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Genomic plasticity in prokaryotes:
the case of the square haloarchaeon
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The variability in genome content among closely related strains of prokaryotes has been one of the
most remarkable discoveries of genomics. One way to approach the description of this so-called
pan-genome is to compare one reference strain genome with metagenomic sequences from the
environment. We have applied this approach to one extreme aquatic habitat, saturated brines in a
solar saltern. The genome of Haloquadratum walsbyi strain DSM 16790 was compared to an
environmental metagenome obtained from the exact site of its isolation. This approach revealed that
some regions of the strain genome were scarcely represented in the metagenome. Here we have
analyzed these genomic islands (GI) in the genome of DSM 16790 and compared them with the
complete sequence of some fosmids from the environmental library. Two of the islands, GI 2 and GI
4, overlapped with two large guanine and cytosine (GC)-rich regions that showed evidence of high
variability through mobile elements. GI 3 seemed to be a phage or phage-remnant acquired by the
reference genome, but not present in most environmental lineages. Most differential gene content
was related to small molecule transport and detection, probably reflecting adaptation to different
pools of organic nutrients. GI 1 did not possess traces of mobile elements and had normal GC
content. This island contained the main cluster of cell envelope glycoproteins and the variability
found was different from the other GIs. Rather than containing different genes it consisted of
homologs with low similarity. This variation might reflect a phage evasion strategy.
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Introduction

One of the major challenges for understanding
prokaryotic diversity and evolution is the notable
heterogeneity of genomes that can be found within a
single species or operational taxonomic unit. Stu-
dies carried out mostly with pathogenic isolates
(and sometimes non-pathogenic relatives) have
revealed highly dynamic genomes indeed (Tettelin
et al., 2005; Dempsey et al., 2006; Hochhut et al.,
2006; Petrosino et al., 2006; Willenbrock et al.,
2006). Bacterial genomes can change dramatically in
size, gene repertoire and synteny among the differ-
ent strains or environmental lineages characterized
as belonging to specific, well-defined taxa (Lerat
et al., 2005; Thompson et al., 2005; Dempsey et al.,
2006; Green and Bohannan, 2006). The term pan-
genome was coined to describe the gene repertoire

carried by a well-defined species (Tettelin et al.,
2005). Most of the information regarding the pan-
genomic structure of prokaryotic species derives
from the comparative genomics of multiple isolates
from a single species (Tettelin et al., 2005; Read and
Ussery, 2006). However, this approach has limita-
tions: the sequenced strains may not represent the
actual diversity of the species. For example, clinical
isolates are representatives of highly virulent
lineages selected by the defense systems of the host
or by antibiotic resistance. Free-living cells are
selected during cultivation by their ability to grow
in the artificial environment of the laboratory and
may not accurately depict the environmental popu-
lation. An alternative approach for studying the
pan-genome is to use metagenomic sequence data
obtained directly from an environment in which a
species is known to be well represented. The
metagenome contains sequences from the different
individuals of the species and this information can
be used to infer genome diversity among these
lineages. At least one reference strain genome has to
be available to identify the metagenomic fragments
as belonging to the species under study.
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In a recent paper (Coleman et al., 2006), this
approach was used to study genomic diversity in
Prochlorococcus marinus, a marine cyanobacterium
predominant in open ocean oligotrophic waters. By
comparing a strain genome with shotgun metage-
nomic data from the Sargasso Sea, they identified
well-defined regions of the reference genome that
had very few or no homologous sequences in the
metagenome. These regions, called Genomic Islands
(GI), are considered hypervariable and indeed may
be unique to the reference strain, as they contain
telltale features that indicated phage-mediated lat-
eral gene transfer. Many GI genes were related to
nutrient stress and different light intensity adapta-
tion. We have applied a similar approach to an
extremely simplified aquatic habitat, saturated
brines in a solar saltern. This is one of the most
challenging extreme environments and the commu-
nities that thrive there are typically dominated by an
assemblage of two prokaryotic species: the hyperha-
lophilic bacterium Salinibacter ruber and its archae-
al counterpart, notorious for its peculiar postal
stamp morphology, Haloquadratum walsbyi. The
genome of H. walsbyi DSM 16790 was described
recently (Bolhuis et al., 2006). In a previous work
(Legault et al., 2006), an environmental saltern
fosmid library was constructed from DNA extracted
from cells enriched with the H. walsbyi morphology.
End-sequence analysis of the fosmid inserts re-
vealed a remarkable diversity of genes, evidence
for GIs, and established that H. walsbyi species gene
pool was, even in that relatively simple and constant
environment, at least twice the genome size of the
sequenced strain DSM 16790. Although the case was
made for certain gene types to be found in the
adaptive pool, the relatively limited data provided
by fosmid end sequencing precluded an in-depth
analysis. Here, we identified the GIs present in the
H. walsbyi DSM 16790 genome and compared them
with those of the complete sequences of environ-
mental fosmids. The differences found have impli-
cations for the potential eco-physiology of H.
walsbyi. A picture of extreme diversity and plasti-
city arises that contrasts with other simplified
extreme environments analyzed before by similar
approaches (Tyson et al., 2004).

