Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fetal baboon sex-specific outcomes in adipocyte differentiation at 0.9 gestation in response to moderate maternal nutrient reduction

Abstract

Objective:

To investigate in vitro adipocyte differentiation in baboon fetuses in response to reduced maternal nutrition.

Design:

Cross-sectional comparison of adipocyte differentiation in normally grown fetuses and fetuses of pregnant baboons fed 70% of the control global diet from 30 days of pregnancy to term.

Subjects:

The subjects comprised control (CTR) fetuses (five female and five male) of mothers fed ad libitum and fetuses of mothers fed 70% of the global diet consumed by CTR (maternal nutrient reduction (MNR), five female and five male fetuses). The expression of genes/proteins involved in adipogenesis (PPARĪ³, FABP4 and adiponectin) and brown adipose tissue development (UCP1, TBX15 and COXIV) were determined in in vitro-differentiated stromalā€“vascular cultures from subcutaneous abdominal, subcutaneous femoral and omental adipose tissue depots. Adipocyte number per area (mm2) was determined histologically to assist in the evaluation of adipocyte size.

Results:

Maternal suboptimal nutrition suppressed growth of male but not female fetuses and led to adipocyte hypertrophy accompanied by increased markers of white- and, particularly, brown-type adipogenesis in male but not female fetuses.

Conclusion:

Adipose tissue responses to fetal nonhuman primate undernutrition are sexually dimorphic. While female fetuses adapt adequately, the male ones enhance pathways involved in white and brown adipose tissue development but are unable to compensate for a delayed development of adipose tissue associated with intrauterine growth restriction. These differences need to be considered when assessing developmental programming of adiposity in response to suboptimal maternal nutrition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Guo Z, Hensrud DD, Johnson CM, Jensen MD . Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes 1999; 48: 1586ā€“1592.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Despres JP, Nadeau A, Tremblay A, Ferland M, Moorjani S, Lupien PJ et al. Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 1989; 38: 304ā€“309.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Canoy D, Luben R, Welch A, Bingham S, Wareham N, Day N et al. Fat distribution, body mass index and blood pressure in 22,090 men and women in the Norfolk cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk) study. J Hypertens 2004; 22: 2067ā€“2074.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Snijder MB, Dekker JM, Visser M, Yudkin JS, Stehouwer CD, Bouter LM et al. Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res 2003; 11: 104ā€“111.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Heitmann BL, Frederiksen P, Lissner L . Hip circumference and cardiovascular morbidity and mortality in men and women. Obes Res 2004; 12: 482ā€“487.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS . Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341: 938ā€“941.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Sarr O, Yang K, Regnault TR . In utero programming of later adiposity: the role of fetal growth restriction. J Pregnancy 2012; 2012: 134758.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Crandall DL, Hausman GJ, Kral JG . A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 1997; 4: 211ā€“232.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Hausman GJ, Richardson RL . Adipose tissue angiogenesis. J Anim Sci 2004; 82: 925ā€“934.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE et al. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322: 583ā€“586.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Pope M, Budge H, Symonds ME . The developmental transition of ovine adipose tissue through early life. Acta Physiol (Oxf) 2014; 210: 20ā€“30.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Li C, McDonald TJ, Wu G, Nijland MJ, Nathanielsz PW . Intrauterine growth restriction alters term fetal baboon hypothalamic appetitive peptide balance. J Endocrinol 2013; 217: 275ā€“282.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Choi J, Li C, McDonald TJ, Comuzzie A, Mattern V, Nathanielsz PW . Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient reduction. Am J Physiol Regul Integr Comp Physiol 2011; 301: R757ā€“R762.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Schlabritz-Loutsevitch NE, Howell K, Rice K, Glover EJ, Nevill CH, Jenkins SL et al. Development of a system for individual feeding of baboons maintained in an outdoor group social environment. J Med Primatol 2004; 33: 117ā€“126.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Cox LA, Nijland MJ, Gilbert JS, Schlabritz-Loutsevitch NE, Hubbard GB, McDonald TJ et al. Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression. J Physiol 2006; 572 (Pt 1): 67ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Schlabritz-Loutsevitch NE, Hubbard GB, Dammann MJ, Jenkins SL, Frost PA, McDonald TJ et al. Normal concentrations of essential and toxic elements in pregnant baboons and fetuses (Papio species). J Med Primatol 2004; 33: 152ā€“162.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Tchoukalova YD, Nathanielsz PW, Conover CA, Smith SR, Ravussin E . Regional variation in adipogenesis and IGF regulatory proteins in the fetal baboon. Biochem Biophys Res Commun 2009; 380: 679ā€“683.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Commins SP, Watson PM, Padgett MA, Dudley A, Argyropoulos G, Gettys TW . Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology 1999; 140: 292ā€“300.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Parker AJ, Davies P, Mayho AM, Newton JR . The ultrasound estimation of sex-related variations of intrauterine growth. Am J Obstet Gynecol 1984; 149: 665ā€“669.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Padoan A, Rigano S, Ferrazzi E, Beaty BL, Battaglia FC, Galan HL . Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am J Obstetr Gynecol 2004; 191: 1459ā€“1464.

