). The extracted DNA was eluted into 200 ul
of molecular-grade water and then stored at —20°C.
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Abundances of 16S-TRNA genes were quantified
using real-time PCR (Bio-Rad iCycler, Hercules,
CA, USA) with primers and Tagman probes for
AOB (Kowalchuk et al., 1997; Hermansson and
Lindgren, 2001), total bacteria (Harms et al., 2003)
and NOB, which are summarized in Table 1
(see Supplementary Information for specificities;
ammonia-oxidizing archaea were also screened
using the method of Park et al. (2006), but no
signals were detected). Single primer/probe sets
were used to quantify AOB and total bacteria,
whereas NOB abundance was the combined signal
from Nitrobacter spp. and Nitrospira spp. primer/
probe sets. Standards included plasmids containing
cloned 16S-rRNA from unspecified AOB (IM
Head and C Linacre, unpublished results),
Nitrobacter sp. (GenBank no. DQ388518; Hawkins
et al., 2006) and Nitrospira defluvii (no. DQ059545;
Spieck et al., 2006).

To compare PCR measures of bacterial abundance
and protozoa counts, gene abundance numbers were
converted to biomass values (as ug-C/l; Supplemen-
tary Information), using estimated rRNA operon
copies per cell (Klappenbach et al., 2001), cell
biovolumes (Bergey et al., 1994; Posch et al., 2001;
Koops et al., 2003) and allometric conversion factors
(Loferer-Krossbacher et al., 1998). It is important to
note that although these biomass calculations
required many assumptions, the main criterion for
calculating LEs is the ‘relative’ precision of data
within each time series; therefore, as long as
consistent conversions are made within the series,
the same LEs result.

Calculation of LEs

LEs were calculated using the method of Rosenstein
et al. (1993, 1994) with L1D2 (www.physionet.org/
physiotools/lyapunov/11d2/) using directly mea-
sured abundance data from the chemostats. The
goal was to quantify the exponential divergence of
initially close state-space trajectories by measuring

Table 1 Oligonucleotide primers and Tagman probe sequences used in the experiment

Target organism Primer/probe  Sequence (5'-3')

T, (°C) Reference

AOB CTO 189fA/B  GGAGRAAAGCAGGGGATCG
CTO 189fC GGAGGAAAGTAGGGGATCG
RT1r CGTCCTCTCAGACCARCTACTG
TMP1

60 Kowalchuk et al. (1997)

Hermansson and Lindgren (2001)

FAM-CAACTAGCTAATCAGRCATCRGCCGCTC-TAMRA

Nitrospira spp.  Nspra-675f GCGGTGAAATGCGTAGAKATCG 58
Nspra-746r TCAGCGTCAGRWAYGTTCCAGAG
Nspra-723Taqg FAM-CGCCGCCTTCGCCACCG-TAMRA

Nitrobacter spp. Nitro-1198f ACCCCTAGCAAATCTCAAAAAACCG 58

Nitro-1423r CTTCACCCCAGTCGCTGACC

Nitro-1374Taqg FAM-AACCCGCAAGGAGGCAGCCGACC-TAMRA

‘Total’ bacteria ~ 1055f ATGGCTGTCGTCAGCT
1392r ACGGGCGGTGTGTAC
16STaq1115

50 Harms et al. (2003)

HEX-CAACGAGCGCAACCC-TAMRA

Abbreviation: AOB, ammonia-oxidizing bacteria.
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the mean rate of separation of nearest neighbors
while excluding false nearest neighbors. LEs were
estimated by the slope of the line obtained by linear
least squares of the log-transformed divergence.
Calculation of LE values used guild abundances
measured every second day, which provided 104
uniformly distributed time points.