Materials and methods

Genomic library and sequencing of fosmids clones
The environmental genomic library used here was
constructed as described in Legault et al. (2006).
Twenty-three fosmids were chosen and sequenced
accordingly with the details described in Results.
The length varies between 10 480 and 38 210 pb
(Figure S1). Clone 2B07 was fully sequenced
(Genome Express, Meylan, France) using a Mega-
Base 4000 capillary sequencer (Amersham Bio-
sciences, Piscataway, NJ, USA). The remaining
eHwalsbyi fosmids were sequenced by pyrosequen-

cing 454 technology (454 Life Sciences, Branford,
CT, USA). A total of 540 945 pb were assembled.

Annotation of fosmids
Protein coding genes were predicted using the
annotation package GLIMMER (Delcher et al.,
1999), and were further manually curated. Spacers
were subsequently searched against the non-redun-
dant database using basic local alignment search
tool (BLAST) (Altschul et al., 1990) to ensure that no
open reading frame (ORF) had been missed. ORFs
were compared to known proteins in the non-
redundant database (http://www.ncbi.nlm.nih.gov/)
using the BLASTX program (translated DNA vs
protein). All hits with an e-value greater than 10�5

were considered non-significant. For each sequence
where a significant hit could be found, another
round of BLAST was performed on parts of the
sequence not covered by the best BLAST hit.
Preliminary analysis of these additional gene frag-
ments showed that they did not impact the results
significantly and were not considered in the final
analyses. GC content was identified using the
‘geecee’ program from EMBOSS package (Rice
et al., 2000). DNA similarity comparisons were
performed using the BLASTN program between
the fosmids and the fosmid-ends with DSM 16790.

Sequence analysis
Alignments were generated using MUSCLE version
3.6 (Edgar, 2004) and ClustalW (Thompson et al.,
1994) and edited manually as necessary (Chenna
et al., 2003). Phylogenetic analysis of proteins was
performed using the MEGA3 phylogenetic tool
software package (Kumar et al., 2004). MUMmer
analysis: 2947 sequences from saltern crystallizer
metagenome (accession numbers DU826964–
DU824018) were aligned against reference genome
of Haloquadratum walsbyi DSM 16790 using the
MUMmer program version 3.19 (Kurtz et al., 2004).
Specifically, we used the ‘promer’ program with
the maxmatch option to calculate alignments and
the ‘mummerplot’ program to generate the percent
identity plot depicted in Figure 1. ACT analysis: the
Artemis Comparison Tool (ACT, Release 5, The
Sanger Institute (Carver et al., 2005)) allowed an
interactive visualization of comparisons between
the complete genome and metagenome-related se-
quences. The comparison data was generated by
performing a BLASTN search of the metagenome
sequences against the DSM 16790 genome, which
allowed identifying regions of similarity, insertions
and rearrangements that were comparable to pre-
viously characterized genome DSM 16790.

