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Interactions between bacterial carbon
monoxide and hydrogen consumption
and plant development on recent

volcanic deposits

Gary M King and Carolyn F Weber

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA

Patterns of microbial colonization and interactions between microbial processes and vascular
plants on volcanic deposits have received little attention. Previous reports have shown that
atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano
(Hawaii) deposits with varied ages and successional development. Relationships between CO
oxidation and plant communities were not clear, however, since deposit age and vegetation status
covaried. To determine plant—-microbe interactions in deposits of uniform ages, CO and hydrogen
dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu’u Puai (PP-bare), at the
edge of tree ‘islands’ within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar
assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava
flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+ 0.5 and
1.3+0.1mg COm2day ', respectively), and least for PP-canopy (—3.2+0.9mg COm2day ', net
emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an
opposing pattern. Comparisons of atmospheric CO uptake and CO, production rates indicate that
CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but
negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates
indicate that CO oxidizer populations increase with increasing plant biomass and consume CO
actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene
reduction) measured within tree islands, and thus, support plant successional development.
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Introduction

Volcanic landscapes typically consist of a mosaic of
successional states (Kitayama et al., 1995). Deposit
age, degree of weathering, precipitation, tempera-
ture and availability of potential colonists interact
with other variables to determine patterns of
ecosystem development at local-to-regional scales
(Chadwick et al., 1999; Morisada et al., 2002).
Analyses of these patterns have contributed to the
formulation of ecological theories and to a greater
understanding of biogeochemical controls of eco-
system dynamics (Hooper and Vitousek, 1997;
Vitousek and Farrington, 1997; Chadwick et al.,
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1999). For instance, the roles of phosphorus, nitro-
gen and eolian nutrient inputs have been clearly
documented through long-term observations of
Hawaiian chronosequences (Crews et al., 1995;
Chadwick et al., 1999; Neff et al., 2000).

Although they are among the first arrivals on
volcanic deposits, relatively little is known about
the temporal and spatial distributions of microbial
colonists generally, about specific microbial func-
tional groups or about interactions among micro-
organisms and animal and plant communities.
Vitousek and co-workers have addressed some of
these issues through their research on nitrogen
fixation and nitrogen mineralization on Hawaiian
volcanic deposits (Riley and Vitousek, 1995; Vitou-
sek, 1999; Crews et al., 2001; Pearson and Vitousek,
2001). Niisslein and Tiedje (1998), Nanba et al.
(2004) and Dunfield and King (2004) have docu-
mented various aspects of microbial community
structure and function on recent Hawaiian volcanic
deposits (44-300 years old), and shown in particular
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that relatively young deposits harbored very distinct
assemblages, especially where plants were present.
Analyses of quinone profiles on Mt Pinatubo mud-
flows also suggested possible associations of Actino-
bacteria with developing plant communities (Ohta
et al., 2003).

Other groups have reported variable relationships
among plant community development, hetero-
trophic evenness, respiration, and C, N and P
contents for successional transects on volcanic soils
(Schippers et al., 2001). A survey of older soils of Mt
Etna has also shown that respiration varied inde-
pendently of soil carbon content, and that plant
litter decomposition varied as a function of soil
development and plant litter source (Hopkins et al.,
2007).

King (2003a) showed that microbial uptake of
atmospheric CO and hydrogen accounted for a
significant fraction of respiratory metabolism on
volcanic deposits ranging from about 21-210 years
in age, but that these processes were relatively
unimportant at a 300-year-old site supporting a
mature forest. Results from Dunfield and King
(2004, 2005) and Gomez-Alvarez et al. (2007) also
showed that microbial community structure chan-
ged markedly along this chronosequence, with both
CO oxidizers and the microbial community as a
whole dominated by Proteobacteria in the forested
site, while other phyla, including many unidentified
lineages, dominated the remaining sites.