The following parameter values were employed in
L1D2. A time delay of J=3 was used for all reported
calculations since this resulted in an autocorrelation
function of approximately (1—1/¢) (Rosenstein et al.,
1993) or less in all guild-chemostat combinations.
Embedding dimensions of m=4, 5, 6 were used
since convergence was observed in computed LE
values for these embedding dimensions (see later).
The time delay and embedding dimensions employed
are consistent with the geometric method (Rosenstein
et al., 1994) for determining time delays. In order to
exclude false nearest neighbors, a Theiler window of
w=20 was employed. The use of w=20 was arrived
upon by inspection of space time separation plots
(Provenzale et al., 1992; Kantz and Schreiber, 2004)
for all guild—chemostat combinations that had been
obtained using the routine ‘stp’ in TISEAN; and by
examination of LE values assuming w= 10, 15, 20, 25,
30. Sensitivity analysis was performed by examining
the dependence of calculated LEs on time delay and
embedding dimension parameters; parameter values
were chosen that minimized variation in the estimated
LE for each guild.

Demonstrating determinism and nonlinearity in the
time series

To verify that the data were not dominated by
noise and had underlying deterministic trends, two
methods were employed (see Supplementary Infor-
mation for mathematical details). First, a modified
version of the Pimm-Redfearn analysis of variability
was used to assess whether variability was domi-
nated by long-term deterministic trends rather than
by short-term ‘noise’ (Rohani et al., 2004). Second,
detrended fluctuation analysis was performed to
examine innate variability in detected long-range
correlations (Peng et al., 1995). To examine deter-
minism and nonlinearity in the data, linear versus
nonlinear prediction models were assessed. Speci-
fically, Volterra-Wiener series of degree 1 (linear)
and degree 2 (nonlinear) were fitted to the data, and
in-sample root-mean-square (r.m.s.) errors were
compared, with smaller nonlinear errors indicating
nonlinearity (Barahona and Poon, 1996). In-sample
r.m.s. error in the Volterra-Wiener models was also
used to test the null hypothesis of linearity on
surrogate data sets. Polished, amplitude-adjusted
Fourier-based surrogate series were generated from
experimental data using TISEAN 2.1 (Schreiber and
Schmitz, 1996), and ranking of the error statistic in
the distribution over 19 surrogate time series was
examined. A ranking of one was used to reject the
hypothesis of linearity with 95% significance.
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Calculation of coefficient of variation in abundance
time-series data

Rolling coefficient of variation (CV) of guild abun-
dances was estimated for each time series to
describe how guild variance over time might relate
to process performance. Variance has been consid-
ered as a possible forecasting tool for predicting
dynamic shifts in other systems that display chaotic
behavior (Scheffer and Carpenter, 2003; Carpenter
and Brock, 2006), and it was desired to test whether
rolling CV might correlate with nitrification effi-
ciency in our systems. Further, recent results have
shown that microbial process instability can affect
performance (Gentile et al., 2007; Miura et al., 2007),
although no quantitative predictive tool has been
proposed.

As there is no precedent to this procedure in
microbial systems, it was necessary to determine the
most appropriate length of time in the time series
over which to best calculate the rolling CV. Speci-
fically, rolling CV is calculated as the standard
deviation of measured abundances over n days
before when performance was measured, divided
by the mean over the same period. To examine
possible options, many rolling CV values were
calculated from each time series, using different
numbers of preceding days n. The calculation was
performed for n=3-20, and it was found that CV for
n between 7 and 11 (it varied slightly among guilds)
always correlated best with process performance.
Interestingly, this time-length consistently corre-
sponded with the mean wavelength of the abun-
dance cycle for each guild. As such, one cycle of
abundance data was used as the standard for
calculating rolling CV, which is actually logical
because it describes behavior in one cycle immedi-
ately before determining performance (that is, it is
not skewed by out-of-cycle variation). Although this
approach was successful, work is needed to study
the underlying basis of the method and verify its
broader utility.

