Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Fasting substrate oxidation at rest assessed by indirect calorimetry: is prior dietary macronutrient level and composition a confounder?

Abstract

Indirect calorimetry, the measurement of O2 consumption and CO2 production, constitutes an invaluable tool as the most common method for analyzing whole-body energy expenditure, and also provides an index of the nature of macronutrient substrate oxidation—namely, carbohydrate (CHO) versus fat oxidation. The latter constitutes a key etiological factor in obesity as this condition can only develop when total fat oxidation is chronically lower than total exogenous fat intake. The standardization of indirect calorimetry measurements is essential for accurately tracking the relative proportion of energy expenditure derived from CHO and fat oxidation. Here we analyze literature data to show that the average fasting respiratory quotient typically shifts from approximately 0.80 to 0.90 (indicating a doubling of resting CHO oxidation) in response to a switch in dietary CHO intake (as % energy) from 30 to 60%. This underscores the importance of taking into account dietary macronutrient composition prior to indirect calorimetry studies in the interpretation of data on substrate utilization and oxidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Black AE, Prentice AM, Coward WA . Use of food quotients to predict respiratory quotients for the doubly-labelled water method of measuring energy expenditure. Hum Nutr Clin Nutr 1986; 40: 381–391.

    CAS  Google Scholar 

  2. Whelan ME, Wright OR, Hickman IJ . A review of the effect of dietary composition on fasting substrate oxidation in healthy and overweight subjects. Crit Rev Food Sci Nutr 2014. e-pub ahead of print 18 July 2014.

  3. Acheson KJ, Schutz Y, Bessard T, Ravussin E, Jequier E, Flatt JP . Nutritional influences on lipogenesis and thermogenesis after a carbohydrate meal. Am J Physiol 1984; 246: E62–E70.

    CAS  Google Scholar 

  4. Bisschop PH, Ackermans MT, Endert E, Ruiter AF, Meijer AJ, Kuipers F et al. The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release. Br J Nutr 2002; 87: 555–559.

    Article  CAS  Google Scholar 

  5. Bisschop PH, de Metz J, Ackermans MT, Endert E, Pijl H, Kuipers F et al. Dietary fat content alters insulin-mediated glucose metabolism in healthy men. Am J Clin Nutr 2001; 73: 554–559.

    Article  CAS  Google Scholar 

  6. Chokkalingam K, Jewell K, Norton L, Littlewood J, van Loon LJ, Mansell P et al. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: An important role for skeletal muscle pyruvate dehydrogenase kinase 4. J Clin Endocrinol Metab 2007; 92: 284–292.

    Article  CAS  Google Scholar 

  7. Goris AH, Westerterp KR . Postabsorptive respiratory quotient and food quotient-an analysis in lean and obese men and women. Eur J Clin Nutr 2000; 54: 546–550.

    Article  CAS  Google Scholar 

  8. Hurni M, Burnand B, Pittet P, Jequier E . Metabolic effects of a mixed and a high-carbohydrate low-fat diet in man, measured over 24 h in a respiration chamber. Br J Nutr 1982; 47: 33–43.

    Article  CAS  Google Scholar 

  9. Koutsari C, Sidossis LS . Effect of isoenergetic low- and high-carbohydrate diets on substrate kinetics and oxidation in healthy men. Br J Nutr 2003; 90: 413–418.

    Article  CAS  Google Scholar 

  10. Landry N, Bergeron N, Archer R, Samson P, Corneau L, Bergeron J et al. Whole-body fat oxidation rate and plasma triacylglycerol concentrations in men consuming an ad libitum high-carbohydrate or low-carbohydrate diet. Am J Clin Nutr 2003; 77: 580–586.

    Article  CAS  Google Scholar 

  11. Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP et al. Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 2002; 25: 1283–1288.

    Article  CAS  Google Scholar 

  12. McNeill G, Bruce AC, Ralph A, James WP . Inter-individual differences in fasting nutrient oxidation and the influence of diet composition. Int J Obes 1988; 12: 455–463.