The observed patterns along the chronosequence
may partially reflect factors such as physical weath-
ering, accumulated inputs of microbes from the
atmosphere, and various stochastic and determinis-
tic processes independent of plant succession. They
also undoubtedly reflect plant-dependent interac-
tions. These may include species-specific interac-
tions, such as those between actinorhizal or legume
species (Ohtonen and Vire, 1998; Smolander and
Kitunen, 2002; de Neergaard and Gorissen, 2004)
and their symbionts, or more general interactions,
such as those resulting from inputs of organic matter
(Kent and Triplett, 2002). Similar conclusions have
been drawn for successional patterns associated
with glacial retreat (Ohtonen et al., 1999; Sigler
et al., 2002; Sigler and Zeyer, 2002).

Results presented here document interactions
between plant succession and CO dynamics on
volcanic deposits independent of substrate age. CO
uptake rates at atmospheric and elevated concentra-
tions and comparisons of activities across gradients
of plant development on volcanic deposits of a
single age show that atmospheric CO is consumed
most rapidly in deposits with little or no rooted
vegetation. In contrast, maximum potential uptake
rates, an index of CO oxidizer biomass, are greatest
where plant development and organic matter are
greatest. These results suggest that after initial
colonization of newly formed substrates, CO oxidi-
zer populations likely depend on organic inputs
from plant communities for significant growth.
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Some of these CO oxidizers may contribute to
increases in acetylene reduction rates (King,
2003a), an index of nitrogen fixation, that were
observed with increasing root biomass.

Materials and methods

Site description

Sites were established near Kilauea caldera on a
1959 tephra deposit (Pu’u Puai—PP) and a 1969 lava
flow (Mauna Ulu—MU), aspects of which have been
previously described (King, 2003a; Dunfield and
King, 2004; Nanba et al., 2004; Gomez-Alvarez et al.,
2007). The PP site consists of islands of closed-
canopy woody vegetation (mixed Metrosideros poly-
morpha (Ohia) and Morella faya (also Myrica faya or
fire tree) interspersed with extensive unvegetated
patches comprised of tephra (or volcanic cinders);
the cinders were approximately 1cm in diameter.
At PP, samples were collected within tree islands
(PP-canopy), at the island edges 3—5 m from canopy
centers (PP-edge) and 5m distant from islands in
unvegetated tephra (PP-bare). A pronounced litter
layer (approximately 5—10 cm thick) occurred with-
in and at the edge of tree islands, while at bare sites,
little or no litter was present. At MU, samples were
collected from cinder deposits that had accumulated
on the surface of pahoehoe lava. Vegetation at MU
is more patchy and sparse than at PP. Sample sites
were colonized by a pioneering fern, Sadleria
cyatheoides (MU-veg) or were unvegetated (MU-
unveg).

Bulk physical and chemical analyses

Aluminum core tubes (7.2-cm inner diameter) were
used to collect material to 5-10cm depths. Water
contents were estimated by drying at 110°C for
>24h. pH was determined using slurries of cinders
and deionized water (1:2 mass ratio of samples and
deionized water). Total organic carbon and nitrogen
were analyzed using a Perkin-Elmer model 2400
elemental analyzer for ground material from the
upper two centimeters. Root biomass was deter-
mined by harvesting fine roots (<2-mm diameter)
from the upper 10 cm of material at each site.

Phospholipid phosphate analysis

Phospholipid phosphate contents were analyzed as
a surrogate for microbial biomass (Brinch-Iversen
and King, 1990). Triplicate 0.5- to 1-gram fresh
weight (gfw) root-free samples from various depths
were transferred to screw-cap glass tubes containing
5ml of a 1:2 mixture of dichloromethane /methanol.
The tubes were sealed, transported to the laboratory
on dry ice and subsequently stored at —20 °C prior to
further processing. Dichloromethane (1.67 ml) and
deionized water (5 ml) were added to each tube prior
to centrifugation (1000 g). Dichloromethane (1-2 ml)
phases were transferred to glass ampoules and



evaporated to dryness at 30°C with nitrogen.
Phospholipid phosphate was liberated by persulfate
digestion and measured colorimetrically (Brinch-
Iversen and King, 1990).

