Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Biology

Sexual dimorphism in miR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity

Abstract

Background:

Maternal obesity is a major problem in obstetrics, and the placenta is involved in obesity-related complications via its roles at the maternal–fetal interface. We have recently shown a causative role for micro(mi)RNA-210, a so called ‘hypoxamir’ regulated by HIF-1α, in mitochondrial dysfunction in placentas from women with preeclampsia. We also reported mitochondrial dysfunction in placentas with maternal obesity. Here we hypothesized that expression of miR-210 is dysregulated in the placentas with obesity.

Methods:

Placentas from uncomplicated pregnancies were collected at term from healthy weight or control (CTRL, pre-pregnancy body mass index (BMI)<25), overweight (OW, BMI=25–24.9) and obese (OB, BMI>30) women following C-section with no labor. Expression of miRNA-210 and its target genes was measured by reverse transcription–PCR and Western Blot, respectively. Mitochondrial respiration was assessed by Seahorse Analyzer in syncytiotrophoblast (ST) 72 h after cytotrophoblast isolation.

Results:

Expression of miR-210 was significantly increased in placentas of OB and OW women with female but not male fetuses compared with CTRL placentas of females. However, expression of HIF-1α in these placentas remained unchanged. Levels of tumor-necrosis factor-alpha (TNFα) were increased in OW and OB placentas of females but not males, and in silico analysis suggested that activation of miR-210 expression in these placentas might be activated by NFκB1 (p50) signaling. Indeed, chromatin Immunoprecipitation assay showed that NFkB1 binds to placental miR-210 promoter in a fetal sex-dependent manner. Female but not male STs treated with TNFα showed overexpression of miR-210, reduction of mitochondrial target genes and decreased mitochondrial respiration. Pre-treatment of these STs with small interfering RNA to NFkB1 or antagomiR-210 prevented the TNFα-mediated inhibition of mitochondrial respiration.

Conclusions:

Our data suggest that the inflammatory intrauterine environment associated with maternal obesity induces an NFκB1-mediated increase in miR-210 in a fetal sex-dependent manner, leading to inhibition of mitochondrial respiration and placental dysfunction in the placentas of female fetuses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhu MJ, Du M, Nathanielsz PW, Ford SP . Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 2010; 31: 387–391.

    Article  CAS  Google Scholar 

  2. Okereke NC, Huston-Presley L, Amini SB, Kalhan S, Catalano PM . Longitudinal changes in energy expenditure and body composition in obese women with normal and impaired glucose tolerance. Am J Physiol Endocrinol Metab 2004; 287: E472–E479.

    Article  CAS  Google Scholar 

  3. Catalano PM, Huston L, Amini SB, Kalhan SC . Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am J Obstet Gynecol 1999; 180: 903–916.

    Article  CAS  Google Scholar 

  4. Yogev Y, Catalano PM . Pregnancy and obesity. Obstet Gynecol Clin North Am 2009; 36: 285–300.

    Article  Google Scholar 

  5. Reece EA . Obesity, diabetes, and links to congenital defects: a review of the evidence and recommendations for intervention. J Matern Fetal Neonatal Med 2008; 21: 173–180.

    Article  Google Scholar 

  6. Vasudevan C, Renfrew M, McGuire W . Fetal and perinatal consequences of maternal obesity. Arch Dis Child Fetal Neonatal Ed 2011; 96: F378–F382.

    Article  Google Scholar 

  7. Chu SY, Kim SY, Lau J, Schmid CH, Dietz PM, Callaghan WM et al. Maternal obesity and risk of stillbirth: a metaanalysis. Am J Obstet Gynecol 2007; 197: 223–228.

    Article  Google Scholar 

  8. Frias AE, Morgan TK, Evans AE, Rasanen J, Oh KY, Thornburg KL et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 2011; 152: 2456–2464.