    CAS  Google Scholar 

  13. Roberts R, Bickerton AS, Fielding BA, Blaak EE, Wagenmakers AJ, Chong MF et al. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. Am J Clin Nutr 2008; 87: 824–831.

    Article  CAS  Google Scholar 

  14. Roust LR, Hammel KD, Jensen MD . Effects of isoenergetic, low-fat diets on energy metabolism in lean and obese women. Am J Clin Nutr 1994; 60: 470–475.

    Article  CAS  Google Scholar 

  15. Saltzman E, Dallal GE, Roberts SB . Effect of high-fat and low-fat diets on voluntary energy intake and substrate oxidation: studies in identical twins consuming diets matched for energy density, fiber, and palatability. Am J Clin Nutr 1997; 66: 1332–1339.

    Article  CAS  Google Scholar 

  16. Schutz Y . Abnormalities of fuel utilization as predisposing to the development of obesity in humans. Obes Res 1995; 3: 173S–178S.

    Article  Google Scholar 

  17. Skovbro M, Boushel R, Hansen CN, Helge JW, Dela F . High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle. J Appl Physiol (1985) 2011; 110: 1607–1614.

    Article  CAS  Google Scholar 

  18. Smith SR, de Jonge L, Zachwieja JJ, Roy H, Nguyen T, Rood JC et al. Fat and carbohydrate balances during adaptation to a high-fat. Am J Clin Nutr 2000; 71: 450–457.

    Article  CAS  Google Scholar 

  19. van Herpen NA, Schrauwen-Hinderling VB, Schaart G, Mensink RP, Schrauwen P . Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J Clin Endocrinol Metab 2011; 96: E691–E695.

    Article  CAS  Google Scholar 

  20. Westerbacka J, Lammi K, Hakkinen AM, Rissanen A, Salminen I, Aro A et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 2005; 90: 2804–2809.

    Article  CAS  Google Scholar 

  21. Hays NP, Starling RD, Liu X, Sullivan DH, Trappe TA, Fluckey JD et al. Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: a randomized controlled trial. Arch Intern Med 2004; 164: 210–217.

    Article  Google Scholar 

  22. Labayen I, Diez N, Gonzalez A, Parra D, Martinez JA . Effects of protein vs carbohydrate-rich diets on fuel utilisation in obese women during weight loss. Forum Nutr 2003; 56: 168–170.

    CAS  PubMed  Google Scholar 

  23. Lejeune MP, Kovacs EM, Westerterp-Plantenga MS . Additional protein intake limits weight regain after weight loss in humans. Br J Nutr 2005; 93: 281–289.

    Article  CAS  Google Scholar 

  24. McCargar LJ, Clandinin MT, Belcastro AN, Walker K . Dietary carbohydrate-to-fat ratio: influence on whole-body nitrogen retention, substrate utilization, and hormone response in healthy male subjects. Am J Clin Nutr 1989; 49: 1169–1178.

    Article  CAS  Google Scholar 

  25. Minehira K, Vega N, Vidal H, Acheson K, Tappy L . Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int J Obes Relat Metab Disord 2004; 28: 1291–1298.

    Article  CAS  Google Scholar 

  26. Schwarz JM, Neese RA, Turner S, Dare D, Hellerstein MK . Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J Clin Invest 1995; 96: 2735–2743.

    Article  CAS  Google Scholar 

  27. Cooling J, Blundell J . Differences in energy expenditure and substrate oxidation between habitual high fat and low fat consumers (phenotypes). Int J Obes Relat Metab Disord 1998; 22: 612–618.

    Article  CAS  Google Scholar 

  28. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jequier E . Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr 1988; 48: 240–247.

    Article  CAS  Google Scholar 

  29. Askanazi J, Silverberg PA, Foster RJ, Hyman AI, Milic-Emili J, Kinney JM . Effects of respiratory apparatus on breathing pattern. J Appl Physiol Respir Environ Exerc Physiol 1980; 48: 577–580.