Results

Guild abundance patterns and chemostat performance
Three chemostats were monitored daily under
quasi-stationary operating conditions for 207 days
at dilution rates of 0.1, 0.3, and 0.83 day*, respec-
tively, with the 0.83 day " unit being operated close
to washout (based on assumed maximum specific
growth rates for nitrifying bacteria of 1.0-1.5day™"
at 25°C; Rittman and McCarty, 2003). Figures 1a, b
and c summarize protozoa (the presumed dominant
predator), AOB, NOB and total bacteria guild
abundances over time in the reactors. Variations in
abundances were always cyclic, which is character-
istic of most biological systems (May, 1974; Dean,
1985; Huisman and Weissing, 1999); however,
abundance amplitudes varied greatly among guilds.
In general, amplitudes were larger and more variable
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Figure 1 Guild abundances (as ug-C/l) over time in the chemostats with dilutions of (a) 0.1day ", (b) 0.3day " and (c) 0.83day .
Complementary chemostat effluent nitrogen levels for the (d) 0.1day ", (e) 0.3 day * and (f) 0.83 day * reactors.

Table 2 Average organic carbon and nitrogen levels in chemostat
effluents

Dilution rate 0.1day* 0.33day? 0.83day !
Effluent organic carbon levels as mg-COD/I
COoD,,& 120.2 (8.64)° 105.3 (6.62) 166.2 (7.72)
NH,-N 12.8 (0.48) 11.0 (0.49) 18.1 (1.76)
Effluent nitrogen levels as mg-N/I
NO; 0.38 (0.09) 0.45 (0.13) 43.9 (2.83)
NO3 111 (2.39) 90.1 (1.41) 30.2 (1.96)

Abbreviations: COD, chemical oxygen demand; TN, total nitrogen.
?Chemostat influent organic carbon (as COD) and TN levels were
520mg-COD/l and 120mg-N/l (including NH;-N~ 25-30 mg-N/1),
respectively.

PReported average effluent levels based on n>190 samples per
parameter per chemostat collected over the 207-day experiment;
bracketed values represent the 95% confidence intervals.

as dilution rate increased. NOB abundances were
most variable among guilds, ranging by seven orders
of magnitude in the 0.83 day " reactor.

Table 2 and Figures 1d, e and f present parallel
nitrification performance data among chemostats.
The 0.1 and 0.3 day " units had ~90% and 75% N-
conversion efficiencies (defined as the percent
conversion of influent TN to NO; in the reactor
effluent), respectively, whereas N-conversion effi-
ciency in the 0.83 day ' reactor was very variable,
ranging from about 10% to 80%, and had periods of
significant NO; accumulation (Figure 1f). In con-
trast, Table 2 shows that organic carbon removal
efficiency varied less among reactors, indicating that
presumed C-processing guilds were less impacted

by dilution rate in our systems. This is consistent
with the fact that C-processing organisms tend to
have higher maximum specific growth rates than
N-processing organisms in systems with complex
organic media (Rittman and McCarty, 2003).

Determination and verification of LE and observed LE
among guilds

LEs were calculated for each guild to quantify
sensitivity to initial conditions in measured abun-
dances, using the method of Rosenstein et al. (1993,
1994). As background, positive LEs indicate that a
time series is ‘divergent’ and mean that subtle
differences in initial conditions can result in totally
different trajectories, which is a signature trait of
chaotic behavior. Figure 2 shows that LEs were
positive for all guilds and that LEs were robust
relative to assumptions made in the calculations
(that is, narrow error bars). To verify that calculated
LEs were deterministic rather than stochastic — a
critical issue in proving chaos in short, noisy time
series — a series of additional tests were performed
on the data (Peng et al., 1995; Barahona and Poon,
1996; Schreiber and Schmitz, 1996; Kantz and
Schreiber, 2004; Rohani et al., 2004).

