Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration

Abstract

Objectives:

Obesity is a frequent metabolic disorder but an effective therapy is still scarce. Anorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity but are ineffective after peripheral application. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice.

Results:

Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF-2 receptor. Peripheral administration of myristoylated and palmitoylated PrRP analogs to fasted mice induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight and improved metabolic parameters, and attenuated lipogenesis in mice with diet-induced obesity.

Conclusions:

Our data suggest that the lipidization of PrRP enhances stability and mediates its effect in central nervous system. Strong anorexigenic and body-weight-reducing effects make lipidized PrRP an attractive candidate for anti-obesity treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S et al. A prolactin-releasing peptide in the brain. Nature 1998; 393: 272–276.

    Article  CAS  Google Scholar 

  2. Ibata Y, Iijima N, Kataoka Y, Kakihara K, Tanaka M, Hosoya et al. Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci Res 2000; 38: 223–230.

    Article  CAS  Google Scholar 

  3. Lawrence C, Celsi F, Brennand J, Luckman S . Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci 2000; 3: 645–646.

    Article  CAS  Google Scholar 

  4. Engström M, Brandt A, Wurster S, Savola JM, Panula P . Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J Pharmacol Exp Ther 2003; 305: 825–832.

    Article  Google Scholar 

  5. Dockray GJ . The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89: 229–235.

    Article  CAS  Google Scholar 

  6. Chartrel N, Bruzzone F, Leprince J, Tollemer H, Anouar Y, Do-Régo JC et al. Structure and functions of the novel hypothalamic RFamide neuropeptides R-RFa and 26RFa in vertebrates. Peptides 2006; 27: 1110–1120.

    Article  CAS  Google Scholar 

  7. Lawrence C, Ellacott K, Luckman S . PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology 2002; 143: 360–367.

    Article  CAS  Google Scholar 

  8. Bjursell M, Lennerås M, Göransson M, Elmgren A, Bohlooly-Y M . GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem Biophys Res Commun 2007; 363: 633–638.

    Article  CAS  Google Scholar 

  9. Takayanagi Y, Matsumoto H, Nakata M, Mera T, Fukusumi S, Hinuma S et al. Endogenous prolactin-releasing peptide regulates food intake in rodents. J Clin Invest 2008; 118: 4014–4024.

    Article  CAS  Google Scholar 

  10. Maniscalco JW, Rinaman L . Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiol Behav 2013; 121: 35–42.

    Article  CAS  Google Scholar 

  11. Dodd GT, Luckman SM . Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne) 2013; 4: 20.

    Article  Google Scholar 

  12. Bellmann-Sickert K, Beck-Sickinger AG . Peptide drugs to target G protein-coupled receptors. Trends Pharmacol Sci 2010; 31: 434–441.

    Article  CAS  Google Scholar 

  13. Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P . Initiative ENR. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 2009; 87: 212–251.

    Article  CAS  Google Scholar 

  14. Malavolta L, Cabral FR . Peptides: important tools for the treatment of central nervous system disorders. Neuropeptides 2011; 45: 309–316.

    Article  CAS  Google Scholar 

  15. Havelund S, Plum A, Ribel U, Jonassen I, Vølund A, Markussen J et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 2004; 21: 1498–1504.

    Article  CAS  Google Scholar 

  16. Gault VA, Kerr BD, Harriott P, Flatt PR . Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin Sci (Lond) 2011; 121: 107–117.

    Article  CAS  Google Scholar 

  17. Manning S, Pucci A, Finer N . Pharmacotherapy for obesity: novel agents and paradigms. Ther Adv Chronic Dis 2014; 5: 135–148.

    Article  CAS  Google Scholar 

  18. Roland B, Sutton S, Wilson S, Luo L, Pyati J, Huvar R et al. Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 1999; 140: 5736–5745.

    Article  CAS  Google Scholar 

  19. Boyle R, Downham R, Ganguly T, Humphries J, Smith J, Travers S . Structure-activity studies on prolactin-releasing peptide (PrRP). Analogues of PrRP-(19-31)-peptide. J Pept Sci 2005; 11: 161–165.

    Article  CAS  Google Scholar 

  20. Maletínská L, Spolcová A, Maixnerová J, Blechová M, Zelezná B . Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides 2011; 32: 1887–1892.

    Article  Google Scholar 

  21. Blechová M, Nagelová V, Záková L, Demianová Z, Zelezná B, Maletínská L . New analogs of the CART peptide with anorexigenic potency: the importance of individual disulfide bridges. Peptides 2013; 39: 138–144.

    Article  Google Scholar 

  22. Maletínská L, Pýchová M, Holubová M, Blechová M, Demianová Z, Elbert T et al. Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J Pharmacol Exp Ther 2012; 340: 781–786.

