Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Anorexia–cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15

Abstract

Anorexia–cachexia associated with cancer and other diseases is a common and often fatal condition representing a large area of unmet medical need. It occurs most commonly in advanced cancer and is probably a consequence of molecules released by tumour cells, or tumour-associated interstitial or immune cells. These may then act directly on muscle to cause atrophy and/or may cause anorexia, which then leads to loss of both fat and lean mass. Although the aetiological triggers for this syndrome are not well characterized, recent data suggest that MIC-1/GDF15, a transforming growth factor-beta superfamily cytokine produced in large amounts by cancer cells and as a part of other disease processes, may be an important trigger. This cytokine acts on feeding centres in the hypothalamus and brainstem to cause anorexia leading to loss of lean and fat mass and eventually cachexia. In animal studies, the circulating concentrations of MIC-1/GDF15 required to cause this syndrome are similar to those seen in patients with advanced cancer, and at least some epidemiological studies support an association between MIC-1/GDF15 serum levels and measures of nutrition. This article will discuss its mechanisms of central appetite regulation, and the available data linking this action to anorexia–cachexia syndromes that suggest it is a potential target for therapy of cancer anorexia–cachexia and conversely may also be useful for the treatment of severe obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tsai VW, Husaini Y, Manandhar R, Lee-Ng KK, Zhang HP, Harriott K et al. Anorexia/cachexia of chronic diseases: a role for the TGF-β family cytokine MIC-1/GDF15. J Cachexia Sarcopenia Muscle 2012; 3: 239–243.

    Article  Google Scholar 

  2. Blum D, Omlin A, Baracos VE, Solheim TS, Tan BH, Stone P et al. Cancer cachexia: a systematic literature review of items and domains associated with involuntary weight loss in cancer. Crit Rev Oncol Hematol 2011; 80: 114–144.

    Article  Google Scholar 

  3. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ . Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 2014; 14: 754–762.

    Article  CAS  Google Scholar 

  4. Fearon K, Arends J, Baracos V . Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 2013; 10: 90–99.

    Article  CAS  Google Scholar 

  5. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489–495.

    Article  Google Scholar 

  6. Fearon KC, Glass DJ, Guttridge DC . Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012; 16: 153–166.

    Article  CAS  Google Scholar 

  7. Muscaritoli M, Molfino A, Bollea MR, Rossi Fanelli F . Malnutrition and wasting in renal disease. Curr Opin Clin Nutr Metab Care 2009; 12: 378–383.

    Article  CAS  Google Scholar 

  8. Plauth M, Schütz ET . Cachexia in liver cirrhosis. Int J Cardiol 2002; 85: 83–87.

    Article  Google Scholar 

  9. von Haehling S, Lainscak M, Springer J, Anker SD . Cardiac cachexia: a systematic overview. Pharmacol Ther 2009; 121: 227–252.

    Article  CAS  Google Scholar 

  10. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M . Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013; 280: 4294–4314.

    Article  CAS  Google Scholar 

  11. Banerjee A, Guttridge DC . Mechanisms for maintaining muscle. Curr Opin Support Palliat Care 2012; 6: 451–456.

    Article  Google Scholar 

  12. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E et al. BMP signaling controls muscle mass. Nat Genet 2013; 45: 1309–1318.

    Article  CAS  Google Scholar 

  13. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18: 39–51.

    Article  CAS  Google Scholar 

  14. Kooh SW, Noriega E, Leslie K, Muller C, Harrison JE . Bone mass and soft tissue composition in adolescents with anorexia nervosa. Bone 1996; 19: 181–188.

    Article  CAS  Google Scholar 

  15. Barac-Nieto M, Spurr GB, Lotero H, Maksud MG . Body composition in chronic undernutrition. Am J Clin Nutr 1978; 31: 23–40.

    Article  CAS  Google Scholar 

  16. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA 1997; 94: 11514–11519.