    CAS  PubMed  Google Scholar 

  30. Gilbert R, Auchincloss JH Jr., Brodsky J, Boden W . Changes in tidal volume, frequency, and ventilation induced by their measurement. J Appl Physiol 1972; 33: 252–254.

    Article  CAS  Google Scholar 

  31. Hirsch JA, Bishop B . Human breathing patterns on mouthpiece or face mask during air, CO2, or low O2. J Appl Physiol Respir Environ Exerc Physiol 1982; 53: 1281–1290.

    CAS  PubMed  Google Scholar 

  32. Sackner JD, Nixon AJ, Davis B, Atkins N, Sackner MA . Effects of breathing through external dead space on ventilation at rest and during exercise. II. Am Rev Respir Dis 1980; 122: 933–940.

    CAS  PubMed  Google Scholar 

  33. Weissman C, Askanazi J, Milic-Emili J, Kinney JM . Effect of respiratory apparatus on respiration. J Appl Physiol Respir Environ Exerc Physiol 1984; 57: 475–480.

    CAS  PubMed  Google Scholar 

  34. Forse RA . Comparison of gas exchange measurements with a mouthpiece, face mask, and ventilated canopy. J Parenter Enter Nutr 1993; 17: 388–391.

    Article  CAS  Google Scholar 

  35. Schrauwen P, van Marken Lichtenbelt WD, Saris WH, Westerterp KR . Role of glycogen-lowering exercise in the change of fat oxidation in response to a high-fat diet. Am J Physiol 1997; 273: E623–E629.

    CAS  PubMed  Google Scholar 

  36. Saltzman E, Roberts SB . Effects of energy imbalance on energy expenditure and respiratory quotient in young and older men: a summary of data from two metabolic studies. Aging (Milano) 1996; 8: 370–378.

    CAS  Google Scholar 

  37. Schutz Y, Tremblay A, Weinsier RL, Nelson KM . Role of fat oxidation in the long-term stabilization of body weight in obese women. Am J Clin Nutr 1992; 55: 670–674.

    Article  CAS  Google Scholar 

  38. Stettler N, Schutz Y, Micheli JL, Jequier E . Energetic and metabolic cost of growth in Gambian infants. Eur J Clin Nutr 1992; 46: 329–335.

    CAS  PubMed  Google Scholar 

  39. Melzer K, Kayser B, Schutz Y . Respiratory quotient evolution during normal pregnancy: what nutritional or clinical information can we get out of it? Eur J Obstet Gynecol Reprod Biol 2014; 176: 5–9.

    Article  Google Scholar 

  40. Schutz Y, Ravussin E . Respiratory quotients lower than 0.70 in ketogenic diets. Am J Clin Nutr 1980; 33: 1317–1319.

    Article  CAS  Google Scholar 

  41. Schutz Y . Dietary fat, lipogenesis and energy balance. Physiol Behav 2004; 83: 557–564.

    Article  CAS  Google Scholar 

  42. Barwell ND, Malkova D, Leggate M, Gill JM . Individual responsiveness to exercise-induced fat loss is associated with change in resting substrate utilization. Metabolism 2009; 58: 1320–1328.

    Article  CAS  Google Scholar 

  43. Jacobson P, Rankinen T, Tremblay A, Perusse L, Chagnon YC, Bouchard C . Resting metabolic rate and respiratory quotient: results from a genome-wide scan in the Quebec Family Study. Am J Clin Nutr 2006; 84: 1527–1533.

    Article  CAS  Google Scholar 

  44. Wohl P, Wohl P, Girman P, Pelikanova T . Inflexibility of energy substrate oxidation in type 1 diabetic patients. Metabolism 2004; 53: 655–659.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Miles-Chan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles-Chan, J., Dulloo, A. & Schutz, Y. Fasting substrate oxidation at rest assessed by indirect calorimetry: is prior dietary macronutrient level and composition a confounder?. Int J Obes 39, 1114–1117 (2015). https://doi.org/10.1038/ijo.2015.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.29

This article is cited by

Search

Quick links