    Article  CAS  Google Scholar 

  9. Rogers LK, Velten M . Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci 2011; 89: 417–421.

    Article  CAS  Google Scholar 

  10. Jansson T, Powell TL . Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond) 2007; 113: 1–13.

    Article  CAS  Google Scholar 

  11. Burton GJ, Fowden AL . Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta 2012; 33: S23–S27.

    Article  Google Scholar 

  12. Myatt L . Placental adaptive responses and fetal programming. J Physiol 2006; 572: 25–30.

    Article  CAS  Google Scholar 

  13. Myatt L, Cui X . Oxidative stress in the placenta. Histochem Cell Biol 2004; 122: 369–382.

    Article  CAS  Google Scholar 

  14. Roberts VH, Smith J, McLea SA, Heizer AB, Richardson JL, Myatt L . Effect of increasing maternal body mass index on oxidative and nitrative stress in the human placenta. Placenta 2009; 30: 169–175.

    Article  CAS  Google Scholar 

  15. Myatt L, Roberts VH . Placental mechanisms and developmental origins of health and disease. In: Gluckman P, Hanson M (eds). Developmental Origins of Health and Disease. Cambridge University Press: Cambridge, UK, 2006. pp 130–142.

    Chapter  Google Scholar 

  16. Oliva K, Barker G, Riley C, Bailey MJ, Permezel M, Rice GE et al. The effect of pre-existing maternal obesity on the placental proteome: two-dimensional difference gel electrophoresis coupled with mass spectrometry. J Mol Endocrinol 2012; 48: 139–149.

    Article  CAS  Google Scholar 

  17. Inui M, Martello G, Piccolo S . MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010; 11: 252–263.

    Article  CAS  Google Scholar 

  18. Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 2010; 29: 401–406.

    Article  CAS  Google Scholar 

  19. Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ . Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5: 583–589.

    Article  CAS  Google Scholar 

  20. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196: 261 e1–261 e6.

    Article  Google Scholar 

  21. Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA . Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2011; 204: 178 e12–178 e21.

    Article  Google Scholar 

  22. Maccani MA, Padbury JF, Marsit CJ . miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 2011; 6: e21210.

    Article  CAS  Google Scholar 

  23. Chan YC, Banerjee J, Choi SY, Sen CK . miR-210: the master hypoxamir. Microcirculation 2011; 19: 215–223.

    Article  Google Scholar 

  24. Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T et al. Overexpression of miR-210, a downstream target of HIF1alpha, causes centrosome amplification in renal carcinoma cells. J Pathol 2011; 224: 280–288.

    Article  CAS  Google Scholar 

  25. Devlin C, Greco S, Martelli F, Ivan M . miR-210: more than a silent player in hypoxia. IUBMB Life 2011; 63: 94–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 2009; 35: 856–867.

    Article  CAS  Google Scholar 

  27. Muralimanoharan S, Maloyan A, Mele J, Guo C, Myatt LG, Myatt L . MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta 2012; 33: 816–823.

    Article  CAS  Google Scholar 

  28. Mele J, Muralimanoharan S, Maloyan A, Myatt L . Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab 2014; 307: E419–E425.

    Article  CAS  Google Scholar 

  29. Bax CM, Ryder TA, Mobberley MA, Tyms AS, Taylor DL, Bloxam DL . Ultrastructural changes and immunocytochemical analysis of human placental trophoblast during short-term culture. Placenta 1989; 10: 179–194.

    Article  CAS  Google Scholar 

  30. Maloyan A, Mele J, Muralimanohara B, Myatt L . Measurement of mitochondrial respiration in trophoblast culture. Placenta 2012; 33: 456–458.

    Article  CAS  Google Scholar 

  31. Magenta A, Greco S, Gaetano C, Martelli F . Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci 2013; 14: 17319–17346.

    Article  Google Scholar 

  32. Naeye RL . Maternal body weight and pregnancy outcome. Am J Clin Nutr 1990; 52: 273–279.

    Article  CAS  Google Scholar 

  33. Schmatz M, Madan J, Marino T, Davis J . Maternal obesity: the interplay between inflammation, mother and fetus. J Perinatol 2010; 30: 441–446.

    Article  CAS  Google Scholar 

  34. Catalano PM . Increasing maternal obesity and weight gain during pregnancy: the obstetric problems of plentitude. Obstet Gynecol 2007; 110: 743–744.