Accession numbers
The sequences have been submitted to GenBank
under the accession numbers DQ314492 and

Genomic plasticity in prokaryotes
S Cuadros-Orellana et al

236

The ISME Journal



EF583981–EF584002. The sequence of the complete
genome of Haloquadratum walsbyi DSM 16790 is
available under GenBank accession numbers
AM180088.1 (chromosome) and AM180089.1 (plas-
mid PL47).

Results

The similarity of the fosmid-end sequences of the
metagenomic library to the H. walsbyi DSM 16790
genome is depicted in Figure 1b. The comparison
revealed that nucleotide sequences identical to most
of the reference genome were present in the
environment. However, certain regions of the DSM
16790 genome were less represented in the meta-
genome (which we defined as GIs). These have been
interpreted previously as regions specific to certain
lineages or strains (Coleman et al., 2006). Figure S3
presents a more detailed depiction of the similarity
and representation of GI 1 among the fosmid-end
sequences.

Twenty-three metagenomic fosmids belonging to
environmental H. walsbyi or its close relatives
(following the nomenclature introduced in Coleman

et al. we refer to these sequences as eHwalsbyi) were
fully (or nearly fully) sequenced to better under-
stand their genomic diversity in the environment.
We selected eHwalsbyi fosmids for sequencing on
the grounds that end sequences indicated disconti-
nuity with the strain genome: (i) 12 fosmid inserts
had both ends exhibiting homology to the DSM
16790 genome at distances much larger than the
fosmid insert size, (ii) 6 fosmid inserts had just one
end exhibiting high similarity to the DSM 16790
genome, and (iii) 5 fosmid inserts had no sequence
similarity to the reference genome, but both ends
displayed low GC-content (low %GC is indicative
of H. walsbyi (Bolhuis et al., 2006; Legault et al.,
2006)).

The distribution of the selected fosmids along the
DSM 16790 genome was determined through direct
sequence comparison by BLASTN and alignment of
the sequences using Artemis Comparison Tool.
Twenty-one fosmids were positioned by this method
and a graphic view of their location is shown in
Figure 1c. Two fosmids (eHwalsbyi 011 and 022,
Supplementary Figure S1) did not demonstrate any
similarity to the DSM 16790 genome. Four fosmids
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Figure 1 Haloquadratum walsbyi DSM 16790 genome and Genomic Islands. (a) GC-content of H. walsbyi genome plotted with a sliding
window of 1000 nucleotides. The position of hmu* (halomucin), an unusually high %GC gene, is shown with an arrow. Location of
integrases and IS transposases along the genome are indicated. (b) Fosmid-end coverage. Individual fosmid-end sequences were aligned
to the sequenced strain genome and the alignment-sequence conservation visualized in the form of percent identity plot. Each dot on the
graph represent an individual fosmid-end sequence aligned along its homologous region in H. walsbyi DSM 16790 genome. Y axis reflects
its nucleotide percent identity to the syntenic region. The regions with unusually low representation in the metagenome are shaded and
described in the text as genomic islands (GI). (c) Location of environmental H. walsbyi (eHwalsbyi) fosmids that have been fully (or
partially) sequenced. We define as syntenic a region of a fosmid that contains more than 50% of its genes in the same relative location and
orientation as in the reference genome. Syntenic fosmids are represented in green. The non-syntenic fosmids are represented in red and
are connected to the genome with lines of variable thickness. The thickness of lines is proportional to the size of the segments with
significant similarity to the DSM 16790 genome.
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(eHwalsbyi 058, 101, 416 and 420) appeared
completely syntenic to their corresponding sections
of the strain genome. The combined total sequence
from these fosmid inserts (65 kpb) had an average
nucleotide identity of 99.3% and, in particular,
fosmid eHwalsbyi 416 had 100% identity over
90% of the 24 886 sequenced nucleotides. Together,
they illustrate that H. walsbyi lineages contain some
regions of highly conserved gene order and se-
quence. Actually, even fosmids that were not
syntenic had an average similarity of ca. 98% to
the homologous parts of the DSM 16790 genome. Of
the sequenced fosmids, only three appeared clearly
associated with GIs (eHwalsbyi 559, 485, 033), but
many of the remaining 16 fosmids were located
close to the GIs or contained genes similar to those
found in GIs 2 and 4. With the exceptions noted
above, all eHwalsbyi fosmids had some non-synte-
nic parts, that is, genes that were not present in the
corresponding stretches of the DSM 16790 genome
or appeared at different positions (Figure S1). In the
following sections, we will focus on the fosmids
found at or near the GIs. For the complete descrip-
tion of the eHwalsbyi fosmids and the genes in the
non-syntenic regions, see Supplementary Informa-
tion Table S1 and Figures S1 and S2.