Gas flux analyses

Carbon monoxide and hydrogen fluxes were mea-
sured in situ using aluminum collars (about 67 cm?)
fitted with a 1-1 quartz chamber forming a static
headspace (see King, 2003a). Gas exchange assays
were initiated by sealing a chamber to a collar,
covering the chamber with aluminum foil, and
removing 3-cm® headspace samples using a needle
and syringe at 3- to 4-min intervals for up to 15—
20min. Samples were assayed in the field using a
Trace Analytical RGD gas chromatograph (King,
1999). Starting ambient CO and hydrogen values
were typically about 100 and 5507p.p.b., respec-
tively.

Additional assays were conducted using triplicate
intact cores (7.5-cm inner diameter x 20-cm length).
Triplicate cores from PP and MU sites were returned
to a field laboratory within a few hours after
collection and incubated at ambient temperature.
After sealing the core tubes, core headspaces were
subsampled for CO and hydrogen analysis as above.
Analyses of CO, production were performed using
headspace samples that were injected into an SRI
flame ionization gas chromatograph equipped with
a stainless steel column (3.2-mm outer dia-
meter x 2m) containing silica gel and a methanizer
to convert CO, into methane. Samples for CO,
production were collected at intervals over a 48-h
period during incubations at ambient temperature.
Instrument responses to CO, and methane were
determined using standards prepared from pure
gases. Responses to CO and hydrogen were deter-
mined using standards at near-atmospheric levels or
greater; they were prepared by diluting pure gases in
CO- and hydrogen-free air.

Maximum potential CO and hydrogen uptake
rates were estimated using fresh material from the
upper 2-cm depth interval of each PP and MU site.
Triplicate 5-gfw samples were transferred to 110-cm?®
jars that were sealed with neoprene stoppers and
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incubated in darkness at ambient temperature. After
adding CO or hydrogen to a final concentration of
about 100 parts per million (p.p.m.; 1p.p.m. is
equivalent to about 0.1kPa), jar headspaces were
subsampled at intervals to determine uptake rates.
Maximum potential CO uptake rates were also
estimated for selected depth intervals of PP sites.
Similar assays were conducted with freshly col-
lected, washed, soil-free fine (<2 mm) roots from M.
polymorpha, M. faya and S. cyatheoides; triplicate
samples of approximately 1gfw of each root type
were incubated in darkness in sealed jars with
an ambient atmosphere (0.1 p.p.m. CO) and with
100 p.p.m. CO as described by King and Crosby
(2002).

Acetylene reduction rates

Triplicate intact cores (about 10 cm deep) from each
of the PP and MU sites were collected using
aluminum core tubes (7.2-cm inner diameter).
Acetylene was added to the core headspaces to a
final concentration of about 5%. Sealed tubes were
incubated at ambient temperature for about 72h.
Headspace samples were obtained at intervals and
transferred to evacuated 3-cm?® gas collection tubes
containing 0.5ml of ammoniacal silver nitrate to
precipitate acetylene. Ethylene (C,H.) concentra-
tions in subsamples were analyzed by flame ioniza-
tion gas chromatography using a Shimadzu GC-14A.
Rates of C,H, production provided a surrogate
estimate of N,-fixation rates.

Results

Bulk deposit properties

Root biomass varied dramatically among sites
(Table 1) with a maximum in vegetated areas of
652+ 165 gram dry weight (gdw) per m* for PP-
canopy and minimum of 50 + 4 gdw m~2 for MU-veg.
Unvegetated PP and MU sites contained negligible
identifiable root mass. Total carbon and nitrogen
contents paralleled root distributions with values up
to 45.7 and 1.7%, respectively, in PP-canopy. C/N
ratios were least in PP-bare (15.7), increasing by

Table 1 Selected properties of Puu Puai and Mauna Ulu volcanic deposits

Variable Pu’u Puai Mauna Ulu

Canopy Edge Bare Vegetated Unvegetated
Root mass 652 (165) 151 (35) <5 50 (4) <5
Phospholipid phosphate 139 (11) 10 (1) 14.3 (1) 7 (1) 1 (0.2)
% carbon 45.7 (0.8) 2.8 (0.5) 0.33 (0.10) 15.3 (2.1) 0.21 (0.02)
% nitrogen 1.7 (0.02) 0.12 (0.02 0.02 (0.01) 0.61 (0.04) ND
C/N ratio 27.2 23.1 15.7 25.2 —
pH 3.9 (0.2) 4.5 (0.2) 6.9 (0.1) 5.8 (0.2) 6.5 (0.3)
Water content 241 14.6 1.2 1.8 0.8

