Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Obesity-induced decreases in muscle performance are not reversed by weight loss

Abstract

Background/Objectives:

Obesity can affect muscle phenotypes, and may thereby constrain movement and energy expenditure. Weight loss is a common and intuitive intervention for obesity, but it is not known whether the effects of obesity on muscle function are reversible by weight loss. Here we tested whether obesity-induced changes in muscle metabolic and contractile phenotypes are reversible by weight loss.

Subjects/Methods:

We used zebrafish (Danio rerio) in a factorial design to compare energy metabolism, locomotor capacity, muscle isometric force and work-loop power output, and myosin heavy chain (MHC) composition between lean fish, diet-induced obese fish, and fish that were obese and then returned to lean body mass following diet restriction.

Results:

Obesity increased resting metabolic rates (P<0.001) and decreased maximal metabolic rates (P=0.030), but these changes were reversible by weight loss, and were not associated with changes in muscle citrate synthase activity. In contrast, obesity-induced decreases in locomotor performance (P=0.0034), and isolated muscle isometric stress (P=0.01), work-loop power output (P<0.001) and relaxation rates (P=0.012) were not reversed by weight loss. Similarly, obesity-induced decreases in concentrations of fast and slow MHCs, and a shift toward fast MHCs were not reversed by weight loss.

Conclusion:

Obesity-induced changes in locomotor performance and muscle contractile function were not reversible by weight loss. These results show that weight loss alone may not be a sufficient intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dickinson M, Farley C, Koehl M, Kram R . How animals move: an integrative view. Science 2000; 288: 100–106.

    Article  CAS  Google Scholar 

  2. Bassel-Duby R, Olson EN . Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 2006; 75: 19–37.

    Article  CAS  Google Scholar 

  3. O’Neill HM, Holloway GP, Steinberg GR . AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity. Mol Cell Endocrinol 2013; 366: 135–151.

    Article  Google Scholar 

  4. Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG . ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol (Lond) 2016; 594: 3187–3207.

    Article  Google Scholar 

  5. Gordon AM, Homsher E, Regnier M . Regulation of contraction in striated muscle. Physiol Rev 2000; 80: 853–924.

    Article  CAS  Google Scholar 

  6. Song Y, Cone RD . Creation of a genetic model of obesity in a teleost. FASEB J 2007; 21: 2042–2049.

    Article  CAS  Google Scholar 

  7. Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 2010; 10: 21.

    Article  Google Scholar 

  8. Rodgers J, Lerin C, Gerharthines Z, Puigserver P . Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett 2008; 582: 46–53.

    Article  CAS  Google Scholar 

  9. Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010; 11: 213–219.

    Article  CAS  Google Scholar 

  10. Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ et al. SIRT1 Is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15: 675–690.

    Article  CAS  Google Scholar 

  11. Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michán S et al. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 2011; 14: 301–312.

    Article  CAS  Google Scholar 

  12. Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH . Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA 2008; 105: 9793–9798.

    Article  CAS  Google Scholar 

  13. Jheng H-F, Huang S-H, Kuo H-M, Hughes MW, Tsai Y-S . Molecular insight and pharmacological approaches targeting mitochondrial dynamics in skeletal muscle during obesity. Ann NY Acad Sci 2015; 1350: 82–94.

    Article  Google Scholar 

  14. James RS, Altringham JD, Goldspink DF . The mechanical-properties of fast and slow skeletal-muscles of the mouse in relation to their locomotory function. J Exp Biol 1995; 198: 491–502.

    CAS  PubMed  Google Scholar 

  15. Syme DA. Functional Properties of Skeletal Muscle In Fish Physiology Volume 23 Academic Press, 2005. pp 179–240.

    Google Scholar 

  16. Tallis J, Hill C, James RS, Cox VM, Seebacher F . The effect of obesity on the contractile performance of isolated mouse soleus, EDL and diaphragm muscles. J Appl Physiol 2017; 122: 170–181.

    Article  CAS  Google Scholar 

  17. Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PRG et al. Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 2002; 282: E1191–E1196.

    Article  CAS  Google Scholar 

  18. Stuart CA, McCurry MP, Marino A, South MA, Howell MEA, Layne AS et al. Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness. J Clin Endocrinol Metab 2013; 98: 2027–2036.

