Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Original Article
  • Published:

Comparing decision making in average and overweight children and adolescents

Abstract

Objective:

The current study investigates the aspects of self-regulation skills in overweight and normal-weight children, which may be related to their overeating problems. It is hypothesised that overweight children may show poor decision-making behaviour, and this may be because of two processes: hypersensitivity to reward or future insensitivity.

Subjects:

Average weight children (n=66) and overweight children (n=64) between 11 and 16 years were tested with the developmentally appropriate analogue of the iowa gambling task.

Results:

The results reveal that overweight children show decision-making failure ensued from future insensitivity.

Conclusion:

These findings provide support for the reward deficiency hypothesis or the anhedonic route to obesity in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lobstein T, Baur L, Uauy R . Obesity in children and young people: a crisis in public health. Obes Rev 2004; 5: 4–85.

    Article  Google Scholar 

  2. Jackson-Leach R, Lobstein T . Estimated burden of paediatric obesity and co morbidities in Europe: Part 1. The increase in prevalence of childhood obesity in Europe is itself increasing. Int J Pediatr Obes 2006; 1: 26–32.

    Article  Google Scholar 

  3. Reilly JJ . Tackling the obesity epidemic: new approaches. Arch Dis Child 2006; 91: 724–726.

    Article  CAS  Google Scholar 

  4. Reilly JJ, Methven E, McDowell ZC, Alexander DA, Hacking B, Stewart L et al. Health consequences of obesity: systematic review. Arch Dis Child 2003; 88: 748–752.

    Article  CAS  Google Scholar 

  5. Reilly J . Childhood obesity: an overview. Child Soc 2007; 21: 390–396.

    Article  Google Scholar 

  6. Berthoud HR . Interactions between the ‘cognitive’ and ‘metabolic’ brain in the control of food intake. Physiol Behav 2007; 91: 486–498.

    Article  CAS  Google Scholar 

  7. Ainslie GW . Impulse control in pigeons. J Exp Anal Behav 1974; 21: 485–489.

    Article  CAS  Google Scholar 

  8. Logue AW . Research on self-control: an integrating framework. Behav Brain Sci 1988; 11: 665–709.

    Article  Google Scholar 

  9. Logue AW, King GR . Self-control and impulsiveness in adult humans when food is the reinforcer. Appetite 1991; 17: 105–120.

    Article  CAS  Google Scholar 

  10. Rachlin H, Green L . Commitment, choice and self-control. J Exp Anal Behav 1972; 17: 5–22.

    Google Scholar 

  11. Mischel W, Shoda Y, Peake PK . The nature of adolescent competencies predicted by preschool delay of gratification. J Pers Soc Psychol 1988; 54: 687–696.

    Article  CAS  Google Scholar 

  12. Mischel W, Shoda Y, Rodriguez ML . Delay of gratification in children. Science 1989; 244: 933–938.

    Article  CAS  Google Scholar 

  13. Tremblay RE, Boulerice B, Arsenault L, Niscale MJ . Does low self control during childhood explain the association between delinquency and accidents in early adolescence? Crim Behav Ment Health 1995; 5: 439–451.

    Article  Google Scholar 

  14. Bonato DP, Boland FJ . Delay of gratification in obese children. Addict Behav 1983; 8: 71–74.

    Article  CAS  Google Scholar 

  15. Johnson WG, Parry W, Drabman RS . Performance of obese and normal size children on a delay of gratification task. Addict Behav 1978; 3: 205–208.

    Article  CAS  Google Scholar 

  16. Geller SE, Keane TM, Scheirer CJ . Delay of gratification, locus of control, and eating patterns in obese and nonobese children. Addict Behav 1981; 6: 9–14.

    Article  CAS  Google Scholar 

  17. Francis LA, Susman EJ . Self-regulation and rapid weight gain in children from age 3 to 12 years. Arch Pediat Adol Med 2009; 163: 297–302.

    Article  Google Scholar 

  18. Seeyave DM, Coleman S, Appugliese D, Corwyn RF, Bradley RH, Davidson NS et al. Ability to delay gratification at age 4 years and risk of overweight at age 11 years. Arch Pediat Adol Med 2009; 163: 303–308.

    Article  Google Scholar 

  19. Agranat-Meged AN, Deitcher C, Goldzweig G, Leibenson L, Stein M, Galili Weisstub E . Childhood obesity and attention deficit/hyperactivity disorder: a newly described comorbidity in obese hospitalized children. Int J Eat Disord 2005; 37: 357–359.