    Article  CAS  Google Scholar 

  17. Bottner M, Laaff M, Schechinger B, Rappold G, Unsicker K, Suter-Crazzolara C . Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene 1999; 237: 105–111.

    Article  CAS  Google Scholar 

  18. Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling. TE . Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 2001; 59: 901–908.

    Article  CAS  Google Scholar 

  19. Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit. SN . MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 1999; 65: 2–5.

    Article  CAS  Google Scholar 

  20. Brown DA, Bauskin AR, Fairlie WD, Smith MD, Liu T, Xu N et al. Antibody-based approach to high-volume genotyping for MIC-1 polymorphism. Biotechniques 2002; 33: 118–120 122, 124 passim.

    Article  CAS  Google Scholar 

  21. Lindmark F, Zheng SL, Wiklund F, Bensen J, Bälter KA, Chang B et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J Natl Cancer Inst 2004; 96: 1248–1254.

    Article  CAS  Google Scholar 

  22. Brown DA, Ward RL, Buckhaults P, Liu T, Romans KE, Hawkins NJ et al. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin Cancer Res 2003; 9: 2642–2650.

    CAS  PubMed  Google Scholar 

  23. Tanno T, Noel P, Miller JL . Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol 2010; 17: 184–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Breit SN, Johnen H, Cook AD, Tsai VW, Mohammad MG, Kuffner T et al. The TGF-beta superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 2011; 29: 187–195.

    Article  CAS  Google Scholar 

  25. Bauskin AR, Brown DA, Kuffner T, Johnen H, Luo XW, Hunter M et al. Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer Res 2006; 66: 4983–4986.

    Article  CAS  Google Scholar 

  26. Kempf T, Wollert KC . Growth-differentiation factor-15 in heart failure. Heart Fail Clin 2009; 5: 537–547.

    Article  Google Scholar 

  27. Li PX, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C et al. Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 2000; 275: 20127–20135.

    Article  CAS  Google Scholar 

  28. Yang H, Filipovic Z, Brown D, Breit SN, Vassilev LT . Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2003; 2: 1023–1029.

    CAS  PubMed  Google Scholar 

  29. Baek SJ, Kim JS, Nixon JB, DiAugustine RP, Eling TE . Expression of NAG-1, a TGF-b superfamily member, by troglitazone requires the early growth response gene Egr-1. J Biol Chem 2004; 279: 6883–6892.

    Article  CAS  Google Scholar 

  30. Brown DA, Breit SN, Buring J, Fairlie WD, Bauskin AR, Liu T et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study. Lancet 2002; 359: 2159–2163.

    Article  CAS  Google Scholar 

  31. Brown DA, Hance KW, Rogers CJ, Sansbury LB, Albert PS, Murphy G et al. Serum macrophage inhibitory cytokine-1 (MIC-1/GDF15): a potential screening tool for the prevention of colon cancer? Cancer Epidemiol Biomarkers Prev 2012; 21: 337–346.

    Article  CAS  Google Scholar 

  32. Ding Q, Mracek T, Gonzalez-Muniesa P, Kos K, Wilding J, Trayhurn P et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology 2009; 150: 1688–1696.

    Article  CAS  Google Scholar 

  33. Marjono AB, Brown DA, Horton KE, Wallace EM, Breit SN, Manuelpillai U . Macrophage inhibitory cytokine-1 in gestational tissues and maternal serum in normal and pre-eclamptic pregnancy. Placenta 2003; 24: 100–106.

    Article  CAS  Google Scholar 

  34. Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML et al. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J Clin Endocrinol Metab 2000; 85: 4781–4788.

    CAS  PubMed  Google Scholar 

  35. Tong S, Marjono B, Brown DA, Mulvey S, Breit SN, Manuelpillai U et al. Serum concentrations of macrophage inhibitory cytokine 1 (MIC 1) as a predictor of miscarriage. Lancet 2004; 363: 129–130.

    Article  CAS  Google Scholar 

  36. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 2006; 98: 351–360.