Root mass, (0-10 cm), gram dry weight (gdw) per m?; phospholipid phosphate (nmol Pgdw™'), % C, % N, pH and water content (mg water per
gdw) from 0- to 2-cm depth interval. Water contents from duplicate determinations; all other data are means of triplicates (£1 s.e.).
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almost twofold in PP-canopy (27.2). In contrast, pH
values decreased substantially from 6.9 in PP-bare to
3.9 in PP-canopy. Water contents displayed the
opposite trend, with PP-bare material holding very
little water, while PP-edge and PP-canopy were
relatively moist by comparison. Trends between
MU-unveg and MU-veg were comparable (Table 1).

Phospholipid phosphate content

Phospholipid phosphate concentrations varied sub-
stantially among sites and with deposit depth
(Figure 1). PP-canopy surface material contained
phospholipid concentrations more than an order of
magnitude higher than surface material from any
other site (P<0.001, analysis of variance). Phospho-
lipid phosphate concentrations were similar, how-
ever, for PP-edge and PP-bare sites at all depths. At
all PP sites, phospholipid phosphate concentrations
decreased by an order of magnitude with increasing
depth up to 10 cm; these changes were statistically
significant (P<0.01, analysis of variance). At MU-
veg, phospholipid phosphate concentrations were
an order of magnitude greater than at MU-unveg
(P<0.01), and about 20-fold lower than at corres-
ponding PP sites.

Gas exchange

Volcanic deposits at three of five sites consistently
consumed atmospheric CO: PP-bare, MU-veg and
MU-unveg (Table 2). CO was emitted consistently
from PP-canopy, but results were more variable for
PP-edge, with both uptake and emission observed
(Table 2). Atmospheric CO uptake rates ranged
between about 1.2 and 8.1mg COm ?day "', with
no clear trends among sites. CO emission rates
ranged from about 1.3 to 8.1mg COm *day*’
(Table 2) for PP-canopy, with intermediate PP-edge
values. In situ CO exchange rates were similar to
those for values obtained from ex situ incubation of
intact cores (Table 2). Estimates for steady-state CO
exchange concentrations (concentrations at which
CO uptake equals CO production) ranged between 0
and 21p.p.b. (parts per billion) for all but the PP-
canopy site (Table 2). For the latter, the steady-state
concentration was 207 £43 p.p.b., well above the
typical ambient atmospheric concentrations (75—
125 p.p.b.). CO uptake rate constants were lowest in
PP-canopy and MU-unveg (0.1min ') and signifi-
cantly higher for the remaining sites (Table 2).

For the MU sites, maximum potential CO uptake
rates (0- to 2-cm depth interval) were significantly
greater (P<0.01) at MU-veg than MU-unveg. The
MU values, however, were substantially less than
values for comparable PP sites (Table 2). At PP-
canopy and PP-edge sites, maximum potential CO
uptake rates decreased significantly (analysis of
variance, P<0.01) with deposit depth (Figure 1a).
For the 0- to 2-cm and 2- to 5-cm depth intervals, PP-
canopy and PP-edge rates were similar, but

The ISME Journal

a Phospholipid phosphate (nmol gdw™")
0 30 60 90 120 150

£
e
-
a
[}
o
10 . . : :
0 10 20 30 40 50
Maximum potential CO uptake (nmol gdw'1 h")
b

CO uptake potential (nmol gdw™ h'")

0 20 40 60 80 100 120 140
Phospholipid phosphate concentration (nmol gdw™)

Figure 1 (a) Depth profiles of phospholipid phosphate concen-
tration (closed symbols) and maximum potential CO uptake rates
(open symbols) for Pu’u Puai (PP)-bare (triangles), -edge (squares),
and -canopy (circles) sites. All data are means of triplicate
determinations *1 s.e. (b) Correlation between maximum
potential CO uptake rates and phospholipid phosphate concen-
trations for all sites, excluding the 0- to 2-cm interval of PP-edge
(square).