    Article  Google Scholar 

  20. Agras WS, Hammer LD, McNicholas F, Kraemer HC . Risk factors for childhood overweight: a prospective study from birth to 9.5 years. J Pediatr 2004; 145: 20–25.

    Article  Google Scholar 

  21. Braet C, Claus L, Verbeken S, Van Vlierberghe L . Impulsivity in overweight children. Eur Child Adoles Psy 2007; 16: 473–483.

    Article  Google Scholar 

  22. Holtkamp K, Konrad K, Muller B, Heussen N, Herpertz S, Herpertz-Dahlmann B et al. Overweight and obesity in children with attention-deficit/hyperactivity disorder. Int J Obes 2004; 28: 685–689.

    Article  CAS  Google Scholar 

  23. Nederkoorn C, Braet C, Van Eijs Y, Tanghe A, Jansen A . Why obese children cannot resist food: the role of impulsivity. Eat Behav 2006; 7: 315–322.

    Article  Google Scholar 

  24. Nederkoorn C, Jansen E, Mulkens S, Jansen A . Impulsivity predicts treatment outcome in obese children. Behav Res Ther 2007; 45: 1071–1075.

    Article  Google Scholar 

  25. Bechara A, Damasio AR, Damasio H, Anderson SW . Insensitivity of future consequences following damage to human prefrontal cortex. Cognition 1994; 50: 7–15.

    Article  CAS  Google Scholar 

  26. Bechara A . The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cognition 2004; 55: 30–40.

    Article  Google Scholar 

  27. Crone EA, van der Molen MW . Developmental changes in real life decision making: performance on a gambling task previously shown to depend on the ventromedial prefrontal cortex. Dev Neuropsychol 2004; 25: 251–279.

    Article  Google Scholar 

  28. Damasio AR . Descartes’ Error: Emotion, Reason and the Human Brain. Grosset/Putnam: New York, 1994.

    Google Scholar 

  29. Bechara A, Tranel D, Damasio H . Characterization of the decision making deficit of patients with ventromedial prefrontal cortex lesions. Brain 2000; 123: 2189–2202.

    Article  Google Scholar 

  30. Bazanis E, Rogers RD, Dowson JH, Taylor P, Meux C, Staley C et al. Neurocognitive deficits in decision-making and planning of patients with DSM-III-R borderline personality disorder. Psychol Med 2002; 32: 1398–1405.

    Article  Google Scholar 

  31. Bechara A, Damasio H . Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia 2002; 40: 1675–1689.

    Article  Google Scholar 

  32. Boeka AG, Lokken KL . The Iowa gambling task as a measure of decision making in women with bulimia nervosa. J Int Neuropsych Soc 2006; 12: 741–745.

    Article  Google Scholar 

  33. Cavedini P, Bassi T, Ubbiali A, Casolari A, Giordani S, Zorzi C et al. Neuropsychological investigation of decision-making in anorexia nervosa. Psychiat Res 2004; 127: 259–266.

    Article  Google Scholar 

  34. Goudriaan E, Oosterlaan J, de Beurs E, van den Brink W . Psychophysiological determinants and concomitants of deficiënt decision-making in pathological gamblers. Drug Alcohol Depen 2006; 84: 231–239.

    Article  Google Scholar 

  35. Malloy-Diniz L, Fuentes D, Leite WB, Correa H, Bechara A . Impulsive behavior in adults with attention deficit/hyperactivity disorder: Characterization of attentional, motor and cognitive impulsiveness. J Int Neuropsych Soc 2007; 13: 693–698.

    Article  CAS  Google Scholar 

  36. Davis C, Levitan RD, Muglia P, Bewell C, Kennedy JL . Decision making deficits and overeating: a risk model for obesity. Obes Res 2004; 12: 929–935.

    Article  Google Scholar 

  37. Pignatti R, Bertella L, Albani G, Mauro A, Molinari E, Semenza C . Decision-making in obesity: a study using the gambling task. Eat Weight Disord 2006; 11: 126–132.

    Article  CAS  Google Scholar 

  38. Lyke JA, Spinella M . Associations among aspects of impulsivity and eating factors in a nonclinical sample. Int J Eat Disorder 2004; 36: 229–299.