    Article  CAS  Google Scholar 

  19. DeNies MS, Johnson J, Maliphol AB, Bruno M, Kim A, Rizvi A et al. Diet-induced obesity alters skeletal muscle fiber types of male but not female mice. Physiol Rep 2014; 2: e00204.

    Article  Google Scholar 

  20. Garland T, Schutz H, Chappell MA, Keeney BK, Meek TH, Copes LE et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 2011; 214: 206–229.

    Article  Google Scholar 

  21. Browning RC, Baker EA, Herron JA, Kram R . Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol 2006; 100: 390–398.

    Article  Google Scholar 

  22. Larsson UE, Mattsson E . Functional limitations linked to high body mass index, age and current pain in obese women. Int J Obes 2001; 25: 893–899.

    Article  Google Scholar 

  23. Maffiuletti NA, Ratel S, Sartorio A, Martin V . The impact of obesity on in vivo human skeletal muscle function. Curr Obes Rep 2013; 2: 251–260.

    Article  Google Scholar 

  24. Tallis J, James RS, Little AG, Cox VM, Duncan MJ, Seebacher F . Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique. Am J Physiol Regul Integr Comp Physiol 2014; 307: R670–R684.

    Article  CAS  Google Scholar 

  25. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815–3819.

    Article  CAS  Google Scholar 

  26. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 2003; 289: 1799–1804.

    Article  CAS  Google Scholar 

  27. Nitti MD, Hespe GE, Kataru RP, García Nores GD, Savetsky IL, Torrisi JS et al. Obesity-induced lymphatic dysfunction is reversible with weight loss. J Physiol (Lond) 2016; 594: 1–15.

    Article  Google Scholar 

  28. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI . Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 2005; 54: 603–608.

    Article  CAS  Google Scholar 

  29. Jiang S, Wang Q, Huang Z, Song A, Peng Y, Hou S et al. Gastric bypass surgery reverses diabetic phenotypes in Bdnf-deficient mice. Am J Pathol 2016; 186: 2117–2128.

    Article  CAS  Google Scholar 

  30. Li K, Zou J, Ye Z, Di J, Han X, Zhang H et al. Effects of bariatric surgery on renal function in obese patients: a systematic review and meta analysis. PLoS One 2016; 11: e0163907–e0163918.

    Article  Google Scholar 

  31. Clark TD, Sandblom E, Jutfelt F . Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 2013; 216: 2771–2782.

    Article  Google Scholar 

  32. Seebacher F, Borg J, Schlotfeldt K, Yan Z . Energetic cost determines voluntary movement speed only in familiar environments. J Exp Biol 2016; 219: 1625–1631.

    Article  Google Scholar 

  33. Seebacher F, Ward AJW, Wilson RS . Increased aggression during pregnancy comes at a higher metabolic cost. J Exp Biol 2013; 216: 771–776.

    Article  CAS  Google Scholar 

  34. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol (Lond) 2012; 590: 3349–3360.

    Article  CAS  Google Scholar 

  35. Garenc C, Silversides F, Guderley H . Burst swimming and its enzymatic correlates in the threespine stickleback (Gasterosteus aculeatus: full-sib heritabilities. Can J Zool 1998; 76: 680–688.

    Article  Google Scholar 

  36. Hammer C . Fatigue and exercise tests with fish. Comp Biochem Physiol A 1995; 112: 1–20.

    Article  Google Scholar 

  37. Wakeling JM, Cole NJ, Kemp KM, Johnston IA . The biomechanics and evolutionary significance of thermal acclimation in the common carp Cyprinus carpio. Am J Physiol Regul Integr Comp Physiol 2000; 279: R657–R665.

    Article  CAS  Google Scholar 

  38. Seebacher F, Little AG, James RS . Skeletal muscle contractile function predicts activity and behaviour in zebrafish. J Exp Biol 2015; 218: 3878–3884.

    Article  Google Scholar 

  39. James RS, Young IS, Cox VM, Goldspink DF, Altringham JD . Isometric and isotonic muscle properties as determinants of work loop power output. Pflüg Arch 1996; 432: 767–774.

