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Birth weight and growth from infancy to late adolescence in
relation to fat and lean mass in early old age: findings from the
MRC National Survey of Health and Development
D Bann1, AWills2, R Cooper1, R Hardy1, A Aihie Sayer3, J Adams4 and D Kuh1 on behalf of the NSHD Scientific and Data Collection Team

OBJECTIVE: High birth weight and greater weight gain in infancy have been associated with increased risk of obesity as assessed
using body mass index, but few studies have examined associations with direct measures of fat and lean mass. This study examined
associations of birth weight and weight and height gain in infancy, childhood and adolescence with fat and lean mass in early old
age.
SUBJECTS: A total of 746 men and 812 women in England, Scotland and Wales from the MRC National Survey of Health and
Development whose heights and weights had been prospectively ascertained across childhood and adolescence and who had dual
energy X-ray absorptiometry measures at age 60–64 years.
METHODS: Associations of birth weight and standardised weight and height (0–2 (weight only), 2–4, 4–7, 7–11, 11–15, 15–20 years)
gain velocities with outcome measures were examined.
RESULTS: Higher birth weight was associated with higher lean mass and lower android/gynoid ratio at age 60–64 years. For
example, the mean difference in lean mass per 1 standard deviation increase in birth weight was 1.54 kg in males (95% confidence
interval¼ 1.04, 2.03) and 0.78 kg in females (0.41, 1.14). Greater weight gain in infancy was associated with higher lean mass,
whereas greater gains in weight in later childhood and adolescence were associated with higher fat and lean mass, and fat/lean
and android/gynoid ratios. Across growth intervals greater height gain was associated with higher lean but not fat mass, and with
lower fat/lean and android/gynoid ratios.
CONCLUSION: Findings suggest that growth in early life may have lasting effects on fat and lean mass. Greater weight gain before
birth and in infancy may be beneficial by leading to higher lean mass, whereas greater weight gain in later childhood and
adolescence may be detrimental by leading to higher fat/lean and android/gynoid ratios.
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INTRODUCTION
Fat and lean mass influence health and physical functioning. High
fat mass is associated with a range of adverse health outcomes,
including type 2 diabetes, hypertension, stroke, impaired physical
functioning and higher rates of mortality.1 Low lean mass, an
indicator of low skeletal muscle mass, is associated with lower
physical performance levels,2,3 adverse glucose metabolism4 and
low bone mineral content.5 Low muscle mass is also an essential
component of the most widely used definitions of sarcopenia,6,7

a condition of increasing public health concern.6

In addition to evidence that contemporaneous factors such as
physical activity and diet influence adult fat and lean mass,8,9

there is growing evidence that factors such as growth during
gestation, infancy, childhood and adolescence may also have a
role. High birth weight10 and rapid weight gain in infancy11,12

have been consistently shown to be associated with increased risk
of obesity in adulthood, measured by body mass index (BMI).
However, studies using BMI are unable to elucidate whether
associations reflect influences of growth on fat mass, lean mass or

both. For example, although an association between high birth
weight and high BMI suggests an association with fat mass, some
studies have found that birth weight is positively associated
with lean mass, with either weak or no association found between
birth weight and fat mass.13–15 Relatively few studies have
examined associations between early growth and direct
measures of fat and lean mass and most have been conducted
in adolescents or young adults.14–23 This is despite the need to
understand the factors that lead to reduced muscle mass and high
fat mass in later adulthood when their health implications become
clinically manifest. Previous studies have used limited measures of
growth (typically spanning only infancy and childhood) and
have focused exclusively on weight or BMI gain. Height gain may
be also important for body composition, with recent findings
in adolescents suggesting that weight and height gain may be
independently associated with outcomes—greater weight gain in
infancy was associated with higher fat mass in adolescence,
whereas greater height gain in infancy was associated with lower
fat mass.21 Most previous studies have also used relatively
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imprecise and inaccurate measures of body composition obtained
by bioelectrical impedance or skin fold thickness24–26 and have
only examined whole-body measures. Appendicular lean mass,
which excludes bone and organ mass, is a more accurate indicator
of skeletal muscle mass,6,27 and measures of abdominal
fat distribution may be more closely related to health than
whole-body fat mass.28