GI 1 and fosmid eHwalsbyi 559
GI 1 (Figure 2) is located between nucleotides
257397–302834 (45.4 kpb) of DSM 16790 genome.
This island is atypical compared to other GIs for two
important reasons: first, the average GC-content
(47.86%) is similar to the average of the genome
(47.90%) and second, GI 1 is devoided of IS
elements and putative phage genes (the transposase
HQ1109 inside GI 1 is not functional). The main
feature of GI 1 is a large cluster of cell-surface
glycoprotein genes (CSG) (Schaffer and Messner,
2001; Schaffer et al., 2001), many of which could be

components of the S layer that provides rigidity to
the cell envelope of haloarchaea (Mengele and
Sumper, 1992; Schaffer and Messner, 2001). GI 1
contains half of the 14 annotated CSGs in the DSM
16790 genome and a probable cell-surface adhesin.
Bioinformatic analysis of CSGs present in GI 1
indicates that the ORF HQ1207, is most similar to
the major S-layer component in Halobacterium
salinarum and Haloarcula marismortui ATCC
43049 and may play a similar role in H. walsbyi
(Blaurock et al., 1976; Trachtenberg et al., 2000). The
relatively large number of CSGs found in H. walsbyi
reference genome seems atypical since all se-
quenced haloarchaeal genomes have two or less
(Bolhuis et al., 2006). This has been attributed to the
complex architecture associated with the square cell
morphology (Walsby, 2005). An alternative explana-
tion is related to the demography of this organism.
H. walsbyi cells reach extremely high population
densities in the mature crystallizer community
reaching up to 108 cells/ml. This high population
density makes an ideal target for phage predation
(Guixa-Boixereu et al., 1999), and the CSGs might
act as recognition and/or attachment targets for
phages.

The above hypothesis is supported by the
sequence found in fosmid eHwalsbyi 559
(36 124 pb) that overlaps with most of GI 1 and
contains an alternative cluster of CSGs (Figure 2 and
Table S1). Although the fosmid had high synteny
and overall sequence similarity to the DSM 16790
genome, there were two regions of variation. One is
hmu2 gene (HQ1197) that codes for a CSG with
similarity to the halomucin hmu gene (HQ1081) (see
Figure 1a), and could be part of the cell envelope
outer layer or capsule (Bolhuis et al., 2006); the
other is ORF HQ1205, annotated as cell-surface
adhesin that had the hallmarks of a secreted
glycoprotein. Identity between the strain copies of
hmu2 and HQ1205 and their environmental coun-
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terparts is only 24% at the nucleotide level
(Figure 2). Similarly, located in GI 4 (see below)
and nearly symmetric with respect to the replication
origin are paralogous copies of hmu2 and two
adjacent genes. Recombination involving these two
paralogous clusters could explain the extremely
high level of variation found in these genes.

