Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adipocyte and Cell Biology

MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway

Abstract

Background:

MicroRNAs (miRNAs) have emerged as epigenetic regulators of metabolism and energy homeostasis. There is a growing body of evidence pointing to miRNAs that have important regulatory roles in insulin sensitivity.

Objective:

The aim of this work was to explore the expression and mechanism of action of miR-26b in obesity-related insulin resistance (IR) in adipocytes.

Methods:

Quantitative real-time PCR was performed to determine miR-26b expression in obese rodent models, human obesity subjects and insulin-resistant adipocytes. We analysed the roles of miR-26b overexpression and inhibition on glucose uptake in adipocytes. Western blotting was used to detect the levels of protein molecules involved in the phosphoinositide-3-kinase (PI3K) pathway. Bioinformatics and the Dual Luciferase Assay were used to identify the target gene of miR-26b. We assessed the regulatory roles of miR-26b on the phosphatase and tensin homologue (PTEN)/PI3K/AKT pathway and the relationship between miR-26b and the metabolism of human obese subjects.

Results:

Levels of miR-26b are reduced in visceral adipose tissue (VAT) in obese rodent models, human obesity and insulin-resistant adipocytes. MiR-26b promotes insulin-stimulated glucose uptake and increases insulin-stimulated glucose transporter type 4 translocation to the plasma membrane in human mature adipocytes. MiR-26b modulates insulin-stimulated AKT activation via inhibition of its target gene, PTEN, and significantly increases insulin sensitivity via the PTEN/PI3K/AKT pathway. The expression level of miR-26b negatively correlates with increasing body mass index and homeostasis model assessment for IR in human obese subjects.

Conclusion:

Decreased miR-26b expression in VAT may be involved in obesity-related IR by interrupting the PTEN/PI3K/AKT pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. World Health Organization. Office of Helath Communications and Public Relations. Obesity and Overweight. World Health Organization: Geneva, Switzerland, 2006.

  2. Kelly T, Yang W, Chen CS, Reynolds K, He J . Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431–1437.

    Article  CAS  Google Scholar 

  3. Gupta N, Goel K, Shah P, Misra A . Childhood obesity in developing countries: epidemiology, determinants, and prevention. Endocr Rev 2012; 33: 48–70.

    Article  CAS  PubMed  Google Scholar 

  4. Wu N, Tang X, Wu Y, Qin X, He L, Wang J et al. Cohort profile: the Fangshan Cohort Study of cardiovascular epidemiology in Beijing, China. J Epidemiol 2014; 24: 84–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kasper NM, Herran OF, Villamor E . Obesity prevalence in Colombian adults is increasing fastest in lower socio-economic status groups and urban residents: results from two nationally representative surveys. Public Health Nutr 2014; 17: 2398–2406.

    Article  PubMed  Google Scholar 

  6. Rottiers V, Naar AM . MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012; 13: 239–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hilton C, Neville MJ, Karpe F . MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 2013; 37: 325–332.

    Article  CAS  Google Scholar 

  8. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432: 226–230.

    Article  CAS  PubMed  Google Scholar 

  9. Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, Bronneke HS et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434–446.

    Article  CAS  PubMed  Google Scholar 

  10. Guilherme A, Virbasius JV, Puri V, Czech MP . Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9: 367–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heneghan HM, Miller N, Kerin MJ . Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010; 11: 354–361.

    Article  CAS  PubMed  Google Scholar 

  12. Alexander R, Lodish H, Sun L . MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 2011; 15: 623–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang M, Yan LM, Zhang WY, Li YM, Tang AZ, Ou HS . Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol Biol Rep 2013; 40: 5027–5034.

    Article  CAS  PubMed  Google Scholar 

  14. Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 2011; 12: R64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.

    Article  CAS  PubMed  Google Scholar 

  16. Ahn J, Lee H, Jung CH, Jeon TI, Ha TY . MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 2013; 5: 1602–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW et al. MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010; 392: 323–328.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Wang S, Chen L, Chen Y, Wu M, Zhang Y et al. MicroRNA-344 inhibits 3T3-L1 cell differentiation via targeting GSK3beta of Wnt/beta-catenin signaling pathway. FEBS Lett 2014; 588: 429–435.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Cui J, Hou J, Long J, Li C, Liu L . A novel negative regulator of adipogenesis: microRNA-363. Stem Cells 2014; 32: 510–520.