The objectives of this study were to examine associations of
birth weight, weight and height gain from infancy through to late
adolescence with body composition in early old age using data
from a large, nationally representative British birth cohort study—
the Medical Research Council National Survey of Health and
Development (NSHD). We hypothesised that birth weight would
be positively associated with lean but not fat mass in early old age,
and that weight gains in childhood and adolescence would be
positively associated with both fat and lean mass.29 As taller
individuals tend to have more fat and lean mass,30 we expected
that measures of height gain would be positively associated with
subsequent fat and lean mass due to the tracking of greater
height and body size; and that these associations would be
strongest when correlations between child and adult height were
at their highest just before puberty and in late adolescence.31

MATERIALS AND METHODS
Study sample
The NSHD is a socially stratified sample of 5362 singleton births that took
place in 1 week of March 1946 in mainland Britain,32 with regular follow-up
across life. Between 2006 and 2010 (at 60–64 years), 2856 eligible study
members (those known to be alive and with a known address in England,
Scotland or Wales) were invited for an assessment at one of six clinical
research facilities or to be visited by a research nurse at home.33 Seven
hundred seventy-eight individuals had died and invitations were not sent
to those who were living abroad (n¼ 570), had previously withdrawn from
the study (n¼ 594) or who had been lost to follow-up (n¼ 564). Of the
2856 invited, 2229 were assessed: 1690 attended a clinical research facility
and the remaining 539 were seen at home.34

Body composition measurement
During the visits to the clinical research facility, measures of body
composition were obtained in the supine position using a QDR 4500
Discovery DXA scanner (Hologic Inc, Bedford, MA, USA); to optimise precision,
scans were reviewed and centrally analysed (in Manchester) by a single
operator (JA) using APEX 3.1 software (Hologic Inc., Bedford, MA, USA). Local
quality assurance procedures were monitored centrally and cross-calibration
between scanners was performed by scanning the European Spine
Phantom at the start and end of the study.35,36 From these scans,
measures of fat (whole body, android and gynoid) and lean mass (whole
body and appendicular) were obtained and converted into kilograms. Two
ratios were derived: android/gynoid fat mass (higher values indicating
greater fat distribution in the abdomen than hips) and whole body fat/lean
mass; both of which were multiplied by 100. Lean mass was defined as
mass excluding fat and bone mass, and in all measures data from the head
were excluded due to the high proportion of bone mass known to affect
the accuracy of soft-tissue measures.37 Routine anthropometric measures
were taken during the clinic visit using standardised protocols by trained
nurses.33 In total, 1558 of the 1690 eligible participants had data available
for height, weight and body composition, with missing data largely due
the presence of high-density artefacts in scans (N¼ 74), technical or
logistical problems (n¼ 37), or participants laying outside the scan field
(n¼ 8).

Measurement of weight and height
Birth weight, recorded to the nearest quarter of a pound, was extracted
from birth records a few days after birth and converted into kilograms.
Weight (kg) and height (cm) at 2, 4, 7, 11 and 15 years were measured by
trained professionals using standardised protocols and self-reported at
20 years. Weight and height at each age were converted to sex-specific
z-scores using the mean and standard deviation to aid comparisons of
effect sizes at different ages.

Analytical strategy
Linear regression models were used to examine associations of birth
weight and weight and height from 2 to 20 years with each body
composition outcome. The birth weight models were additionally adjusted
for adult height at 60–64 years, considered a potential mediator. Weight
and height at each age were mutually adjusted in order to estimate their
independent associations.
To examine associations with periods of weight and height gain after

birth, conditional growth models were constructed. Weight and height
velocities (kg or cmyear� 1) were created using the exact age of
measurement and converted into sex-specific z-scores. Separate models
for each period (2–4, 4–7, 7–11, 11–15, 15–20 years) were constructed with
weight and height velocity entered in the same model alongside weight
and height z-score at the beginning of each period, using the maximum
available sample in each period. Using weight as an example to highlight
the interpretation of these models, the exposure is a standardised measure
of weight change in a given interval on a theoretical distribution, which
compares each individual against other cohort members with the same
starting height and weight and the same height growth. As birth length
was not measured, models examining weight gain from 0 to 2 years were
adjusted for height at 2 years only. These conditional models were then
further adjusted for adult height, a potential mediator. Analyses were
conducted separately in males and females as sex differences in growth
may underlie sexual dimorphism of adult body composition,38 with tests of
sex interaction conducted to formally test these differences. Non-linearity
was assessed in conditional models by the inclusion of a quadratic term
(for weight or height velocity).