PP-canopy rates were significantly greater for the
5- to 10-cm interval. In contrast, maximum potential
CO uptake rates were least for PP-bare, and did not
decline significantly with depth. With the exception
of a single apparent outlier for the 0- to 2-cm depth
interval of PP-edge, maximum potential CO uptake
rates were strongly correlated (r=0.99) with phos-
pholipid phosphate concentrations (Figure 1b); a
strong correlation (r=0.74) remains even if the
apparent outlying point is included.



Table 2 Gas exchange rates for Pu’u Puai and Mauna Ulu sites
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Variable Pu’u Puai Mauna Ulu

Canopy Edge Bare Vegetated Unvegetated
Ex situ, net exchange —1.3 to —8.1 —3.9t0 3.2 1.7-8.1 3.0-4.2 1.2-3.9
Steady-state CO 207 (43) 21 (7) 7 (1) 9 (1) 0
Uptake rate constant 1 (0.03) 1.0 (0.2) 0.3 (0.02) 4 (0.04) 0.1 (0.01)
Respiration rate, mol 103 7 (22.8) 50.8 (6.4) 3.2 (0.6) 74 2 (26.5) 2.2 (0.5)
Respiration rate, mass 4.56 (1.0) 2.24 (0.28) 0.14 (0.03) 3.26 (1.16) 0.10 (0.02)
% CO of respiration 0 0 9.1 0.2 6.4
In situ, net exchange —3.2 (0.9) 2.2 (0.5) 1.3 (0.1) —
Maximum CO uptake 92.5 (6.3) 88.2 (5.4) 26.0 (3.6) 53 2 ( 3) 19.2 (5.4)
Ex situ hydrogen uptake 1.4 (0.3) 2.9 (1.5) 2.4 (0.3) 9 (0.6) 2.1 (0.4)
Acetylene reduction rate 21.5 (11.9) 1.6 (1.0) 0.8 (0.8) 2 (0.7) 0.4 (0.4)

Ex situ and in situ CO and hydrogen exchanges under ambient conditions in mg CO or H, per m* per day (negative values indicate CO emission);

steady-state CO concentration, parts per billion (p.p.b.); uptake rate constant, min~

'; respiration rates are given in mmol CO, per m* per day (mol)

and gm *day ' (mass); acetylene reduction rate in nmol acetylene reduced per m* per day; maximum CO uptake rate units are given in

nmol gdw *d . All data are means of triplicates (£1 s.e.).
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Figure 2 Maximum potential hydrogen uptake versus maximum
potential CO uptake rates for the 0- to 2-cm depth interval of all
sites. All data are means of triplicates +1 s.e. Curve represents a
nonlinear best fit to an exponential rise to an asymptote
(r*=0.98).

All sites consumed atmospheric hydrogen at rates
generally greater than those for CO (Table 2). Trends
in uptake versus vegetational development among
sites were not statistically significant (P>0.5,
analysis of variance), although activity at PP-canopy
was least with the highest threshold value (Table 2).
Hydrogen was also consumed during ex situ assays
to determine maximum potential uptake rates.
Maximum potential hydrogen uptake rates were
greater than the corresponding maximum potential
CO uptake rates at all sites, and increased from MU-
unveg to PP-canopy. A plot of paired maximum
potential hydrogen uptake and maximum potential
CO uptake rates indicated that the capacity for
hydrogen uptake rose exponentially to an asympto-
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Figure 3 Correlation between maximum potential CO uptake
rates and root biomass. All data are means of triplicates +1 s.e.
Curve represents a linear fit (r=0.99).

tic maximum as a function of increased CO uptake
capacity (Figure 2).

