Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Thermogenic activation represses autophagy in brown adipose tissue

Abstract

Background:

Brown adipose tissue (BAT) thermogenesis is an adaptive process, essential for energy expenditure and involved in the control of obesity. Obesity is associated with abnormally increased autophagy in white adipose tissue. Autophagy has been proposed as relevant for brown-vs-white adipocyte differentiation; however, its role in the response of BAT to thermogenic activation is unknown.

Methods:

The effects of thermogenic activation on autophagy in BAT were analyzed in vivo by exposing mice to 24 h cold condition. The effects of norepinephrine (NE), cAMP and modulators of lysosomal activity were determined in differentiated brown adipocytes in the primary culture. Transcript expression was quantified by real-time PCR, and specific proteins were determined by immunoblot. Transmission electron microscopy, as well as confocal microscopy analysis after incubation with specific antibodies or reagents coupled to fluorescent emission, were performed in BAT and cultured brown adipocytes, respectively.

Results:

Autophagy is repressed in association with cold-induced thermogenic activation of BAT in mice. This effect was mimicked by NE action in brown adipocytes, acting mainly through a cAMP-dependent protein kinase A pathway. Inhibition of autophagy in brown adipocytes leads to an increase in UCP1 protein and uncoupled respiration, suggesting a repressing role for autophagy in relation to the activity of BAT thermogenic machinery. Under basal conditions, brown adipocytes show signs of active lipophagy, which is suppressed by a cAMP-mediated thermogenic stimulus.

Conclusions:

Our results show a noradrenergic-mediated inverse relationship between autophagy and thermogenic activity in BAT and point toward autophagy repression as a component of brown adipocyte adaptive mechanisms to activate thermogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993; 366: 740–742.

    Article  CAS  Google Scholar 

  2. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J . UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009; 9: 203–209.

    Article  CAS  Google Scholar 

  3. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    Article  CAS  Google Scholar 

  4. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  Google Scholar 

  5. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    Article  CAS  Google Scholar 

  6. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    CAS  Google Scholar 

  7. Villarroya F, Vidal-Puig A . Beyond the sympathetic tone: the new brown fat activators. Cell Metab 2013; 17: 638–643.

    Article  CAS  Google Scholar 

  8. Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 2014; 516: 395–399.

    Article  CAS  Google Scholar 

  9. Levine B, Klionsky DJ . Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463–477.

    Article  CAS  Google Scholar 

  10. Dong H, Czaja MJ . Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 2011; 22: 234–240.

    Article  CAS  Google Scholar 

  11. Klionsky DJ . The molecular machinery of autophagy and its role in physiology and disease. Semin Cell Dev Biol 2010; 21: 663.

    Article  Google Scholar 

  12. Mizushima N, Levine B . Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12: 823–830.

    Article  CAS  Google Scholar 

  13. Feng Y, He D, Yao Z, Klionsky DJ . The machinery of macroautophagy. Cell Res 2014; 24: 24–41.

    Article  CAS  Google Scholar 

  14. Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L et al. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 2011; 96: E268–E277.

    Article  CAS  Google Scholar 

  15. Maixner N, Kovsan J, Harman-Boehm I, Bluher M, Bashan N, Rudich A . Autophagy in adipose tissue. Obes Facts 2012; 5: 710–721.

    Article  Google Scholar 

  16. Singh R, Cuervo AM . Autophagy in the cellular energetic balance. Cell Metab 2011; 13: 495–504.

    Article  CAS  Google Scholar 

  17. Settembre C, Ballabio A . Cell metabolism: autophagy transcribed. Nature 2014; 516: 40–41.

    CAS  PubMed  Google Scholar 

  18. Jansen HJ, van Essen P, Koenen T, Joosten LA, Netea MG, Tack CJ et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 2012; 153: 5866–5874.

    Article  CAS  Google Scholar 

  19. Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16: 235–246.

    Article  Google Scholar 

  20. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119: 3329–3339.

    Article  CAS  Google Scholar 

  21. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S . Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 2009; 106: 19860–19865.

    Article  CAS  Google Scholar 

  22. Martinez-Lopez N, Athonvarangkul D, Sahu S, Coletto L, Zong H, Bastie CC et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep 2013; 14: 795–803.

    Article  CAS  Google Scholar 

  23. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012; 149: 871–885.

    Article  CAS  Google Scholar 

  24. Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F . Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010; 11: 206–212.

    Article  CAS  Google Scholar 

  25. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720–5728.

    Article  CAS  Google Scholar 

  26. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12: 1–222.

    Article  Google Scholar 

  27. Trayhurn P, Jennings G . Nonshivering thermogenesis and the thermogenic capacity of brown fat in fasted and/or refed mice. Am J Physiol 1988; 254: R11–R16.

    CAS  PubMed  Google Scholar 

  28. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M . Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 2001; 276: 1486–1493.

    Article  CAS  Google Scholar 

  29. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA . Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 1996; 16: 3410–3419.

    Article  CAS  Google Scholar 

  30. Moazed B, Desautels M . Differentiation-dependent expression of cathepsin D and importance of lysosomal proteolysis in the degradation of UCP1 in brown adipocytes. Can J Physiol Pharmacol 2002; 80: 515–525.

    Article  CAS  Google Scholar 

  31. Lindgren EM, Nielsen R, Petrovic N, Jacobsson A, Mandrup S, Cannon B et al. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels. Biochem J 2004; 382: 597–606.

    Article  CAS  Google Scholar 

  32. Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014; 516: 112–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014; 516: 108–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cherra SJ 3rd, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW et al. Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 2010; 190: 533–539.

    Article  CAS  Google Scholar 

  35. Shahnazari S, Namolovan A, Mogridge J, Kim PK, Brumell JH . Bacterial toxins can inhibit host cell autophagy through cAMP generation. Autophagy 2011; 7: 957–965.

    Article  CAS  Google Scholar 

  36. Cinti S . The Adipose Organ. Editrice Kurtis: Milan, Italy, 1999.

    Google Scholar 

  37. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al. Autophagy regulates lipid metabolism. Nature 2009; 458: 1131–1135.

    Article  CAS  Google Scholar 

  38. Czaja MJ . Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. Am J Physiol Cell Physiol 2010; 298: C973–C978.

    Article  CAS  Google Scholar 

  39. Wang DQ, Portincasa P, Neuschwander-Tetri BA . Steatosis in the liver. Compr Physiol 2013; 3: 1493–1532.

    Article  Google Scholar 

  40. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A et al. Fat signals—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15: 279–291.

    Article  CAS  Google Scholar 

  41. Martinez-Lopez N, Garcia-Macia M, Sahu S, Athonvarangkul D, Liebling E, Merlo P et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 2016; 23: 113–127.

    Article  CAS  Google Scholar 

  42. Yu XX, Lewin DA, Forrest W, Adams SH . Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J 2002; 16: 155–168.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from MINECO (SAF2014-55725), Instituto de Salud Carlos III-FEDER (PI11/00376 and PI14/00063), EU (FP7 project BETABAT, grant HEALTH-F2-2011-277713) and Generalitat de Catalunya (2014SGR-141). MC is a FPI fellow from MINECO, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Villarroya.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairó, M., Villarroya, J., Cereijo, R. et al. Thermogenic activation represses autophagy in brown adipose tissue. Int J Obes 40, 1591–1599 (2016). https://doi.org/10.1038/ijo.2016.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.115

This article is cited by

Search

Quick links