Additional and sensitivity analyses
Additional analyses were conducted to examine whether associations were
explained by socioeconomic position in childhood (paternal occupational
class at 4 years), considered a potential confounder, and pubertal timing, a
potential mediator (using prospectively ascertained examination of
genitalia development and voice breaking status at 14 years (males) or
age at menarche (females) as previously described).39 These models were
also restricted to those with valid data in all periods to examine the
potential influence of missing data on our findings. Last, to examine
whether the mutual adjustment of weight and height impacted on
findings, analyses were conducted in which weight gain was not
adjusted for height at the beginning of the period or height gain
velocity (and vice-versa).

RESULTS
Sample description
The characteristics of the study sample at 60–64 years are
shown in Table 1; the mean weights and heights at earlier ages
are provided in Supplementary Table 1. As expected, sexual
dimorphism of body composition was found. Despite both sexes
having a similar mean BMI at 60–64 years, females had more fat
and less lean mass (of the whole body and the limbs) than males,

Table 1. Characteristics of the study sample at age 60–64 years
stratified by sex

Mean (s.d.)

Males
(n¼ 746)

Females
(n¼ 812)

P-valuea

Weight (kg) 85.27 (13.05) 72.34 (13.63) o0.001
Height (cm) 175.29 (6.45) 162.17 (5.76) o0.001
Body mass index (kgm� 2) 27.74 (3.94) 27.51 (5.02) 0.31
Whole-body fat mass (kg) 23.79 (7.19) 29.00 (9.22) o0.001
Android fat mass (kg) 2.51 (0.96) 2.33 (1.01) o0.001
Gynoid fat mass (kg) 3.76 (1.01) 5.11 (1.46) o0.001
Android/gynoid ratio 65.69 (15.35) 44.74 (12.36) o0.001
Whole-body lean mass (kg) 53.69 (7.06) 37.26 (5.35) o0.001
Appendicular lean mass (kg) 24.62 (3.40) 16.21 (2.54) o0.001
Fat/lean ratio 44.09 (10.99) 77.21 (18.91) o0.001

aComparison of sexes using t-tests. Sample restricted to those with
complete data on all body composition measures at age 60–64 years.
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and males were on average heavier and taller, and had a higher
android/gynoid ratio.

Birth weight and body composition at 60–64 years
Higher birth weight was associated with higher whole body and
appendicular lean mass and a lower android/gynoid ratio but was
not associated with fat mass (Table 2). These associations with
birth weight remained after adjustment for adult height except
for the android/gynoid ratio in females. The associations of
birth weight with whole body and appendicular lean mass were
stronger in males than females (P-value for sex interaction
term¼ 0.01 in both cases).

Weight and height from 2 to 20 years and body composition
at 60–64 years
Associations between height-adjusted weight and weight-
adjusted height at each age from 2 to 20 years and each outcome
are shown in Table 3. Higher weight from 2 to 20 years was
associated with higher fat mass and whole body and appendicular
lean mass, whereas higher weight from 11 to 20 years was
associated with higher fat/lean and android/gynoid ratios. Height
was generally not associated with fat mass, except for inverse
associations at 15 years in males. Taller height at each age was
associated with higher whole body and appendicular lean mass,
and was associated with lower fat/lean and android/gynoid ratios
at most ages in men and from 11 years onwards in women.