GI 2 and fosmid eHwalsbyi 485
GI 2 (Figure 3) is located on the DSM 16790
chromosome between nucleotides 1272280–
1457646 (185.3 kpb) and has several typical features
of a hypervariable GI. One conspicuous indication is
that it contained a high %GC region (1351161–
1409095) with subregions as high as 57%, a value
typical to phages and insertion sequence (IS)
elements of H. walsbyi and other hyperhalophiles.
The island is also rich in mobile elements: there are
three functional IS-1341 (the predominant IS ele-
ment in this genome) transposases, a probable
integrase gene (PhiCh1 Int1-like), several helicase
genes that appear to be phage-related (three rad/
rad25 genes and one uvrD gene) and a probable
helicase family protein. Other notable features of

this GI were a low average coding-region density
(65.2% compared with 74.5% for the whole DSM
16790 genome) and 14 pseudogenes. All these are
hallmarks of a highly unstable genomic region.

Interestingly, this region also contains many genes
involved in the transport of nutrients across the
membrane and likely confers ecological adaptation
or specialization. This island contains one of the
six livHMGF(J) operons found in the DSM 16790
genome. Another cluster is found in GI 3 (see below).
These genes are described as transporters of
branched amino acids (leucine, valine and isoleu-
cine). They are widely distributed in prokaryotes
and it has been suggested that this transporter
family’s success lies in the diversification of their
substrate specificities, capturing also other hydro-
phobic molecules such as lignin monomers, fatty
acids and dicarboxylic acids derived from oils and
fats (Larimer et al., 2004). Another gene cluster
found in the island is the TRAP type C4-dicarboxylic
acid permease cluster, also implicated in the trans-
port of organic nutrients. Finally, a cluster involved
in nitrate/nitrite transport (narK) and dissimilative
nitrate reduction (respiration) to ammonia (narB and
nirA) was also found within the island.
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Fosmid eHwalsbyi 485 (31 408 pb) had some
synteny to the beginning of GI 2 and illustrates the
high variability that affects this genomic region. Of
its 25 ORFs, 10 had extremely high nucleotide
identity to those found in DSM 16790 (average,
98%; range, 95–100%) and they occurred in the
same order and orientation (Figure 3, Table S1). On
the other hand, there are notable differences. On
eHwalsbyi 485, both copies of IS1341, two histidine
kinase genes (HQ2053 and HQ2054), and a gene
cluster probably involved in quorum sensing (homo-
serine lactone efflux) were absent. These genes were
replaced on eHwalsbyi 485 by sn-glycerol-3-phos-
phate transport system (cluster ugp CEAB) and a
different histidine kinase gene. Glycerol, the com-
patible solute produced by the green alga Dunaliella
sp. (Phadwal and Singh, 2003; He et al., 2007) is
probably one of the most abundant nutrients in this
habitat. These glycerol transport genes have higher
similarity to homologs found in H. marismortui and
Halobacterium NRC1 than to a cluster of glycerol
transport genes found elsewhere in the DSM 16790
genome (HQ1989–1992).

GI 3 and liv gene clusters
Located at 2602766–2661746 (58.9 kpb), GI 3 had
two subregions (Figure 4). The first subregion (ca.
40 kpb), occupying a majority of the GI, is character-
ized by high proportion of hypothetical proteins,
phage integrases, cdc6 homologs and bacterial
conjugation-related genes within a high %GC
region. This subsection of the island may be the
remnant of a lysogenic phage inserted in the DSM
16790 genome and absent in many or most cells in
the natural environment, as there were no identifi-
able homologs in the metagenome. The second
subregion (ca. 20 kpb) comprises of another liv gene
cluster (see above), a series of IS-1341 transposases
and a return to average DSM 16790 genome %GC
values.