    ArticleĀ  Google ScholarĀ 

  21. Larciprete G, Valensise H, Di Pierro G, Vasapollo B, Casalino B, Arduini D et al. Intrauterine growth restriction and fetal body composition. Ultrasound Obstetr Gynecol 2005; 26: 258ā€“262.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Aubert R, Suquet JP, Lemonnier D . Long-term morphological and metabolic effects of early under- and over-nutrition in mice. J Nutr 1980; 110: 649ā€“661.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Johnson PR, Stern JS, Greenwood MR, Zucker LM, Hirsch J . Effect of early nutrition on adipose cellularity and pancreatic insulin release in the Zucker rat. J Nutr 1973; 103: 738ā€“743.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Xue B, Coulter A, Rim JS, Koza RA, Kozak LP . Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Mol Cell Biol 2005; 25: 8311ā€“8322.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829ā€“839.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Nadal-Casellas A, Bauza-Thorbrugge M, Proenza AM, Gianotti M, Llado I . Sex-dependent differences in rat brown adipose tissue mitochondrial biogenesis and insulin signaling parameters in response to an obesogenic diet. Mol Cell Biochem 2013; 373: 125ā€“135.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Giordano A, Frontini A, Murano I, Tonello C, Marino MA, Carruba MO et al. Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 2005; 53: 679ā€“687.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Lafontan M, Berlan M . Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 1993; 34: 1057ā€“1091.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Kamat A, Nijland MJ, McDonald TJ, Cox LA, Nathanielsz PW, Li C . Moderate global reduction in maternal nutrition has differential stage of gestation specific effects on (beta)1- and (beta)2-adrenergic receptors in the fetal baboon liver. Reprod Sci 2011; 18: 398ā€“405.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Monjo M, Pujol E, Roca P . alpha2- to beta3-Adrenoceptor switch in 3T3-L1 preadipocytes and adipocytes: modulation by testosterone, 17beta-estradiol, and progesterone. Am J Physiol. Endocrinol Metab 2005; 289: E145ā€“E150.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Rae MT, Rhind SM, Fowler PA, Miller DW, Kyle CE, Brooks AN . Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses. Reproduction 2002; 124: 33ā€“39.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Fowden AL, Giussani DA, Forhead AJ . Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda) 2006; 21: 29ā€“37.

    CASĀ  Google ScholarĀ 

  33. Li C, Ramahi E, Nijland MJ, Choi J, Myers DA, Nathanielsz PW et al. Up-regulation of the Fetal baboon hypothalamo-pituitary-adrenal axis in intrauterine growth restriction: coincidence with hypothalamic glucocorticoid receptor insensitivity and leptin receptor down-regulation. Endocrinology 2013; 154: 2365ā€“2373.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Guo C, Li C, Myatt L, Nathanielsz PW, Sun K . Sexually dimorphic effects of maternal nutrient reduction on expression of genes regulating cortisol metabolism in fetal baboon adipose and liver tissues. Diabetes 2013; 62: 1175ā€“1185.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Yu ZK, Wright JT, Hausman GJ . Preadipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. Obes Res 1997; 5: 9ā€“15.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Tchoukalova YD, Hausman DB, Dean RG, Hausman GJ . Enhancing effect of troglitazone on porcine adipocyte differentiation in primary culture: a comparison with dexamethasone. Obes Res 2000; 8: 664ā€“672.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Cantile M, Procino A, D'Armiento M, Cindolo L, Cillo C . HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. J Cell Physiol 2003; 194: 225ā€“236.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Vohl MC, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res 2004; 12: 1217ā€“1222.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA 2006; 103: 6676ā€“6681.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Tchkonia T, Giorgadze N, Pirtskhalava T, Thomou T, DePonte M, Koo A et al. Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 2006; 55: 2571ā€“2578.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Gburcik V, Cawthorn WP, Nedergaard J, Timmons JA, Cannon B . An essential role for Tbx15 in the differentiation of brown and ā€˜briteā€™ but not white adipocytes. Am J Physiol Endocrinol Metab 2012; 303: E1053ā€“E1060.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Nookaew I, Svensson PA, Jacobson P, Jernas M, Taube M, Larsson I et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J Clin Endocrinol Metab 2013; 98: E370ā€“E378.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Karastergiou K, Fried SK, Xie H, Lee MJ, Divoux A, Rosencrantz MA et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab 2013; 98: 362ā€“371.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910ā€“2918.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. MacKellar J, Cushman SW, Periwal V . Waves of adipose tissue growth in the genetically obese Zucker fatty rat. PLoS One 2010; 5: e8197.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U . Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab 2009; 297: E999ā€“E1003.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Yanney M, Marlow N . Paediatric consequences of fetal growth restriction. Sem Fetal Neonatal Med 2004; 9: 411ā€“418.

    ArticleĀ  Google ScholarĀ 

  48. Sharkey D, Symonds ME, Budge H . Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring. Endocrinology 2009; 150: 3913ā€“3920.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010; 298: E1244ā€“E1253.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Kozak LP, Koza RA, Anunciado-Koza R . Brown fat thermogenesis and body weight regulation in mice: relevance to humans. Int J Obes (Lond) 2010; 34 (Suppl 1): S23ā€“S27.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors thank Dexter Graves for technical help. This project is funded by National Institute of Child Health and Human Development (NIH R03-HD 060158 and HD 21350). This work used Genomics and Cell Biology core facilities at the Pennington Center that are supported in part by COBRE (NIH P20-RR021945) and NORC (NIH 1P30-DK072476) center grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y D Tchoukalova.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchoukalova, Y., Krishnapuram, R., White, U. et al. Fetal baboon sex-specific outcomes in adipocyte differentiation at 0.9 gestation in response to moderate maternal nutrient reduction. Int J Obes 38, 224ā€“230 (2014). https://doi.org/10.1038/ijo.2013.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.106

Keywords

This article is cited by

Search

Quick links