Conditional weight and height growth and body composition
at 60–64 years
Figure 1 shows the associations between weight gain (adjusted
for height gain in each respective interval and height and weight
at the beginning of that interval) and each outcome (tabulated in
Supplementary Table 2 model a). Greater weight gains across
growth intervals from 4 to 20 years in males and from 2 to 20
years in females were associated with higher fat mass at age
60–64 years. Greater weight gains across growth intervals from
0 to 20 years were associated with higher whole body and
appendicular lean mass. In both sexes, associations were weaker
between 7 and 15 years than in other periods, whereas
associations were stronger in males than in females from 0 to 2,
4 to 7 and 15 to 20 years. Greater weight gain in later childhood
and adolescence (7–20 years) was associated with higher fat/lean
mass and android/gynoid ratios. Similar overall patterns of
association were found after adjustment for adult height
(Supplementary Table 2 model b); for a given adult height,
positive associations of early weight gain (0–4 years) with lean
mass were partly attenuated, whereas positive associations with
weight gain between 7 and 15 years in men and 7–11 years in
women were strengthened.
Figure 2 shows the associations between height gain (adjusted

for weight gain in each respective interval and height and weight

at the beginning of that interval) and each outcome (tabulated in
Supplementary Table 3 model a). Across growth intervals,
height gain was generally not associated with fat mass. Height
gain across growth intervals was more consistently positively
associated with lean mass, except at 11–15 years in males; the
positive associations were strongest in males at 15–20 years and
strongest in females at 11–15 years. There was a weak negative
association in males from 11 to 15 years. Early height gain (up to
age 4 years) and height gain from 15 to 20 years (in males) was
associated with a lower android/gynoid ratio and height gain
from 2 to 4 and 15 to 20 years was weakly associated with a
lower fat/lean mass ratio; otherwise greater height gain was not
associated with these ratios. The associations between height
gain and all these outcomes were generally not maintained after
adjustment for adult height (Supplementary Table 3 model b).
There was little evidence for departure from linearity in any of

the models.

Additional and sensitivity analyses
Patterns of associations between conditional weight and height
gain with each outcome were similar when additional adjustments
were made for paternal occupational class and pubertal
timing, and when restricted to a sample with valid growth data
in all periods (Supplementary Tables 4 and 5 model a). Patterns of
associations between conditional weight gain and outcomes
were similar when no adjustment was made for baseline height
and concurrent height gain (Supplementary Table 4 model b).
However, associations between conditional height gain and
outcomes differed where no adjustment was made for baseline
weight and concurrent weight gain: in most periods, greater
height gain was associated with higher fat and lean mass
(Supplementary Table 5 model b).

DISCUSSION
Main findings
This study found that higher birth weight was associated with
higher lean mass (more strongly in males than in females) and
lower android/gynoid ratio at age 60–64 years. Greater weight
gains in infancy and early childhood and in late adolescence were
associated with higher lean mass, whereas greater gains in later
childhood and adolescence were associated with higher fat mass,
and higher fat/lean mass and android/gynoid ratios. These
patterns remained after adjustment for adult height. Across most
growth intervals, greater height gain was associated with higher
lean mass and lower fat/lean and android/gynoid ratios; these
associations were mainly working through final adult height.

Comparison with previous studies
This study extends previous studies that have generally been in
younger cohorts, by examining the whole growth trajectory

Table 2. Mean differences in body composition outcomes per standard deviation increase in birth weight

Outcome Males (n¼ 745) Females (n¼ 808) P#

Unadjusted Adjusted for adult height Unadjusted Adjusted for adult height

Fat mass (kg) 0.29(� 0.22, 0.81), 0.26 � 0.01(� 0.54, 0.52), 0.97 0.33(� 0.31, 0.97), 0.31 0.09(� 0.56, 0.74), 0.79 0.93
Lean mass (kg) 1.54(1.04, 2.03), o0.01 0.62(0.17, 1.07), 0.01 0.78(0.41, 1.14), o0.01 0.29(� 0.05, 0.63), 0.09 0.01
Appendicular
lean mass (kg)

0.78(0.54, 1.02), o0.01 0.33(0.11, 0.54), o0.01 0.38(0.21, 0.55), o0.01 0.15(� 0.01, 0.31), 0.07 0.01

Fat/lean ratio � 0.73(� 1.52, 0.06), 0.07 � 0.53(� 1.35, 0.29), 0.21 � 0.92(� 2.23, 0.38), 0.17 � 0.58(� 1.92, 0.75), 0.39 0.81
Android/
gynoid ratio