From the data, it appears that livJ in H. walsbyi
has a rich evolutionary history. The eHwalsbyi 464
liv cluster was most similar (over 97% nucleotide

identity) to those found starting at position 2262733
in the DSM 16790 genome with the exception of the
binding substrate subunit LivJ. An alignment of the
HQ2969 versus the eHwalsbyi 464 LivJ subunits
showed three rearranged fragments with nearly
identical sequence (Figure 5a): the HQ2969 N-
terminus, which is a putative membrane lipoprotein
lipid attachment site, and the central section were
flipped with the C-terminal part in the environ-
mental version. Interestingly, the eHwalsbyi 464 livJ
was more similar to the paralog located in GI 2
(41%, see above) but had the same fragment order as
the LivJ in GI 3. The variation in domain order may
have resulted in a non-functioning protein or
perhaps in a change in substrate binding, although
the chemical nature of the substrate might remain
similar. There is an association between the evolu-
tionary history of livJ and IS element IS1341. In
Figure 5b, a phylogenetic tree of all H. walsbyi LivJ
proteins showed that HQ2192 (GI 2), HQ2809,
HQ3303 (GI 3), HQ2754 and eHwalsbyi 464 livJ
form a cluster. Near or adjacent to these genes were
copies of the IS element IS1341 with the only
exception of HQ2809; however, there was putative
evidence of an IS element, as there exists a small
ORF similar to the zinc-binding domain character-
istic of this transposase. These data suggest that IS
1341 is involved in the spread and variation of
the livJ gene, which might provide a diversity of
transport specificities and therefore ecological adap-
tations for the organisms that carry them.

GI 4 and fosmid eHwalsbyi 033
GI 4 (Figure 6, Table S1), located between 2799525
and 3012525 (213 kpb), is extremely rich in transpo-
sases and putative phage-related genes and contains
a large high %GC region. Within the first part of
the island exists a cluster of glycoprotein genes
(HQ3467, HQ3468 and HQ3469) that seem to be
paralogous to HQ1197, HQ1196 and HQ1195 located
in GI 1 (average nucleotide similarity of the genes
present at both islands was ca. 40%). The first
CSG in GI 4, annotated as halomucin 3 (hmu3), had
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no orthologous sequences among the sequenced
fosmid ends, although it codes for a very large
protein with 2079 amino-acid residues. Also, the
hmu2 paralog found in GI 1 had only a couple of

homologs of very low similarity in the metagenomic
library (data not shown). The second and third
glycoproteins of GI 4 had only one hit each at 26 and
99% similarity, respectively. Therefore, these genes
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appear remarkably variable among the members
of H. walsbyi. It is possible that the variation
affecting these putative CSG genes found in
GI 1 and GI 4 is caused by intragenomic recombina-
tion, as both regions are equidistant from the origin
of replication, a condition known to facilitate such
phenomenon (Hughes, 2000; Mackiewicz et al.,
2001).

GI 4 contains many genes potentially involved in
cell-envelope glycosylation and capsule biosyn-
thesis, including a cluster involved in sialic-acid
biosynthesis. Sialic acid is a common sugar found in
the glycosidic moiety of mucins and is responsible
for their extreme hydrophilicity (Schauer, 2000). It is
interesting that in one of the P. marinus islands there
is also a cluster of genes involved in sialic-acid
synthesis (Schauer, 2000; Coleman et al., 2006).
Finally, GI 4 also contains two adjacent clusters of
ABC-type transporter genes involved in the translo-
cation of small molecules, one involved in urea
transport and other in cobalt transport, and one
ABC-type transport system similar to a lipoprotein
release factor.

None of the environmental fosmids sequenced
was syntenic with GI 4. However, fosmid eHwalsbyi
033 (25 121 pb) contains rearranged GI 4 fragments
(Figure 6). Additionally, this fosmid contained a few
genes closely related to hypothetical proteins found
in a plasmid of H. marismortui (pNG600). Another
fosmid, eHwalsbyi 539 (32 713 pb), contains a large
inversion with one end just at the beginning of
GI 4 (three ORFs upstream) and might involve ca.
462 kpb (Figure S1 and Table S1).