Modified Pimm-Redfearn and detrended fluctua-
tion analyses showed consistent ‘pink-shifting’ in
guild time-series data (see Supplementary Informa-
tion for details), indicating that long-term deter-
ministic trends were not obscured by noise.
Furthermore, nonlinear Volterra-Wiener series mod-
els consistently fit data better than linear models,
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Figure 2 LEs for total bacteria, AOB, NOB and protozoa in the
three dilution rate chemostats. Error bars refer to the range of LE
based on six estimates, using 5 and 6 consecutive points for the
least squares fit of the log-transformed divergence data and
embedding dimensions of 4, 5 and 6. The mean point is shown for
each set of estimates for each dilution rate and guild.

suggesting a visible nonlinear component to each
signal. Finally, standard Fourier surrogate analysis
showed that prediction error in the nonlinear
Volterra-Wiener model for all guilds (apart from
protozoa) was most often smallest in distributions
over 20 series that included 19 surrogate series.
Although this positive test result for nonlinearity
was not of 95% statistical significance in all cases,
these results, combined with consistently positive
LEs and pink-shifted signals, strongly indicate
deterministic nonlinear behavior rather than a
noise-dominated signal, and can be used to examine
the basis of stability in nitrification.

Although LEs were always positive, they differed
among guilds and dilution rates. LEs were highest in
the high-dilution rate reactor for total bacteria,
protozoa and AOB, and significantly correlated with
each other in all three reactors. This correlation
implies that dynamics among the major guilds likely
reflects a predator—prey impacted system. In con-
trast, LEs for NOB were high at all dilution rates and
did not correlate with protozoan LEs (nor any other
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guild), suggesting that another ecological interaction
may explain better the dynamics of this guild.

Correlation between guild variance and abundances,
and nitrification performance

Although LEs were positive for all guilds, Figure 1
and Table 2 show that nitrification was only erratic
in the 0.83 day ' reactor. Therefore, to investigate
relationships between guild dynamics and process
efficiency, bivariate correlation analysis was per-
formed on guild rolling CVs and abundances, and N-
conversion efficiency in the 0.83day ' unit. The
abundances of NOB, total bacteria, predator and
AOB all significantly positively correlated with
nitrification efficiency, and AOB CV significantly
negatively correlated (all P<0.05). However, further
partial correlation analysis indicated that only NOB
abundance and AOB CV independently correlated
with efficiency (P<0.01). Figure 3 summarizes the
significant relationships between NOB abundance
(r’=0.27, P<0.01) and AOB CV (r*=0.14, P<0.01),
and nitrification efficiency. These data provide an
experimental explanation for why instability pat-
terns differ for NOB relative to the other guilds,
which has major implications to predictability in
the nitrification process.

Discussion

Theoretical models have indicated that mutualistic
systems conditionally display chaotic behavior,
depending upon initial population sizes, the extent
of the ‘mutual benefit’ of the interaction and the
fragility of the mutualism (obligate versus faculta-
tive) (Dean, 1985; Lopez-Ruiz and Fournier-Prunaret,
2004). Specifically, when mutual benefit is high and
the mutualism is fragile, quasi-periodic and even
chaotic behavior is predicted (Lopez-Ruiz and Four-
nier-Prunaret, 2004). Given that NOB strongly
depends on AOB for its preferred electron donor
and AOB depends on NOB to remove toxic NO3z
(Kowalchuk and Stephen, 2001; Rittman and
McCarty, 2003), the mutual benefit between AOB
and NOB is high. Furthermore, AOB and NOB are
comparatively less diverse than many other key
guilds (for example, heterotrophs or denitrifying
bacteria), which suggests that redundancy among
species is likely small, especially in a chemostat,
and fragility of the interaction is likely high in the
guilds. Therefore, the AOB-NOB mutualism is of
the type that might be prone to chaotic instability,
which our data confirm.

