Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interactions between gut microbes and host cells control gut barrier and metabolism

Abstract

Gut microbes are now considered as key partners involved in human physiology. Data have shown that microbes contribute to regulate energy, lipid, and glucose homeostasis through several mechanisms. Among them, the role of pathogen-associated molecular pattern and bacterial metabolites has been proposed (for example, metabolic endotoxemia and bioactive lipids). This short review, briefly discusses the role of the gut barrier as well as the impact of both the innate immune system and bioactive molecules (for example, endocannabinoids, cytochrome P450 derived arachidonic acids compounds) in the framework of gut microbes and cardiometabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI . Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915–1920.

    Article  PubMed  CAS  Google Scholar 

  2. Cerf-Bensussan N, Gaboriau-Routhiau V . The immune system and the gut microbiota: friends or foes? NatRevImmunol 2010; 10: 735–744.

    CAS  Google Scholar 

  3. Dhurandhar NV, Geurts L, Atkinson RL, Casteilla L, Clement K, Gerard P et al. Harnessing the beneficial properties of adipogenic microbes for improving human health. Obes Rev 2013; 14: 721–735.

    Article  CAS  PubMed  Google Scholar 

  4. Sender R, Fuchs S, Milo R . Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164: 337–340.

    Article  CAS  PubMed  Google Scholar 

  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541–546.

    Article  CAS  PubMed  Google Scholar 

  9. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105: 16731–16736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110: 9066–9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al. Human genetics shape the gut microbiome. Cell 2014; 159: 789–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cani PD, Everard A . Talking microbes: When gut bacteria interact with diet and host organs. Mol Nutr Food Res 2016; 60: 58–66.

    Article  CAS  PubMed  Google Scholar 

  13. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  14. Cani PD . Metabolism in 2013: The gut microbiota manages host metabolism. Nature Rev Endocrinol 2014; 10: 74–76.

    Article  Google Scholar 

  15. Tilg H, Kaser A . Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 2011; 121: 2126–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tremaroli V, Backhed F . Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489: 242–249.

    Article  CAS  PubMed  Google Scholar 

  17. Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC et al. Energy intake is associated with endotoxemia in apparently healthy men. AmJClinNutr 2008; 87: 1219–1223.

    CAS  Google Scholar 

  18. Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 2011; 34: 1809–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V . Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 2011; 34: 392–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cani PD, Possemiers S, Van de WT, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103.

    Article  CAS  PubMed  Google Scholar 

  21. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C et al. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12: 133–143.

    Article  CAS  PubMed  Google Scholar 

  22. Gummesson A, Carlsson LM, Storlien LH, Backhed F, Lundin P, Lofgren L et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (SilverSpring) 2011; 19: 2280–2282.

    Article  Google Scholar 

  23. Casselbrant A, Elias E, Fandriks L, Wallenius V . Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2014; 11: 45–53.

    Article  PubMed  Google Scholar 

  24. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 2014; 87: 357–367.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y . Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract 2014; 106: 312–318.

    Article  CAS  PubMed  Google Scholar 

  26. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 2014; 388: 203–210.

    Article  CAS  PubMed  Google Scholar 

  27. Horton F, Wright J, Smith L, Hinton PJ, Robertson MD . Increased intestinal permeability to oral chromium (51 Cr) -EDTA in human Type 2 diabetes. Diab Med 2014; 31: 559–563.

    Article  CAS  Google Scholar 

  28. Bevins CL, Salzman NH . Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiology 2011; 9: 356–368.

    Article  CAS  PubMed  Google Scholar 

  29. Pott J, Hornef M . Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 2012; 13: 684–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hooper LV, Macpherson AJ . Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010; 10: 159–169.

    Article  CAS  PubMed  Google Scholar 

  31. Macpherson AJ, Geuking MB, Slack E, Hapfelmeier S, McCoy KD . The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev 2012; 245: 132–146.

    Article  CAS  PubMed  Google Scholar 

  32. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GM, Neyrinck AM et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60: 2775–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kitazawa H, Nishihara T, Nambu T, Nishizawa H, Iwaki M, Fukuhara A et al. Intectin, a novel small intestine-specific glycosylphosphatidylinositol-anchored protein, accelerates apoptosis of intestinal epithelial cells. J Biol Chem 2004; 279: 42867–42874.

    Article  CAS  PubMed  Google Scholar 

  34. Everard A, Lazarevic V, Gaia N, Johansson M, Stahlman M, Backhed F et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 2014; 8: 2116–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vereecke L, Beyaert R, van Loo G . Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med 2011; 17: 584–593.

    Article  CAS  PubMed  Google Scholar 

  36. Cliffe LJ, Humphreys NE, Lane TE, Potten CS, Booth C, Grencis RK . Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 2005; 308: 1463–1465.

    Article  CAS  PubMed  Google Scholar 

  37. Duparc T, Plovier H, Marrachelli VG, Van Hul M, Essaghir A, Stahlman M et al. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 2016. e-pub ahead of print 5 May 2016 doi:10.1136/gutjnl-2015-310904..

  38. Everard A, Geurts L, Caesar R, Van Hul M, Matamoros S, Duparc T et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 2014; 5: 5648.

    Article  CAS  PubMed  Google Scholar 

  39. Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6: 392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Alhouayek M, Lambert DM, Delzenne NM, Cani PD, Muccioli GG . Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB J 2011; 25: 2711–2721.

    Article  CAS  PubMed  Google Scholar 

  41. Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 1998; 353: 23–31.

    Article  CAS  PubMed  Google Scholar 

  42. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 2011; 96: E1409–E1417.

    Article  CAS  PubMed  Google Scholar 

  43. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6: 6495.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PDC is a research associate at the FRS-FNRS (Fonds de la Recherche Scientifique), Belgium. PDC is a recipient of an ERC Starting Grant 2013 (European Research Council, Starting grant 336452-ENIGMO and PoC ERC 2015), FNRS grants (T0.138.14; J.0084.15), the Funds Baillet-Latour (grant for medical research 2015), FNRS for the FRFS-WELBIO under grant: WELBIO-CR-2012S-02R and ARC (Concerted Research Activities-French Community of Belgium convention: 12/17-047). Publication of this article was sponsored by the Université Laval’s Research Chair in Obesity in an effort to inform the public on the causes, consequences, treatments and prevention of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P D Cani.

Ethics declarations

Competing interests

PDC has received consulting and lecture fees for Biocodex, Bioaster, Tate & Lyle, Pileje, J&J.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cani, P. Interactions between gut microbes and host cells control gut barrier and metabolism. Int J Obes Supp 6 (Suppl 1), S28–S31 (2016). https://doi.org/10.1038/ijosup.2016.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2016.6

This article is cited by

Search

Quick links