    Article  Google Scholar 

  23. Holubová M, Spolcová A, Demianová Z, Sýkora D, Fehrentz JA, Martinez J et al. Ghrelin agonist JMV 1843 increases food intake, body weight and expression of orexigenic neuropeptides in mice. Physiol Res 2013; 62: 435–444.

    PubMed  Google Scholar 

  24. Maletinska L, Ticha A, Nagelova V, Spolcova A, Blechova M, Elbert T et al. Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res 2013; 1498: 33–40.

    Article  CAS  Google Scholar 

  25. Motulsky H, Neubig R . Analyzing radioligand binding data. Curr Protoc Neurosci 2002; Chapter 7: Unit 7.5.

    PubMed  Google Scholar 

  26. Nagelová V, Pirník Z, Železná B, Maletínská L . CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res 2014; 1547: 16–24.

    Article  Google Scholar 

  27. Pirnik Z, Bundziková J, Holubová M, Pýchová M, Fehrentz JA, Martinez J et al. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochem Int 2011; 59: 889–895.

    Article  CAS  Google Scholar 

  28. Maletínská L, Maixnerová J, Matysková R, Haugvicová R, Pirník Z, Kiss A et al. Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neurosci 2008; 9: 101.

    Article  Google Scholar 

  29. Maletínská L, Lignon M, Galas M, Bernad N, Pírková J, Hlavácek J et al. Pharmacological characterization of new cholecystokinin analogues. Eur J Pharmacol 1992; 222: 233–240.

    Article  Google Scholar 

  30. Kopecký J, Hodný Z, Rossmeisl M, Syrový I, Kozak LP . Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. Am J Physiol 1996; 270: E768–E775.

    PubMed  Google Scholar 

  31. Maletinska L, Matyskova R, Maixnerova J, Sykora D, Pychova M, Spolcova A et al. The Peptidic GHS-R antagonist [D-Lys(3)]GHRP-6 markedly improves adiposity and related metabolic abnormalities in a mouse model of postmenopausal obesity. Mol Cell Endocrinol 2011; 343: 55–62.

    Article  CAS  Google Scholar 

  32. Chang C, Cheng Y . Ribonucleotide reductase isolated from human cells. Heterogeneity among the sources. Biochem Pharmacol 1978; 27: 2297–2300.

    Article  CAS  Google Scholar 

  33. Maixnerová J, Hlavácek J, Blokesová D, Kowalczyk W, Elbert T, Sanda et al. Structure-activity relationship of CART (cocaine- and amphetamine-regulated transcript) peptide fragments. Peptides 2007; 28: 1945–1953.

    Article  Google Scholar 

  34. Maixnerová J, Špolcová A, Pýchová M, Blechová M, Elbert T, Rezáčová et al. Characterization of prolactin-releasing peptide: binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides 2011; 32: 811–817.

    Article  Google Scholar 

  35. Gouardères C, Faura CC, Zajac JM . Rodent strain differences in the NPFF1 and NPFF2 receptor distribution and density in the central nervous system. Brain Res 2004; 1014: 61–70.

    Article  Google Scholar 

  36. Ellacott KL, Halatchev IG, Cone RD . Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology 2006; 147: 3190–3195.

    Article  CAS  Google Scholar 

  37. Bechtold DA, Luckman SM . Prolactin-releasing Peptide mediates cholecystokinin-induced satiety in mice. Endocrinology 2006; 147: 4723–4729.

    Article  CAS  Google Scholar 

  38. Jarry H, Heuer H, Schomburg L, Bauer K . Prolactin-releasing peptides do not stimulate prolactin release in vivo. Neuroendocrinology 2000; 71: 262–267.

    Article  CAS  Google Scholar 

  39. Porter DW, Kerr BD, Flatt PR, Holscher C, Gault VA . Four weeks administration of Liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietary-induced obesity and insulin resistance. Diabetes Obes Metab 2010; 12: 891–899.

    Article  CAS  Google Scholar 

  40. Kerr BD, Flatt PR, Gault VA . Effects of gamma-glutamyl linker on DPP-IV resistance, duration of action and biological efficacy of acylated glucagon-like peptide-1. Biochem Pharmacol 2010; 80: 396–401.

    Article  CAS  Google Scholar 

  41. Maruyama M, Matsumoto H, Fujiwara K, Noguchi J, Kitada C, Fujino et al. Prolactin-releasing peptide as a novel stress mediator in the central nervous system. Endocrinology 2001; 142: 2032–2038.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the GACR No. P303/10/1368 and P303/12/0576, TACR TE01020028, grant of MSMT (No. 20/2014) and by the ASCR RVO: 61388963 and RVO:67985823. We gratefully acknowledge T Elbert for the radioiodination of peptides and H Vysušilová, Z Kopecká and I Nahodilová for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Maletínská.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maletínská, L., Nagelová, V., Tichá, A. et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes 39, 986–993 (2015). https://doi.org/10.1038/ijo.2015.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.28

This article is cited by

Search

Quick links