Discussion

The saturated brines of solar salterns, highly
enriched in magnesium salts, make life impossible
for all but the most hyperhalophilic and specialized
cells (Bolhuis et al., 2006). Molecular approaches
revealed the mature crystallizer community to be
largely dominated by H. walsbyi. Often, more than
80% of the dense biomass found in these waters is
made of square archaea in which 16S rRNA genes
differ by less than 1% (Bolhuis et al., 2004).
Furthermore, in a previous work by sequencing
only fosmid ends, we could find sequences highly
similar to the DSM 16790 strain genome, about half
of the sequences with the peculiar low GC content of
H. walsbyi (Legault et al., 2006). However, the other
half had low or no similarity to this genome. The
short sequences at the fosmid ends did not allow us
to establish whether the highly similar sequences
found there were linked (that is, within the same
lineage) to the dissimilar environmental sequences.
In this work, we report that some regions of the DSM
16790 genome and the metagenome show a remark-
able level of conservation, often close to 100%
nucleotide identity. But the data presented here
show that indeed the different lineages contain

regions of high similarity interspaced with others of
low or no similarity to the strain genome.

The first reports comparing metagenomic data
with reference genomes were derived from the
analysis of the acid-mine drainage biofilm (e.g.,
Tyson et al., 2004). There, genetic diversity was
shown to be quite restricted even at the level of
nucleotide substitutions among the different envir-
onmental genomes. As previously discussed (Le-
gault et al., 2006), differences in our data with the
acid-mine drainage biofilm should be expected.
The chemolithotrophic prokaryotic assemblage of
the acid-mine drainage fix CO2 and N2, which
restrict the set of required resources. Contrastingly,
the dominant organisms in the saturated brines are
heterotrophs, which typically require a wide variety
of carbon and other nutrients (during day time
haloarchaea can derive energy from light by rho-
dopsins, but they cannot fix CO2 or N2). These
nutrients are obtained from an extremely diverse set
of organic compounds released by the massive
Dunaliella sp. populations and other microbes that
thrive at lower salinities (Pedros-Alio et al., 2000;
Gasol et al., 2004). Thus, we suggest that different
cells or lineages within H. walsbyi specialize in the
exploitation of different organic compounds and
coexist in such a chemically diverse set of resources.
They do so by containing different gene pools that
are largely associated with the GIs described here.

GI 2 and GI 4 have all the hallmarks of prokaryotic
GIs (such as the pathogenicity islands that have
been known for many years), that is, atypical GC-
content and rich complement of mobile elements.
However, the variability found in GI 1 was atypical
in many ways. We did not find evidence of either
phage or IS element involvement. Instead, intrage-
nomic recombination could be the reason for the
variability found there. If, as the evidence seems to
indicate, GI 1 contains the genes required to
synthesize the rigid components of the cell envel-
ope, it is understandable that the region must be
protected from excessive variation that could en-
danger the viability of the cell. Unfortunately, very
little is known about the cell-envelope structure of
H. walsbyi. Probably, the square shape requires a
more diverse set of CSGs, which is reflected in the
DSM 16790 genome. However, some of the CSG
genes seem to be paralogous and might be involved
in variability generation. Recombination among
different functional copies provides variation with
less risk of generating abortive cells. The recombina-
tion of lipopolysaccharide (LPS) cluster (rfb genes)
in Salmonella enterica is a paradigm of this strategy
(Xiang et al., 1994; Wang et al., 2002). In H. walsbyi,
it probably reflects phage evasion by a ‘competitive
dominant’ microdiversity (Thingstad, 2000). Elec-
tron microscopy studies in the Santa Pola crystal-
lizer have shown that between 1% and 10% of the
square cells are filled with lemon-shaped phage
particles (Guixa-Boixereu, 1996). It is easy to
imagine that the effects of such a dense phage

Genomic plasticity in prokaryotes
S Cuadros-Orellana et al

242

The ISME Journal



population in this high-biomass low-diversity habi-
tat could be catastrophic without an evasion strategy
that promotes variations at the phage attachment
sites (probably CSGs). The polysaccharide related
genes found in GI 4 might contribute to a similar
purpose (see below).