    Article  CAS  Google Scholar 

  40. Altringahm JD, Wardle CS, Smith CI . Myotomal muscle function at different locations in the body of a swimming fish. J Exp Biol 1993; 182: 191–206.

    Google Scholar 

  41. Josephson R . Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 1993; 55: 527–546.

    Article  CAS  Google Scholar 

  42. Mendez J, Keys A . Density and composition of mammalian muscle. Metabolism 1960; 9: 184–188.

    CAS  Google Scholar 

  43. Wheeler RE, Torchiano M Permutation tests for linear models in R. R Package Version. 2016.

  44. R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2013.

  45. Drummond GB, Vowler SL . Different tests for a difference: how do we do research? J Physiol (Lond) 2012; 590: 235–238.

    Article  CAS  Google Scholar 

  46. Little AG, Kunisue T, Kannan K, Seebacher F . Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio. BMC Biol 2013; 11: 26.

    Article  CAS  Google Scholar 

  47. Lieschke GJ, Currie PD . Animal models of human disease: zebrafish swim into view. Nat Rev Gen 2007; 8: 353–367.

    Article  CAS  Google Scholar 

  48. Schlegel A, Gut P . Metabolic insights from zebrafish genetics, physiology, and chemical biology. Cell Mol Life Sci 2015; 72: 2249–2260.

    Article  CAS  Google Scholar 

  49. McClelland GB, Craig PM, Dhekney K, Dipardo S . Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio. J Physiol (Lond) 2006; 577: 739–751.

    Article  CAS  Google Scholar 

  50. Palstra AP, Tudorache C, Rovira M, Brittijn SA, Burgerhout E, van der Thillart GEEJM et al. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression. PLoS One 2010; 5: e14483–e14489.

    Article  CAS  Google Scholar 

  51. Hasumura T, Meguro S . Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio. J Comp Physiol B 2016; 186: 603–614.

    Article  CAS  Google Scholar 

  52. Shimada Y, Kuninaga S, Ariyoshi M, Zhang B, Shiina Y, Takahashi Y et al. E2F8 promotes hepatic steatosis through FABP3 expression in diet-induced obesity in zebrafish. Nutr Metab (Lond) 2015; 12: 17.

    Article  Google Scholar 

  53. Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK et al. Developing ‘integrative’ zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256: 172–187.

    Article  Google Scholar 

  54. Montalbano G, Mania M, Guerrera MC, Abbate F, Laurà R, Navarra M et al. Morphological differences in adipose tissue and changes in BDNF/Trkb expression in brain and gut of a diet induced obese zebrafish model. Annals Anat 2016; 204: 36–44.

    Article  Google Scholar 

  55. Michel M, Page-McCaw PS, Chen W, Cone RD . Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci USA 2016; 113: 3084–3089.

    Article  CAS  Google Scholar 

  56. van der Meulen T, Schipper H, van den Boogaart JGM, Huising MO, Kranenbarg S, van Leeuwen JL . Endurance exercise differentially stimulates heart and axial muscle development in zebrafish (Danio rerio. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1040–R1048.

    Article  CAS  Google Scholar 

  57. Gundersen K . Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev 2011; 86: 564–600.

    Article  Google Scholar 

  58. Newman T, Jhinku N, Meier M, Horsfield J . Dietary intake influences adult fertility and offspring fitness in zebrafish. PLoS One 2016; 11: e0166394–21.

    Article  Google Scholar 

  59. Bournele D, Beis D . Zebrafish models of cardiovascular disease. Heart Fail Rev 2016; 21: 803–813.

    Article  CAS  Google Scholar 

  60. Patton EE, Dhillon P, Amatruda JF, Ramakrishnan L . Spotlight on zebrafish: translational impact. Dis Model Mech 2014; 7: 731–733.

    Article  Google Scholar 

  61. Altringham J, Ellerby DJ . Fish swimming: patterns in muscle function. J Exp Biol 1999; 202: 3397–340.

    CAS  PubMed  Google Scholar 

  62. Swank D, Rome LC . The influence of thermal acclimation on power production during swimming. II. Mechanics of scup red muscle under in vivo conditions. J Exp Biol 2001; 204: 419–430.