Respiration rates, measured as CO, production,
increased with increasing vegetational develop-
ment, and ranged from 3.2+ 0.6 to 103.7 £22.8 and
from 2.2+0.5 to 74.2+26.5mmolm>day " for PP
and MU sites, respectively (Table 2). Maximum
potential CO uptake rates for the 0- to 2-cm interval
of all sites were positively and linearly correlated
with respiration rates (r=0.71); maximum CO
uptake potentials integrated over 0- to 10-cm depth
for the PP sites were highly linearly correlated with
respiration rates (r=0.99; Figure 3). The relative
contribution of atmospheric CO uptake to respira-
tory reducing equivalent flow for PP and MU was
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estimated by assuming a 1:1 stoichiometry for CO,
production and oxygen uptake, and two and four
reducing equivalents formed per mole of CO
oxidized and CO, produced, respectively. The
percent of total respiratory reducing equivalent flow
due to CO was calculated as:

mol CO oxidized/[2x (mol CO; produced
— mol CO oxidized)]. (1)

Since both PP-canopy and PP-edge sites emitted CO
during the time the respiration assay was con-
ducted, the relative contribution of CO to respiratory
reducing equivalent flow was zero; for PP-bare, a
value of 9.1% was obtained. For MU sites, the values
ranged from negligible at MU-veg (0.2%) to 6.4% at
MU-unveg (Table 2).

Acetylene reduction

Acetylene reduction rates were least in MU-unveg
and PP-bare sites (0.4-0.8 pmol C,H, reduced per m?*
per day) and reached a maximum for PP-canopy
samples (21.5 umol C,H, reduced per m?* per day;
Table 2). Acetylene reduction rates were positively
and linearly correlated with root biomass across all
sites (r=0.98), and positively and exponentially
correlated with respiration rates (r=0.95). In addi-
tion, acetylene reduction rates increased exponen-
tially with increasing maximum CO uptake
potential rates integrated over 10cm depth for the
PP sites (r=0.99); comparable depth profiles were
not available for the MU sites.

Root CO production and oxidation

Live, fine roots from the fern, S. cyatheoides, and the
trees, M. polymorpha and M. faya, each produced
CO when incubated under ambient conditions. CO
production rates for S. cyatheoides roots obtained
from two distinct sites (MU and a 1982 lava flow;
1.9-3.3nmol gfw " h™", respectively) were compar-
able to rates for M. faya, 3.5 £ 0.3 nmol gfw *h~" and
M. polymorpha, 1.2+ 0.1nmolgfw *h™" (Table 3).
Maximum potential CO uptake rates were consider-
ably higher than CO production rates, and varied
significantly among the three taxa. Essentially,
identical uptake rates were observed for the
two sets of S. cyatheoides roots, 12.8 £ 1.6 nmol

Table 3 CO production under ambient conditions and CO uptake
during incubation with 100 p.p.m. CO by washed, soil-free fine
roots of Sadleria cyatheoides, Metrosideros polymorpha and
Morella faya

Plant CO production CO oxidation
S. cyatheoides 1.9£3.3 12.8£0.6
M. polymorpha 1.2+0.1 24.411.6
M. faya 3.5+0.3 9.6+0.6

All data are nmol per gfw per h and means of triplicates (1 s.e.).
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CO oxidized per gfw per h. Uptake rates for M.
polymorpha (9.6 + 0.6 nmol CO oxidized per gfw per
h) were somewhat lower, while rates for M. faya
(24.4£1.6nmol CO oxidized per gfw per h) were
somewhat higher. In general, there was a positive
correlation between maximum potential root CO
oxidation rates and root CO production rates (r=0.9;
not shown).

Discussion

Analyses of receding glaciers and chronosequences
of volcanic systems have revealed several aspects of
microbial community responses to ecosystem suc-
cession, including temporal and spatial changes in
functional diversity, phylogenetic diversity (even-
ness and richness) and cell-specific activities. For
example, Sigler et al. (2002) observed increases in
cell number and total activity with successional age,
but maximal activity per cell and greater relative
culturability occurred at intermediate stages, and
phylotype richness decreased with age. Their results
confirmed an ‘r-‘ to ‘K-strategy’ shift during succes-
sion, but indicated that successional changes were
dynamic and occurring at both individual and
community levels. Others have documented inter-
actions between microbes and vegetation, including
changes in carbon utilization and community
structure (for example, Ohtonen et al., 1999;
Schipper et al., 2001).