� 1.62(� 2.72, � 0.52), o0.01 � 1.22(� 2.36, � 0.09), 0.04 � 0.87(� 1.72, � 0.02), 0.05 � 0.68(� 1.55, 0.19), 0.13 0.29

Notes: cells show b (95% confidence intervals), and P-values; P#, P-value for sex interaction term (tested in unadjusted model).
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(including late adolescence) and including appendicular lean mass
and fat/lean and android/gynoid ratios as additional outcomes.
Our finding of an association between higher birth weight and
higher lean mass is consistent with reports from younger cohort
studies.14,40 Our study shows that these associations persist into
early old age and are also seen for appendicular lean mass and
lower android/gynoid ratios.
In contrast with this study, previous studies in younger cohorts

have reported positive associations between weight or BMI gain
in infancy with fat mass.16,21,22 Our finding that weight gain in
infancy and early childhood was more strongly associated with
lean than fat mass is consistent with the only other study in early
old age (56–70 years), which found that infant BMI gain was
associated with adult lean mass, whereas BMI gain in childhood
was associated with adult fat and lean mass.29

Findings from this study are consistent with previous findings
from the NSHD at earlier ages using related measures of adiposity.
For example, birth weight was positively associated with BMI and
inversely associated with waist/hip ratio (females only) at 43 years
(after adjustment for contemporaneous BMI),41 and greater weight
gain in infancy was associated with higher BMI at 43 years.12

Findings from the present study suggest that these associations with
obesity may primarily reflect an influence of weight gain on lean and
not fat mass. Our findings are also consistent with our previous
findings showing benefits of prenatal and prepubertal growth on
muscle strength and physical performance at 53 years.42–44

Explanation of findings
As the number of muscle fibres in adulthood is thought to be
largely determined by birth,45–47 positive associations between
birth weight and lean mass may reflect the acquisition of greater
numbers of muscle fibres in utero (hyperplasia), which then track
into adulthood. Alternatively, those of higher birth weight
may have gone on to acquire more lean mass after birth
(via hypertrophy). Positive associations of birth weight and early
weight gain (0–4 years) with lean mass were partly explained by
adult height—such that those who gained more weight went on
to become taller adults with longer bones and longer muscles of
greater mass. The persistence of positive associations after
adjustment suggests that greater birth weight and weight gain
also led to higher lean mass through other mechanisms such as
the development of greater muscle width (the number of adjacent
muscle fibres and/or their thickness), and/or the number
of muscle fibres per unit area of muscle.45

Weight gains in later childhood and adolescence were more
strongly associated than weight gain in infancy with fat mass in
early old age. Later childhood and adolescence may be periods in
which fat mass accrual is greater than in infancy38,48,49 and/or
where changes in weight are related to formation of physical
activity and diet patterns, which track into adulthood50,51 leading
to subsequent gains in fat mass.
Higher birth weight was associated with lower android/

gynoid ratios, whereas greater gains in weight in later childhood

Table 3. Mean differences in body composition outcomes at age 60–64 years per standard deviation increase in weight and height from 2 to 20
years. Height and weight at each age are mutually adjusted

Outcome and age (year)
of weight and height

Weight Height

Males Females Males Females

Fat mass (kg)
2 0.61 (� 0.01, 1.22), 0.05 0.31 (� 0.46, 1.08), 0.44 0.35 (� � 0.26, 0.97), 0.26 0.56 (� 0.21, 1.33), 0.15
4 0.63 (� 0.04, 1.30), 0.06 1.29 (0.41, 2.17), o0.01 � 0.19 (� 0.86, 0.48), 0.57 0.09 (� 0.77, 0.95), 0.83
7 1.76 (0.93, 2.58), o0.01 1.19 (0.25, 2.13), 0.01 � 0.60 (� 1.42, 0.22), 0.15 0.85 (� 0.10, 1.80), 0.08
11 2.44 (1.71, 3.17), o0.01 2.56 (1.64, 3.48), o0.01 � 0.62 (� 1.35, 0.12), 0.10 0.04 (� 0.88, 0.95), 0.94
15 3.03 (2.18, 3.88), o0.01 2.88 (2.11, 3.65), o0.01 � 1.29 (� 2.14, � 0.44), o0.01 0.58 (� 0.19, 1.35), 0.14
20 3.12 (2.49, 3.75), o0.01 3.63 (2.91, 4.34), o0.01 � 0.46 (� 1.09, 0.18), 0.16 � 0.34 (� 1.05, 0.38), 0.35