    CAS  PubMed  Google Scholar 

  63. Anttila K . Effects of different training protocols on Ca2+ handling and oxidative capacity in skeletal muscle of Atlantic salmon (Salmo salar L.). J Exp Biol 2006; 209: 2971–2978.

    Article  CAS  Google Scholar 

  64. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 2010; 464: 1313–1319.

    Article  CAS  Google Scholar 

  65. Guarente L . Calorie restriction and sirtuins revisited. Genes Dev 2013; 27: 2072–2085.

    Article  CAS  Google Scholar 

  66. Utaka S, Avesani CM, Draibe SA, Kamimura MA, Andreoni S, Cuppari L . Inflammation is associated with increased energy expenditure in patients with chronic kidney disease. Am J Clin Nutr 2005; 82: 801–805.

    Article  CAS  Google Scholar 

  67. Hyatt J-PK, Nguyen L, Hall AE, Huber AM, Kocan JC, Mattison JA et al. Muscle-specific myosin heavy chain shifts in response to a long-term high fat/high sugar diet and resveratrol treatment in nonhuman primates. Front Physiol 2016; 7: 77.

    PubMed  PubMed Central  Google Scholar 

  68. Seebacher F, Pollard SR, James RS . How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling. J Exp Biol 2012; 215: 1847–1853.

    Article  CAS  Google Scholar 

  69. Watts R, McAinch AJ, Dixon JB, O'Brien PE, Cameron-Smith D . Increased Smad signaling and reduced MRF expression in skeletal muscle from obese subjects. Obesity 2013; 21: 525–528.

    Article  CAS  Google Scholar 

  70. Bruton JD, Aydin J, Yamada T, Shabalina IG, Ivarsson N, Zhang SJ et al. Increased fatigue resistance linked to Ca2+-stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice. J Physiol (Lond) 2010; 588: 4275–4288.

    Article  CAS  Google Scholar 

  71. Funai K, Song H, Yin L, Lodhi IJ, Wei X, Yoshino J et al. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J Clin Invest 2013; 123: 1229–1240.

    Article  CAS  Google Scholar 

  72. Bannister RA . Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. J Exp Biol 2016; 219: 175–182.

    Article  Google Scholar 

  73. Allen DG, Lamb GD, Westerblad H . Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 2008; 88: 287–332.

    Article  CAS  Google Scholar 

  74. Garcia-Vicencio S, Coudeyre E, Kluka V, Cardenoux C, Jegu A-G, Fourot A-V et al. The bigger, the stronger? Insights from muscle architecture and nervous characteristics in obese adolescent girls. Int J Obes 2016; 40: 245–251.

    Article  CAS  Google Scholar 

  75. Arslan-Ergul A, Adams MM . Gene expression changes in aging zebrafish (Danio rerio brains are sexually dimorphic. BMC Neurosci 2014; 15: 29.

    Article  Google Scholar 

  76. Teasdale N, Simoneau M, Corbeil P, Handrigan G, Tremblay A, Hue O . Obesity alters balance and movement control. Curr Obes Rep 2013; 2: 235–240.

    Article  Google Scholar 

  77. Vickers MH, Breier BH, McCarthy D, Gluckman PD . Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol Regul Integr Comp Physiol 2003; 285: R271–R273.

    Article  CAS  Google Scholar 

  78. Stodden DF, Goodway JD . The dynamic association between motor skill development and physical activity. J Phys Ed Recr Dance 2007; 78: 33–49.

    Article  Google Scholar 

  79. Booth FW, Roberts CD, Laye MJ . Lack of exercise is a major cause of chronic diseases. Compr Physiol 2012; 2: 1143–1211.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Alec Simmons and Isabella Loughland for help with laboratory work. The research was supported by the University of Sydney and Coventry University, and Australian Research Council Discovery Grant DP160102260 to FS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Seebacher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seebacher, F., Tallis, J., McShea, K. et al. Obesity-induced decreases in muscle performance are not reversed by weight loss. Int J Obes 41, 1271–1278 (2017). https://doi.org/10.1038/ijo.2017.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.81

This article is cited by

Search

Quick links