    Article  CAS  PubMed  Google Scholar 

  20. Keller P, Gburcik V, Petrovic N, Gallagher IJ, Nedergaard J, Cannon B et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr Disord 2011; 11: 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heneghan HM, Miller N, McAnena OJ, O'Brien T, Kerin MJ . Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 2011; 96: E846–E850.

    Article  CAS  PubMed  Google Scholar 

  22. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 2011; 351: 197–205.

    Article  CAS  PubMed  Google Scholar 

  23. Song G, Xu G, Ji C, Shi C, Shen Y, Chen L et al. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 2014; 533: 481–487.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson BA, Robinson KA, Buse MG . High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 2000; 49: 981–991.

    Article  CAS  PubMed  Google Scholar 

  25. Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G . Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 2005; 48: 132–139.

    Article  CAS  PubMed  Google Scholar 

  26. Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA . Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 2013; 32: 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  27. Xie H, Lim B, Lodish HF . MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58: 1050–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu G, Ji C, Shi C, Fu H, Zhu L, Xu L et al. Modulation of hsa-miR-26b levels following adipokine stimulation. Mol Biol Rep 2013; 40: 3577–3582.

    Article  CAS  PubMed  Google Scholar 

  29. Xu G, Shi C, Ji C, Song G, Chen L, Yang L et al. Expression of microRNA-26b, an obesity-related microRNA, is regulated by free fatty acids, glucose, dexamethasone and growth hormone in human adipocytes. Mol Med Rep 2014; 10: 223–228.

    Article  CAS  PubMed  Google Scholar 

  30. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649–653.

    Article  CAS  PubMed  Google Scholar 

  31. Kornfeld JW, Baitzel C, Konner AC, Nicholls HT, Vogt MC, Herrmanns K et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013; 494: 111–115.

    Article  CAS  PubMed  Google Scholar 

  32. Lebovitz HE, Banerji MA . Point: visceral adiposity is causally related to insulin resistance. Diabetes Care 2005; 28: 2322–2325.

    Article  PubMed  Google Scholar 

  33. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.

    Article  PubMed  Google Scholar 

  34. Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C et al. Mir-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol 2013; 231: 388–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu N, Zhao X, Liu M, Liu H, Yao W, Zhang Y et al. Role of microRNA-26b in glioma development and its mediated regulation on Epha2. PloS one 2011; 6: e16264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rahbari R, Holloway AK, He M, Khanafshar E, Clark OH, Kebebew E . Identification of differentially expressed microRNA in parathyroid tumors. Ann Surg Oncol 2011; 18: 1158–1165.

    Article  PubMed  Google Scholar 

  37. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625–1638.

    Article  PubMed  Google Scholar 

  38. Wolin KY, Carson K, Colditz GA . Obesity and cancer. Oncologist 2010; 15: 556–565.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taniguchi CM, Emanuelli B, Kahn CR . Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85–96.

    Article  CAS  PubMed  Google Scholar 

  40. Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A . PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 2005; 280: 22523–22529.

    Article  CAS  PubMed  Google Scholar 

  41. Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu H . Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking Pten in adipose tissue. Mol Cell Biol 2005; 25: 2498–2510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA 2004; 101: 2082–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stiles BL, Kuralwalla-Martinez C, Guo W, Gregorian C, Wang Y, Tian J et al. Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol 2006; 26: 2772–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A et al. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol 2005; 25: 1135–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pal A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL et al. Pten mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med 2012; 367: 1002–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishihara H, Sasaoka T, Kagawa S, Murakami S, Fukui K, Kawagishi Y et al. Association of the polymorphisms in the 5'-untranslated region of Pten gene with type 2 diabetes in a Japanese population. FEBS Lett 2003; 554: 450–454.

    Article  CAS  PubMed  Google Scholar 

  47. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  48. Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 2014. e-pub ahead of print 1 September 2014; doi:10.1038/onc.2014.282.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Key Basic Research Program of China (2013CB530604), the State Key Program of National Natural Science Foundation of China (81330067), National Natural Science Foundation of China (No. 81170797), Natural Science Foundation of Jiangsu Province of China (BK2011107), the Program for Innovative Research Teams of Jiangsu Province (LJ201108) and Nanjing Technological Development Program (201104013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Zhao or X Guo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Ji, C., Song, G. et al. MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. Int J Obes 39, 1523–1530 (2015). https://doi.org/10.1038/ijo.2015.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.95

This article is cited by

Search

Quick links