Previous analyses of Kilauea volcano based on
multiple sites that constituted a chronosequence
from 21- to 300-year old showed that atmospheric
CO and hydrogen utilization occurred early in
successional development and contributed signifi-
cantly to respiratory metabolism (King, 2003a).
Molecular ecological analyses also revealed signi-
ficant differentiation among CO-oxidizing and
lithotrophic communities colonizing deposits of
different ages and successional development (Dun-
field and King, 2004, 2005; Nanba et al., 2004). In
this study, we report interactions between succes-
sional development, specific functional processes
(CO and hydrogen oxidation and acetylene reduc-
tion) and related microbiological and biogeochem-
ical variables for Kilauea volcano deposits with
uniform ages and climatic regimes.

Data from both PP and MU sites show that
atmospheric CO uptake contributes significantly
(6—10%) to total respiratory activity (measured as
CO, production) in unvegetated areas characterized
by very low respiration rates and organic carbon
concentrations (Tables 1 and 2). Atmospheric CO
uptake rates at PP and MU unvegetated sites are
similar to previously reported estimates (King,
2003a); CO, production rates fall within ranges
reported for other organic carbon poor systems
(Hopkins et al., 2007). These observations support
a role for CO as an energy source in carbon-limited
systems, even when it is available at only very low
concentrations (75—125 p.p.b.).



In contrast, atmospheric CO contributes little
or nothing to respiratory activity at PP-canopy and
-edge and MU-veg sites (Table 2). Even accounting
for the possibility that root respiration might con-
tribute a significant fraction of total respiration at
these sites (up to about 50%; Andrews et al., 1999;
Wang et al., 2005), CO oxidation remains a minor
fraction of bacterial activity. Instead, at these sites
rhizodeposition and leaf litter no doubt represent
the primary sources of organic matter for respiration.
These carbon sources support respiration rates for
the PP and MU at levels similar to those reported for
other vegetated systems with moderate-to-high
organic carbon concentrations (Campbell and Law,
2005; Vogel et al., 2005; Bernhardt et al., 2006).

All of the sites assayed consume atmospheric
hydrogen, but there is little consistent variation
among them (Table 2). Relative to carbon-based
respiratory metabolism, atmospheric hydrogen up-
take supports considerable activity (Table 2). At sites
MU-unveg and PP-bare, where organic carbon is
limited, hydrogen uptake could contribute to bio-
synthesis, but CO, fixation efficiencies are relatively
low with hydrogen lithotrophy (Bowien and Schle-
gel, 1981), and some hydrogen uptake appears due
to exoenzymatic activity (King, 2003a).

Although atmospheric CO contributes signifi-
cantly to bacterial metabolism at unvegetated sites,
CO-oxidizing bacteria were active at all sites. This is
evident from time courses of headspace CO con-
centrations during both in situ and ex situ analyses
(not shown). As in previous studies (King, 1999),
a model for CO change based on a zero-order
production term and a first-order uptake term
explained patterns of CO uptake and emission. In
addition, cinders from all PP and MU sites consume
exogenous CO added at elevated concentrations
without a lag. Maximum potential CO uptake
rates based on these assays correlate linearly with
estimates of microbial biomass (Figure 1b), and
depth integrated maximum potential rates for PP
correlate linearly with respiration rates (Figure 3).
To the extent that maximum potential CO uptake
rates reflect CO oxidizer biomass, these relation-
ships indicate that CO oxidizer biomass accounts for
an approximately constant fraction of total biomass,
and that maximum potential activity likely responds
to the same variables that determine respiratory
activity.