Lean mass (kg)
2 2.03 (1.46, 2.59), o0.01 0.91 (0.48, 1.34), o0.01 0.99 (0.42, 1.55), o0.01 0.94 (0.51, 1.37), o0.01
4 2.06 (1.45, 2.66), o0.01 1.53 (1.05, 2.01), o0.01 0.87 (0.26, 1.48), 0.01 0.72 (0.24, 1.19), o0.01
7 2.98 (2.28, 3.68), o0.01 1.50 (1.00, 2.01), o0.01 0.72 (0.03, 1.42), 0.04 1.23 (0.72, 1.74), o0.01
11 2.29 (1.64, 2.94), o0.01 1.42 (0.92, 1.93), o0.01 1.43 (0.78, 2.07), o0.01 1.20 (0.70, 1.70), o0.01
15 2.82 (2.06, 3.59), o0.01 1.86 (1.45, 2.27), o0.01 0.56 (� 0.20, 1.33), 0.15 1.57 (1.16, 1.98), o0.01
20 3.78 (3.29, 4.28), o0.01 2.51 (2.14, 2.88), o0.01 1.50 (1.00, 2.00), o0.01 1.15 (0.79, 1.52), o0.01

Appendicular lean mass (kg)
2 0.96 (0.69, 1.24), o0.01 0.46 (0.26, 0.66), o0.01 0.57 (0.30, 0.85), o0.01 0.44 (0.23, 0.64), o0.01
4 1.05 (0.76, 1.34), o0.01 0.72 (0.50, 0.95), o0.01 0.47 (0.18, 0.77), o0.01 0.40 (0.18, 0.62), o0.01
7 1.43 (1.09, 1.76), o0.01 0.72 (0.48, 0.95), o0.01 0.42 (0.09, 0.76), 0.01 0.61 (0.37, 0.85), o0.01
11 1.05 (0.75, 1.36), o0.01 0.68 (0.45, 0.92), o0.01 0.77 (0.46, 1.08), o0.01 0.58 (0.34, 0.82), o0.01
15 1.25 (0.87, 1.62), o0.01 0.88 (0.69, 1.07), o0.01 0.34 (� 0.04, 0.71), 0.08 0.77 (0.58, 0.96), o0.01
20 1.68 (1.44, 1.93), o0.01 1.16 (0.99, 1.33), o0.01 0.86 (0.61, 1.10), o0.01 0.59 (0.42, 0.77), o0.01

Fat/lean ratio
2 � 0.52 (� 1.48, 0.44), 0.29 � 1.14 (� 2.74, 0.45), 0.16 � 0.09 (� 1.04, 0.87), 0.86 � 0.64 (� 2.22, 0.95), 0.43
4 � 0.46 (� 1.48, 0.56), 0.37 � 0.24 (� 2.03, 1.56), 0.80 � 1.11 (� 2.13, � 0.10), 0.03 � 0.90 (� 2.66, 0.87), 0.32
7 0.67 (� 0.62, 1.95), 0.31 � 0.40 (� 2.38, 1.58), 0.69 � 1.61 (� 2.89, � 0.33), 0.01 � 0.09 (� 2.09, 1.91), 0.93
11 2.38 (1.22, 3.53), o0.01 3.41 (1.48, 5.34), o0.01 � 2.16 (� 3.32, � 1.01), o0.01 � 2.27 (� 4.19, � 0.35), 0.02
15 3.07 (1.71, 4.43), o0.01 3.38 (1.72, 5.03), o0.01 � 2.71 (� 4.06, � 1.35), o0.01 � 1.71 (� 3.37, � 0.05), 0.04
20 2.50 (1.47, 3.52), o0.01 3.92 (2.38, 5.46), o0.01 � 2.03 (� 3.07, � 0.99), o0.01 � 3.12 (� 4.66, � 1.58), o0.01