    Article  CAS  Google Scholar 

  37. Brown DA, Moore J, Johnen H, Smeets TJ, Bauskin AR, Kuffner T et al. Serum macrophage inhibitory cytokine 1 in rheumatoid arthritis: a potential marker of erosive joint destruction. Arthritis Rheum 2007; 56: 753–764.

    Article  CAS  Google Scholar 

  38. Breit SN, Carrero JJ, Tsai VW, Yagoutifam N, Luo W, Kuffner T et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrol Dial Transplant 2012; 27: 70–75.

    Article  CAS  Google Scholar 

  39. Lajer M, Jorsal A, Tarnow L, Parving HH, Rossing P . Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care 2010; 33: 1567–1572.

    Article  CAS  Google Scholar 

  40. Dostalova I, Roubicek T, Bartlova M, Mraz M, Lacinova Z, Haluzikova D et al. Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: the influence of very low calorie diet. Eur J Endocrinol 2009; 161: 397–404.

    Article  CAS  Google Scholar 

  41. Fuchs T, Trollor JN, Crawford J, Brown DA, Baune BT, Samaras K et al. Macrophage inhibitory cytokine-1 is associated with cognitive impairment and predicts cognitive decline—the Sydney Memory and Aging Study. Aging Cell 2013; 12: 882–889.

    Article  CAS  Google Scholar 

  42. Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA 2003; 100: 3410–3415.

    Article  CAS  Google Scholar 

  43. Wiklund FE, Bennet AM, Magnusson PK, Eriksson UK, Lindmark F, Wu L et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 2010; 9: 1057–1064.

    Article  CAS  Google Scholar 

  44. Brown DA, Stephan C, Ward RL, Law M, Hunter M, Bauskin AR et al. Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific antigen improves prostate cancer diagnosis. Clin Cancer Res 2006; 12: 89–96.

    Article  CAS  Google Scholar 

  45. Koopmann J, Buckhaults P, Brown DA, Zahurak ML, Sato N, Fukushima N et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res 2004; 10: 2386–2392.

    Article  CAS  Google Scholar 

  46. Staff AC, Bock AJ, Becker C, Kempf T, Wollert KC, Davidson B . Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer. Gynecol Oncol 2010; 118: 237–243.

    Article  CAS  Google Scholar 

  47. Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M et al. The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Res 2005; 65: 2330–2336.

    Article  CAS  Google Scholar 

  48. Bauskin AR, Jiang L, Luo XW, Wu L, Brown DA, Breit. SN . The TGF-beta superfamily cytokine MIC-1/GDF15: secretory mechanisms facilitate creation of latent stromal stores. J Interferon Cytokine Res 2010; 30: 389–397.

    Article  CAS  Google Scholar 

  49. Husaini Y, Qiu MR, Lockwood GP, Luo XW, Shang P, Kuffner T et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) slows cancer development but increases metastases in TRAMP prostate cancer prone mice. PLoS One 2012; 7: e43833.

    Article  CAS  Google Scholar 

  50. Baek SJ, Okazaki R, Lee SH, Martinez J, Kim JS, Yamaguchi K et al. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 2006; 131: 1553–1560.

    Article  CAS  Google Scholar 

  51. Cekanova M, Lee SH, Donnell RL, Sukhthankar M, Eling TE, Fischer SM et al. Nonsteroidal anti-inflammatory drug-activated gene-1 expression inhibits urethane-induced pulmonary tumorigenesis in transgenic mice. Cancer Prev Res (Phila) 2009; 2: 450–458.

    Article  CAS  Google Scholar 

  52. Zimmers TA, Gutierrez JC, Koniaris LG . Loss of GDF-15 abolishes sulindac chemoprevention in the ApcMin/+ mouse model of intestinal cancer. J Cancer Res Clin Oncol 2010; 136: 571–576.

    Article  CAS  Google Scholar 

  53. Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW, Bauskin AR et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med 2007; 13: 1333–1340.