    Article  Google Scholar 

  39. Davis C, Patte K, Tweed S, Curtis C . Personality traits associated with decision-making deficits. Pers Indiv Differ 2007; 42: 279–290.

    Article  Google Scholar 

  40. Guerrieri R, Nederkoorn C, Jansen A . The interaction between impulsivity and a varied food environment: its influence on food intake and overweight. Int J Obes 2008; 32: 708–714.

    Article  CAS  Google Scholar 

  41. Loxton NJ, Dawe S . Alcohol abuse and dysfunctional eating in adolescent girls: the influence of individual differences in sensitivity to reward and punishment. Int J Eat Disord 2001; 29: 455–462.

    Article  CAS  Google Scholar 

  42. Franken IHA, Muris P . Individual differences in decision-making. Pers Indiv Differ 2005; 39: 991–998.

    Article  Google Scholar 

  43. Davis C, Strachan S, Berkson M . Sensitivity to reward: implications for overeating and overweight. Appetite 2004; 42: 131–138.

    Article  Google Scholar 

  44. Wang G-J, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  Google Scholar 

  45. Sevy S, Hassoun Y, Bechara A, Yechiam E, Napolitano B, Burdick K et al. Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels. Psychopharmacology 2006; 188: 228–235.

    Article  CAS  Google Scholar 

  46. De Wit H, Enggasser JL, Richards JB . Acute administration of damphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 2002; 27: 813–825.

    Article  CAS  Google Scholar 

  47. Robbins TW . Chemistry of the mind. Child Soc 2005; 21: 390–396.

    Google Scholar 

  48. Volkow ND, Wang G-J, Fowler JS, Telang F . Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans Roy Soc B 2008; 363: 3191–3200.

    Article  Google Scholar 

  49. Berridge KC, Robinson TE . What is the role of dopamine in reward:hedonic impact, reward learning, or incentive salience? Brain Res Rev 1998; 28: 309–369.

    Article  CAS  Google Scholar 

  50. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R et al. Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 2002; 109: 45–60.

    Article  Google Scholar 

  51. Fredriks A, van Buuren S, Wit J, Verloove-Vanhorick SP . Body index measurements in 1996-7 compared with 1980. Arch Dis Child 2000; 82: 107–112.

    Article  CAS  Google Scholar 

  52. Verbeken S, Braet C, Claus L, Nederkoorn C, Oosterlaan J . Childhood obesity and impulsivity. An investigation with performance-based measures. Behav Change 2009; 3: 153–167.

    Article  Google Scholar 

  53. Batterinck L, Yokum S, Stice E . Body mass correlates inversely with inhibitory control in response to food among adolescent girls. An fMRI study. NeuroImage 2010; 52: 1696–1703.

    Article  Google Scholar 

  54. Lowe MR, van Steenburgh J, Ochner C, Coletta M . Neural correlates of individual differences related to appetite. Physiol Behav 2009; 97: 561–571.

    Article  CAS  Google Scholar 

  55. Stice E, Yokum S, Burger KS, Epstein LH, Small DM . Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci 2011; 31: 4360–4366.

    Article  CAS  Google Scholar 

  56. Davids S, Lauffer H, Thoms K, Jagdhuhn M, Hirschfeld H, Domin M et al. Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. Int J Obes 2010; 34: 94–104.

    Article  CAS  Google Scholar 

  57. Stice E, Spoor S, Bohan C, Small DM . Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Sci 2008; 322: 449–452.

    Article  CAS  Google Scholar 

  58. Appelhans BM . Neurobehavioral inhibition of reward-driven feeding: implications for dieting and obesity. Obes 2009; 17: 640–647.

    Article  CAS  Google Scholar 

  59. Bouchard C . Childhood obesity: are genetic differences involved? Am J Clin Nutr 2009; 89: 1494–1501.

    Article  Google Scholar 

  60. Holsen LM, Zarcone JP, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS et al. Neural mechanisms underlying food motivation in children and adolescents. NeuroImage 2005; 27: 669–676.

    Article  Google Scholar 

  61. Killgore WD, Yurgelun-Todd DA . Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods. Dev Psychobiol 2005; 47: 377–397.

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by BOF (Organization for Scientific Research of the University Ghent).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Verbeken.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeken, S., Braet, C., Bosmans, G. et al. Comparing decision making in average and overweight children and adolescents. Int J Obes 38, 547–551 (2014). https://doi.org/10.1038/ijo.2013.235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.235

Keywords

This article is cited by

Search

Quick links