Android/gynoid ratio
2 � 0.55 (� 1.86, 0.76), 0.41 � 0.74 (� 1.80, 0.32), 0.17 � 1.77 (� 3.08, � 0.46), 0.01 0.42 (� 0.63, 1.48), 0.43
4 � 0.33 (� 1.75, 1.09), 0.65 � 0.10 (� 1.27, 1.06), 0.86 � 1.96 (� 3.37, � 0.54), 0.01 � 0.96 (� 2.11, 0.19), 0.10
7 0.62 (� 1.15, 2.40), 0.49 0.45 (� 0.83, 1.73), 0.49 � 1.58 (� 3.34, 0.18), 0.08 � 1.19 (� 2.48, 0.10), 0.07
11 2.16 (0.58, 3.75), 0.01 2.35 (1.11, 3.59), o0.01 � 2.64 (� 4.23, � 1.05), o0.01 � 1.88 (� 3.12, � 0.65), o0.01
15 3.16 (1.29, 5.04), o0.01 1.81 (0.76, 2.87), o0.01 � 2.58 (� 4.46, � 0.71), 0.01 � 1.37 (� 2.43, � 0.31), 0.01
20 2.28 (0.84, 3.73), o0.01 2.33 (1.30, 3.36), o0.01 � 2.81 (� 4.27, � 1.35), o0.01 � 2.05 (� 3.08, � 1.02), o0.01

Notes: cells show b (95% confidence intervals), and P-values; sample sizes in the different periods were (male/female): 2 (593/627), 4 (653/700), 7 (624/679),
11 (628/679), 15 (582/623), 20 (601/682).
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Figure 1. Mean differences in body composition outcomes at age 60–64 years (with 95% confidence intervals) per standard deviation increase
in birth weight and weight gain velocity (adjusted for weight and height at the beginning of each period and concurrent height gain velocity).
Notes: males¼black diamonds; females¼gray/red circles; sample sizes in the different periods were (male/female): birth weight (745/808); 0–2
(592/625); 2–4 (561/580); 4–7 (574/615); 7–11 (573/622); 11–15 (543/588); 15–20 (500/555); associations with weight gain from 0 to 2 years were
adjusted for height at 2 years only. The full colour version of this figure is available at International Journal of Obesity online.

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

F
at

 m
as

s 
(k

g)

2 2-4 4-7 7-11 11-15 15-20

Period of height gain (years)

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Le
an

 m
as

s 
(k

g)

2 2-4 4-7 7-11 11-15 15-20

Period of height gain (years)

-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

F
at

: l
ea

n 
m

as
s 

ra
tio

2 2-4 4-7 7-11 11-15 15-20

Period of height gain (years)

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
pp

en
di

cu
la

r 
le

an
 m

as
s 

(k
g)

2 2-4 4-7 7-11 11-15 15-20
Period of height gain (years)

-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

A
nd

ro
id

: g
yn

oi
d 

fa
t m

as
s 

ra
tio

2 2-4 4-7 7-11 11-15 15-20
Period of height gain (years)

Fat mass (kg) Lean mass (kg) Fat: lean mass ratio

Appendicular lean mass (kg) Android: gynoid fat mass ratio  

Figure 2. Mean differences in body composition outcomes at age 60–64 years (with 95% confidence intervals) per standard deviation increase in
height at age 2 and height gain velocity (adjusted for height and weight at the beginning of each period and concurrent weight gain velocity).
Notes: males¼black diamonds; females¼gray/red circles; sample sizes in the different periods were (male/female): 2 (593/627); 2–4 (561/580); 4–7
(574/615); 7–11 (573/622); 11–15 (543/588); 15–20 (500/555); associations with height at 2 years were adjusted for weight at 2 years only. The full
colour version of this figure is available at International Journal of Obesity online.
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and adolescence were associated with higher android/gynoid and
fat/lean ratios. These associations were driven by the differing
strengths of associations with fat and lean mass, and with android
and gynoid fat mass (shown in Supplementary Table 6).
Height gain was generally not associated with fat mass