    Article  Google Scholar 

  35. King JC . Maternal obesity, metabolism, and pregnancy outcomes. Annu Rev Nutr 2006; 26: 271–291.

    Article  CAS  Google Scholar 

  36. Drake AJ, Reynolds RM . Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction 2010; 140: 387–398.

    Article  CAS  Google Scholar 

  37. Myatt L . Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010; 31: S66–S69.

    Article  Google Scholar 

  38. Greenberg AS, Obin MS . Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 2006; 83: 461S–465S.

    Article  CAS  Google Scholar 

  39. Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J . MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 2009; 10: 273–284.

    Article  CAS  Google Scholar 

  40. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007; 116: 258–267.

    Article  CAS  Google Scholar 

  41. Jeyaseelan K, Lim KY, Armugam A . MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008; 39: 959–966.

    Article  CAS  Google Scholar 

  42. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 2010; 116: 2148–2158.

    PubMed  Google Scholar 

  43. Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 2010; 5: e10345.

    Article  Google Scholar 

  44. Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med 2012; 16: 249–259.

    Article  CAS  Google Scholar 

  45. Anton L, Olarerin-George AO, Schwartz N, Srinivas S, Bastek J, Hogenesch JB et al. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am J Pathol 2013; 183: 1437–1445.

    Article  CAS  Google Scholar 

  46. Mele J, Muralimanoharan S, Maloyan A, Myatt L . Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab 2014; 307: E419–E425.

    Article  CAS  Google Scholar 

  47. Sampey BP, Freemerman AJ, Zhang J, Kuan PF, Galanko JA, O'Connell TM et al. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS One 2012; 7: e38812.

    Article  CAS  Google Scholar 

  48. Li ZL, Woollard JR, Ebrahimi B, Crane JA, Jordan KL, Lerman A et al. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler Thromb Vasc Biol 2012; 32: 1132–1141.

    Article  CAS  Google Scholar 

  49. Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56: 2203–2212.

    Article  CAS  Google Scholar 

  50. Perri R, Nares S, Zhang S, Barros SP, Offenbacher S . MicroRNA modulation in obesity and periodontitis. J Dent Res 2012; 91: 33–38.

    Article  CAS  Google Scholar 

  51. Bye A, Rosjo H, Aspenes ST, Condorelli G, Omland T, Wisloff U . Circulating microRNAs and aerobic fitness—the HUNT-Study. PLoS One 2013; 8: e57496.

    Article  CAS  Google Scholar 

  52. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta 2014; 35: 171–177.

    Article  CAS  Google Scholar 

  53. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621–663.

    Article  CAS  Google Scholar 

  54. Vina J, Borras C, Gambini J, Sastre J, Pallardo FV . Why females live longer than males: control of longevity by sex hormones. Sci Aging Knowledge Environ 2005; 2005: pe17.

    Article  Google Scholar 

  55. Ciaudo C, Servant N, Cognat V, Sarazin A, Kieffer E, Viville S et al. Highly dynamic and sex-specific expression of microRNAs during early ES cell differentiation. PLoS Genet 2009; 5: e1000620.

    Article  Google Scholar 

  56. Mujahid S, Logvinenko T, Volpe MV, Nielsen HC . miRNA regulated pathways in late stage murine lung development. BMC. Dev Biol 2013; 13: 13.

    Google Scholar 

  57. Morgan CP, Bale TL . Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci 2011; 31: 11748–11755.

    Article  CAS  Google Scholar 

  58. Zambon A, Pauletto P, Crepaldi G . Review article: the metabolic syndrome—a chronic cardiovascular inflammatory condition. Aliment Pharmacol Ther 2005; 22: 20–23.

    Article  Google Scholar 

  59. Huang PL . A comprehensive definition for metabolic syndrome. Dis Model Mech 2009; 2: 231–237.

    Article  CAS  Google Scholar 

  60. Wang YT, Tsai PC, Liao YC, Hsu CY, Juo SH . Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci 2013; 20: 72.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the funding sources HD076259A (LM and AM), HL075297 (LM), and CTSA grant (UL1RR025767) from the Institute for Integration of Medicine and Science (IIMS) at UTHSCSA (AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Maloyan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralimanoharan, S., Guo, C., Myatt, L. et al. Sexual dimorphism in miR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity. Int J Obes 39, 1274–1281 (2015). https://doi.org/10.1038/ijo.2015.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.45

This article is cited by

Search

Quick links