The most common variable feature found in H.
walsbyi genomes is the complement of transporters,
mostly of amino acids and peptides. About half of
the biomass composition is protein and thus it
seems appropriate that these transporters would be
the main adaptations of the heterotrophic commu-
nity that develops in saturated brines. It is reason-
able to think that a single cell or clonal lineage could
not utilize all the available biomass components and
that different lineages within the same species
should specialize themselves in the use of different
compounds, particularly monomers, to coexist and
avoid direct competition for resources. Another very
common function assigned to genes within variable
regions is the sensing part of two-component
regulators. They might reflect again the specializa-
tion of different genomes in the use of different
compounds that require alternative sensors for
efficient regulation.

Remarkably, many of our findings are quite
similar to those reported for P. marinus (Coleman
et al., 2006). In both cases, metagenomic data were
used to detect particularly labile regions in a
prokaryotic genome. Although P. marinus and
H. walsbyi are located at distant branches of the
prokaryotic phylogenetic tree and are physio-
logically (phototroph versus heterotroph) and
ecologically different (nutrient-limited, high-diver-
sity versus extreme, low-diversity environment),
both provide similar pan-genomic frameworks. We
found some islands similar to P. marinus that clearly
show evidence of phage remnants and are highly
enriched in genes with no orthologs in the meta-
genome. Also similar were some of the gene
functions found in the islands. We found variability
at the level of glycoproteins and polysaccharides
that are exposed in the cell envelope, and in
P. marinus, there were variable components of the
LPS, potential targets for phage attachment. We
did not find an association of the islands with
tRNA genes as was found in P. marinus and which
are common in pathogenicity islands. This might
be a bacterial (as opposed to archaeal) characteristic.
On the other hand, IS elements were found at
the ends of all islands and are highly enriched
within them. An interesting parallel with P. marinus
is that several copies of hli genes, which are
essential to perform photosynthesis under a
wide range of conditions, were found in the islands.
In H. walsbyi, we found the liv gene clusters that
might be responsible for amino-acid (or other
substrate families) uptake and are likely to help
the organism adapt to their heterotrophic lifestyle.
The sequenced fosmids indicate that H. walsbyi
genome varies unevenly, much more so than in

the case of P. marinus. The syntenic regions found
had an average nucleotide identity of 98%, which
was higher than the 90% found for P. marinus.
However, the degree of variability in non-syntenic
regions and in the GIs is extremely high,
and indicates that the gene pool from which
H. walsbyi draws to fulfil its ecological requirements
is not small. Even more remarkable is the fact that,
as previously shown (Legault et al., 2006), most of
this diverse gene pool has the genomic imprint
of H. walsbyi, easy to distinguish from most
haloarchaea or hyperhalophiles in general, owing
to its low GC-content. In other words, this diverse
gene pool is contained within the large but relatively
homogeneous population (as defined by 16S rRNA
gene divergence) of square archaea present in the
crystallizer.

This work provides insight into prokaryotic
species’ genomic diversity in general. The small
size of prokaryotic cells precludes them from having
large genomes and consequently, reduces any
individual from utilizing the spectrum of available
resources. Individual cells are specialized to a
specific set of nutritional requirements but do not
directly compete with other members of the same
species for the same resources. This is in striking
contrast to the way species are typically conceived,
where intraspecies competition is for the same
resources. Instead, this evolutionary strategy is
reminiscent of multicellular eukaryotes that
have specialized cells performing different physio-
logical functions within the same organism.
However, in prokaryotes the entire gene repertoire
is not included in a single cell but in independent
lineages (or clonal descent lines) and its phages
(Breitbart and Rohwer, 2005) and comprises
the species pan-genome. The crystallizer metagen-
ome also illustrates the central role played by
phages in the biology of H. walsbyi and probably
in most prokaryotes. Most non-syntenic fosmids
had genes hinting of phage involvement. Of
course, the nearly mono-specific community struc-
ture of saturated brines provides a nearly ideal
setting for carrying large phage populations. How-
ever, recent studies of marine prokaryotes that live
in comparatively diluted environments provide
similar interpretations (Sullivan et al., 2005; Angly
et al., 2006).
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