In particular, it appears that CO oxidizer biomass
may become initially established on barren deposits
through inputs of atmospheric CO and exogenous
organic matter (for example, in precipitation). Sub-
sequently, CO oxidizer biomass expands with
endogenous organic matter production, especially
that from rooted vegetation. This is consistent with
both the preference of CO-oxidizing bacteria for
organic substrates, and with their expression of CO
oxidation when substrate availability is low, as is
typically the case in soil systems even when bulk
organic concentrations are high (Morita, 1997).
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The distribution of maximum potential hydrogen
uptake rates among sites parallels that for maximum
potential CO uptake rates (Table 2), suggesting some
common controls for the two activities. This could
be due in part to the fact that some CO oxidizers also
oxidize hydrogen (King and Weber, 2007). In
addition, many hydrogen oxidizers, like virtually
all CO oxidizers, are facultative lithotrophs that
grow preferentially with organic substrates (Bowien
and Schlegel, 1981). However, when plotted as
paired data, maximum potential hydrogen uptake
rates increase exponentially to an asymptote as a
function of maximum potential CO uptake rates
(Figure 3). This may reflect a shift from populations
that oxidize both CO and hydrogen to populations
that oxidize primarily CO as maximum potential CO
uptake rates increase.

The fact that CO oxidizers remain active across a
gradient of increasing ecosystem development, even
though atmospheric CO decreases in significance as
a substrate, indicates that they may contribute to a
variety of functions other than trace gas dynamics.
Many CO-oxidizing isolates contain nitrogenase
(King, 2003b). Some, such as CO-oxidizing rhizobia
(for example, Bradyrhizobium japonicum USDA 6)
contribute to symbiotic nitrogen fixation; others,
such as CO-oxidizing Burkholderia (for example,
B. xenovorans LB400), can contribute to both
asymbiotic and plant-associated nitrogen fixation
(Chen et al., 2003; Choudhury and Kennedy, 2004).

An exponential correlation between depth-inte-
grated maximum potential CO uptake and a surro-
gate measure of nitrogen fixation, acetylene
reduction, for the PP sites indicates that controls
of activity differ for the two processes, irrespective
of the extent of contributions by CO oxidizers.
Differential controls for expression of the aerobic
carbon monoxide dehydrogenase and nitrogenase
systems likely include nitrogen and organic matter
availability, associative interactions with plant roots
and responses to physical-chemical variables, for
example, pH and water potential. In addition,
populations of strictly heterotrophic nitrogen fixers
may proliferate to a much greater extent than
nitrogen-fixing CO oxidizers in material at the
canopy site, where acetylene reduction rates appear
disproportionately high. Of course, variations in
acetylene reduction rates among sites may only
partially reflect patterns in nitrogen fixation, since
ratios of acetylene reduced to nitrogen fixed may
also vary among sites.

Plant roots also affect the distribution and activity
of CO oxidizers. Maximum potential CO uptake
rates for MU and PP sites rise exponentially with
root mass to an asymptote in PP-edge and PP-canopy
sites (Figure 4). This trend likely reflects an increase
in organic matter availability that can support CO
oxidizer biomass, but may also reflect an increase in
CO availability. In particular, roots of all three plant
species examined in this study emit CO at rates
comparable to rates previously reported for other
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Figure 4 Maximum potential CO uptake rates integrated over
0- to 10-cm depth intervals for PP-bare, -edge and -canopy sites
versus respiration rates. All data are means of triplicates 1 s.e.
Curve represents a linear least-squares best fit (1 =0.99).

plants (Table 3; King and Crosby, 2002). As a result,
increases in root biomass across sites represent a
gradient of increasing CO within the deposits,
which may promote CO oxidizer biomass or activity.
In addition, the ability of roots of all three taxa to
consume CO (Table 3) indicates that they may
support CO oxidizer populations that can affect
bulk and rhizosphere activities as well as exchanges
with the atmosphere (King and Crosby, 2002; King
and Hungria, 2002). Interactions between plants and
the diversity of CO-oxidizing populations are being
assessed at present.

In conclusion, atmospheric CO supports signifi-
cant metabolic activity on volcanic deposits lacking
vascular plant growth. Relationships between max-
imum potential CO uptake, root mass, organic
carbon and estimates of microbial biomass indicate
that subsequent to colonization on barren material,
CO-oxidizing populations expand in concert with
the microbial community as a whole, even though
the role of CO in metabolism overall diminishes
with increasing plant development. CO oxidizers
remain an active component of the microbial
community throughout succession and may con-
tribute to nitrogen fixation, rates of which increase
through successional development.
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