    Article  CAS  Google Scholar 

  54. Pfitzenmaier J, Vessella R, Higano CS, Noteboom JL, Wallace DJ, Corey E . Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 2003; 97: 1211–1216.

    Article  CAS  Google Scholar 

  55. L.L. Vigano A, Tao N, Krieger B, Feng B, Nicoletti R, Liu Q, Bai A, Weng Z, Alcindor T, Fuoco D, Gyuris J, Chiu MI . From bench to bedside: are cytokines still relevant biomarkers for staging cancer cachexia. Cancer Res 2013; 73, Abstract nr 4650.

    Article  Google Scholar 

  56. Skipworth RJ, Deans DA, Tan BH, Sangster K, Paterson-Brown S, Brown DA et al. Plasma MIC-1 correlates with systemic inflammation but is not an independent determinant of nutritional status or survival in oesophago-gastric cancer. Br J Cancer 2010; 102: 665–672.

    Article  CAS  Google Scholar 

  57. Lu Z, Yang L, Yu J, Lu M, Zhang X, Li J et al. Change of body weight and macrophage inhibitory cytokine-1 during chemotherapy in advanced gastric cancer: what is their clinical significance? PLoS One 2014; 9: e88553.

    Article  Google Scholar 

  58. Lu ZH, Yang L, Yu JW, Lu M, Li J, Zhou J et al. Weight loss correlates with macrophage inhibitory cytokine-1 expression and might influence outcome in patients with advanced esophageal squamous cell carcinoma. Asian Pac J Cancer Prev 2014; 15: 6047–6052.

    Article  Google Scholar 

  59. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol 2007; 50: 1054–1060.

    Article  CAS  Google Scholar 

  60. Dostalova I, Kavalkova P, Papezova H, Domluvilova D, Zikan V, Haluzik M . Association of macrophage inhibitory cytokine-1 with nutritional status, body composition and bone mineral density in patients with anorexia nervosa: the influence of partial realimentation. Nutr Metab (Lond) 2010; 7: 34.

    Article  Google Scholar 

  61. Tsai VW, Macia L, Johnen H, Kuffner T, Manadhar R, Jorgensen SB et al. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 2013; 8: e55174.

    Article  CAS  Google Scholar 

  62. Strelau J, Strzelczyk A, Rusu P, Bendner G, Wiese S, Diella F et al. Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci 2009; 29: 13640–13648.

    Article  CAS  Google Scholar 

  63. Macia L, Tsai VW, Nguyen AD, Johnen H, Kuffner T, Shi YC et al. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One 2012; 7: e34868.

    Article  CAS  Google Scholar 

  64. Chrysovergis K, Wang X, Kosak J, Lee SH, Kim JS, Foley JF et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes (Lond) 2014; 38: 1555–1564.

    Article  CAS  Google Scholar 

  65. Wang X, Chrysovergis K, Kosak J, Kissling G, Streicker M, Moser G et al. hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling. Aging (Albany NY) 2014; 6: 690–704.

    Article  CAS  Google Scholar 

  66. Tsai VW, Manandhar R, Jorgensen SB, Lee-Ng KK, Zhang HP, Marquis CP et al. The anorectic actions of the TGFbeta cytokine MIC-1/GDF15 require an intact brainstem area postrema and nucleus of the solitary tract. PLoS One 2014; 9: e100370.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC) and Cancer Council NSW. AS, DAB and SL are recipients of NHMRC Career Development Awards or Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Breit.

Ethics declarations

Competing interests

Samuel Breit, David Brown and Shu Lin are inventors on patents relating to the diagnostic and/or therapeutic applications of MIC-1/GDF15, from which they may derive financial benefit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, V., Lin, S., Brown, D. et al. Anorexia–cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15. Int J Obes 40, 193–197 (2016). https://doi.org/10.1038/ijo.2015.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.242

This article is cited by

Search

Quick links