and more consistently positively associated with lean mass. This
probably reflects the stronger correlation between adult height
and lean mass as associations between height gain and all
outcomes generally operated through adult height.
It is important to note that associations between growth and

body composition in adulthood may differ in younger cohorts that
have experienced higher rates of childhood obesity—in these
cohorts weight gain in infancy may predominantly reflect gains in
fat mass. In older cohorts, as shown in this study, associations
between infant weight gain and fat mass are likely to be weaker
because weight gain in infancy may predominantly reflect gains in
lean mass. Older cohorts are, however, important resources for
examining the influence of growth on health-related outcomes in
adulthood; findings from this study can be used to help interpret
findings from other existing adult cohort studies, most of which
have examined associations with BMI and not direct measures of
body composition.
Differences in pubertal maturation could feasibly explain many

of the observed associations, as greater weight gain in infancy and
early childhood has been associated with earlier pubertal
maturation, which in turn has been associated with greater fat
mass in females52 and greater lean mass in males.53 However, the
associations between weight gain and body composition
outcomes found in this study were not explained by pubertal
timing, potentially suggesting that there may be direct effects of
weight gain on subsequent fat and lean mass. The associations
were also not explained by childhood socioeconomic position, a
potential confounder.

Strengths and limitations
A major strength of this study is the use of detailed measures of
whole body and regional body fat and lean mass obtained using
DXA. Prospectively ascertained measures of weight and height
gain spanning infancy, childhood and adolescence were used, and
analyses conducted enabled associations with different periods of
growth to be compared, and the separate associations of weight
and height gain to be examined. Prospective measures of
potential confounders and mediators were available in this study.
Although the measures of growth used in this study were

extensive, other measures may be more closely related to body
composition outcomes. For example, birth weight is only a crude
indicator of prenatal growth that may predominantly reflect growth
in the third trimester of pregnancy,54 and evidence from the Dutch
‘hunger winter’ study of 1944–1945 suggests that impaired growth in
the first two trimesters of pregnancy, but not the third, is associated
with high subsequent fat mass.55,56 Weight gain in the first weeks or
months of infancy has also been found to be particularly important
for subsequent fat mass,16,57 but only weight gain between 0 and
2 years was available for investigation in this study.
Although missing data may have introduced bias, similar

patterns of associations were found when comparing analyses
run on maximum available samples with those restricted to the
sample with valid growth data in all periods, suggesting that this
source of bias is unlikely to have a substantial impact on findings.
In addition, further analyses showed there was little difference in
weight and height across the periods used when comparing
participants with and without full body composition data (data
available on request).

Implications
Findings from this study suggest that growth in early life may
have lasting effects on fat and lean mass, and highlight the

opportunities that early-life interventions may have in preventing
high fat mass and low lean mass in early old age. Our results
suggest that greater weight gain in early life (before birth, in
infancy and early childhood) may be beneficial by leading to
higher lean mass and lower android/gynoid ratios, whereas
greater weight gain in later childhood and adolescence may
be detrimental by leading to higher fat/lean and android/
gynoid ratio. A higher fat/lean ratio has been associated with
poorer physical functioning,58 and a higher android/gynoid ratio
associated with worse glucose metabolism.59 Future studies are
needed to examine the factors that promote healthy weight gain,
which may be comprised of greater lean than fat mass acquisition.
Across growth intervals greater height gain tended to be

associated with lower fat/lean and android/gynoid ratios. These
results support the suggestion that concurrent height and weight
gain may have contrasting effects on subsequent body composi-
tion outcomes,21 although given the lack of research in this area,
our findings require replication.

CONCLUSIONS
This study found characteristics of the growth trajectory from birth
to late adolescence were associated with body composition
measures in early old age. Findings suggest that greater
early weight and height gain lead to greater lean mass, protecting
against the detrimental effects of declines in muscle mass that
occur in later life, and have additional benefits by leading to a
lower android/gynoid ratio. In contrast, greater weight gain in
later childhood and adolescence leads to higher fat/lean and
android/gynoid ratios, which could have detrimental effects on
health and physical performance in adulthood.
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