Figure 1 shows that when AOB becomes increas-
ingly variable in the reactor near washout, NOB
becomes destabilized in an amplified manner,
resulting in unprocessed NO;. We suggest that as
NO; accumulates, AOB becomes impaired and
further destabilized, and a downward spiral results
due to feedback within the mutualism. In general
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Figure 3 Relationship between AOB and NOB abundance and CV, and nitrification efficiency in the 0.83 day " dilution rate chemostat.
All data were log-transformed to satisfy normality criteria for statistical analysis. CVs were calculated as rolling values according to the
wavelength of oscillations in the abundance data for each time series. Nitrification efficiency is defined as the percent conversion of total
input nitrogen (that is, TN, or the sum of influent NH,;-N and organic-N) to NOs in the chemostat effluent.

terms, we suggest that when AOB abundances
become more variable (for any reason), the innate
sensitivity of NOB to initial conditions (as suggested
by consistently high and positive LE) causes both
guilds to become increasingly unstable and un-
coupled, which makes the mutualism unpredictable
as has been seen in many practical applications
(Rittman and McCarty, 2003). The specific reason
why NOB are so sensitive is not clear, although their
lack of diversity, narrow nutritional needs and
reliance on a ‘toxic’ electron donor are possible
(Kowalchuk and Stephen,
Wagner and Loy, 2002; Wagner et al., 2002).

These observations have various implications. On
a general level, the data show that NOB stability is
dramatically linked to AOB instability, which we
propose is why this mutualism is so unpredictable.
In our experiment, near-collapse only occurred close
to washout, when the whole community became
highly unstable. Although we likely saw greater
instability here than one would see in a full-scale
bioreactor (for example, waste treatment unit with
greater biodiversity) or in a soil (with greater
compartmentalization among organisms within the
system), we suggest the innately fragile relationship
between AOB and NOB might result in destabiliza-
tion under almost any conditions.

For example, we propose that ‘fragile mutualism’
is an alternate explanation for why nitrification is
known to be so sensitive to exogenous inhibitors

explanations

interaction.

rates,

2001;

Furthermore,

or the

(Balmelle et al., 1992; Jonsson et al., 2000). Such
sensitivity may simply result from the fact that even
small perturbations in AOB can trigger amplified
negative responses in NOB that uncouples the
exogenous
might only be one factor that triggers variability
in the AOB guild (other factors are higher dilution
predator—prey effects
activity of phage on AOB versus NOB guilds), and
that unpredictability in nitrification is fundamental
to the fragile AOB-NOB relationship. Given this,
we propose that monitoring of AOB CV (or the
equivalent) in real systems could be a useful tool for
forecasting nitrification instability (analogous to
strategies proposed for other ecosystems (Scheffer
and Carpenter, 2003; Carpenter and Brock, 2006)),
which would have great value in biotechnical
applications of the process.

Four final synoptic observations can be made.
First, chaotic behavior exists in complex microbial
communities; however, not all guilds in the same
system are equally ‘dynamic’ at all times and
consideration is needed when contemplating the
assumption of chaos in ecosystems. Second, chaotic
behavior does not always translate to inefficient
microbial guild function. All guilds tested displayed

inhibitors

differential

chaotic behavior in all reactors; however, no major

loss in C-processing efficiency was seen in any
reactor and N-processing efficiency only declined in
the 0.83 day " reactor. In fact, it has been suggested
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that systems at ‘the edge of chaos’ exhibit self-
organization and other features that can actually
promote successful function in the presence of
modest disturbances (Sprott et al., 2005). Third,
we predict that observations of instability in
nitrification will foreshadow similar observations
in other microbial mutualisms that are fragile with
high mutual benefit; the obvious example being
methanogenesis. Finally, although chaotic instabil-
ity in nitrification impacts biotechnological applica-
tions, a possibly more important implication of this
result is related to stability in the biogeochemical N-
cycle (Vitousek et al., 1997). Specifically, if nitrifica-
tion is prone to chaotic behavior, this process might
be particularly susceptible to temperature increases,
and reduced stability of the N-cycle might be an
additional consequence of climate change.
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