Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner

Abstract

Background:

The physiological control of feeding behavior involves modulation of the intake inhibitory effects of gastrointestinal satiation signaling via endogenous hindbrain leptin receptor (LepR) and glucagon-like-peptide-1 receptor (GLP-1R) activation.

Design and Results:

Using a variety of dose-combinations of hindbrain delivered (4th intracerebroventricular; i.c.v.) leptin and the GLP-1R agonist exendin-4, experiments demonstrate that hindbrain LepR and GLP-1R signaling interact to control food intake and body weight in an additive manner. In addition, the maximum intake suppressive response that could be achieved by 4th i.c.v. leptin alone in non-obese rats (33%) was shown to be further suppressed when exendin-4 was co-administered. Importantly, it was determined that the interaction between hindbrain LepR signaling and GLP-1R signaling is relevant to endogenous food intake control, as hindbrain GLP-1R blockade by the selective antagonist exendin-(9-39) attenuated the intake inhibitory effects of hindbrain leptin delivery.

Conclusions:

Collectively, the findings reported here show that hindbrain LepR and GLP-1R activation interact in at least an additive manner to control food intake and body weight. As evidence is accumulating that combination pharmacotherapies offer greater sustained food intake and body weight suppression in obese individuals when compared with mono-drug therapies or lifestyle modifications alone, these findings highlight the need for further examination of combined central nervous system GLP-1R and LepR signaling as a potential drug target for obesity treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Overweight and Obesity: Data and Statistics. In: Center for Disease Control and Prevention 2009.

  2. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM . The epidemiology of obesity. Gastroenterology 2007; 132: 2087–2102.

    Article  Google Scholar 

  3. Vetter ML, Faulconbridge LF, Webb VL, Wadden TA . Behavioral and pharmacologic therapies for obesity. Nat Rev Endocrinol 2010; 6: 578–588.

    Article  CAS  Google Scholar 

  4. Wadden TA, Butryn ML, Wilson C . Lifestyle modification for the management of obesity. Gastroenterology 2007; 132: 2226–2238.

    Article  Google Scholar 

  5. Wadden TA, Fujioka K, Toubro S, Gantz I, Erondu NE, Chen M et al. A randomized trial of lifestyle modification and taranabant for maintaining weight loss achieved with a low-calorie diet. Obesity (Silver Spring) 2010; 18: 2301–2310.

    Article  Google Scholar 

  6. Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Phelan S, Cato RK et al. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med 2005; 353: 2111–2120.

    Article  CAS  Google Scholar 

  7. Greenway FL, Whitehouse MJ, Guttadauria M, Anderson JW, Atkinson RL, Fujioka K et al. Rational design of a combination medication for the treatment of obesity. Obesity (Silver Spring) 2009; 17: 30–39.

    Article  CAS  Google Scholar 

  8. Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 2009; 5: 749–757.

    Article  CAS  Google Scholar 

  9. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009; 32: 1224–1230.

    Article  CAS  Google Scholar 

  10. Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009; 374: 1606–1616.

    Article  CAS  Google Scholar 

  11. Blonde L, Klein EJ, Han J, Zhang B, Mac SM, Poon TH et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes Metab 2006; 8: 436–447.

    Article  CAS  Google Scholar 

  12. Hayes MR, De Jonghe BC, Kanoski SE . Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol Behav 2010; 100: 503–510.

    Article  CAS  Google Scholar 

  13. Hayes MR, Skibicka KP, Grill HJ . Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 2008; 149: 4059–4068.

    Article  CAS  Google Scholar 

  14. Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB . Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 2007; 56: 8–15.

    Article  CAS  Google Scholar 

  15. Scott KA, Moran TH . The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am J Physiol Regul Integr Comp Physiol 2007; 293: R983–R987.

    Article  CAS  Google Scholar 

  16. Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR . Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1receptor agonists, liraglutide and exendin-4. Endocrinology 2011; 152: 3103–3112.

    Article  CAS  Google Scholar 

  17. Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W . Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 2009; 150: 1174–1181.

    Article  CAS  Google Scholar 

  18. Grill HJ, Norgren R . Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 1978; 201: 267–269.

    Article  CAS  Google Scholar 

  19. Hayes MR, Leichner TM, Zhao S, Lee GS, Chowansky A, Zimmer D et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab 2011; 13: 320–330.

    Article  CAS  Google Scholar 

  20. Hayes MR, Bradley L, Grill HJ . Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 2009; 150: 2654–2659.

    Article  CAS  Google Scholar 

  21. Grill HJ, Hayes MR . The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes (Lond) 2009; 33 (Suppl 1): S11–S15.

    Article  CAS  Google Scholar 

  22. Moran TH . Gut peptide signaling in the controls of food intake. Obesity (Silver Spring) 2006; 14 (Suppl 5): 250S–253S.

    Article  CAS  Google Scholar 

  23. Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 2010; 11: 77–83.

    Article  CAS  Google Scholar 

  24. Huo L, Maeng L, Bjorbaek C, Grill HJ . Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin. Endocrinology 2007; 148: 2189–2197.

    Article  CAS  Google Scholar 

  25. Nowak A, Bojanowska E . Effects of peripheral or central GLP-1 receptor blockade on leptin-induced suppression of appetite. J Physiol Pharmacol 2008; 59: 501–510.

    CAS  PubMed  Google Scholar 

  26. Bojanowska E, Nowak A . Interactions between leptin and exendin-4, a glucagon-like peptide-1 agonist, in the regulation of food intake in the rat. J Physiol Pharmacol 2007; 58: 349–360.

    CAS  PubMed  Google Scholar 

  27. Williams DL, Baskin DG, Schwartz MW . Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes 2006; 55: 3387–3393.

    Article  CAS  Google Scholar 

  28. Slusser PG, Ritter RC . Increased feeding and hyperglycemia elicited by intracerebroventricular 5-thioglucose. Brain Res 1980; 202: 474–478.

    Article  CAS  Google Scholar 

  29. Hayes MR, Skibicka KP, Bence KK, Grill HJ . Dorsal hindbrain 5′-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology 2009; 150: 2175–2182.

    Article  CAS  Google Scholar 

  30. Skibicka KP, Grill HJ . Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology 2009; 150: 1705–1711.

    Article  CAS  Google Scholar 

  31. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG . Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 2002; 143: 239–246.

    Article  CAS  Google Scholar 

  32. Grill HJ, Carmody JS, Amanda Sadacca L, Williams DL, Kaplan JM . Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP-1-R. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1190–R1193.

    Article  CAS  Google Scholar 

  33. Hayes MR, Kanoski SE, Alhadeff AL, Grill HJ . Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats. Obesity (Silver Spring) 2011; 19: 1342–1349.

    Article  CAS  Google Scholar 

  34. Holst JJ . The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409–1439.

    Article  CAS  Google Scholar 

  35. Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci USA 2008; 105: 7257–7262.

    Article  CAS  Google Scholar 

  36. Tallarida RJ, Raffa RB . Testing for synergism over a range of fixed ratio drug combinations: replacing the isobologram. Life Sci 1996; 58: PL 23–PL 8.

    CAS  Google Scholar 

  37. Roth JD, Trevaskis JL, Turek VF, Parkes DG . ‘Weighing in’ on synergy: preclinical research on neurohormonal anti-obesity combinations. Brain Res 2010; 1350: 86–94.

    Article  CAS  Google Scholar 

  38. Berenbaum MC . What is synergy? Pharmacol Rev 1989; 41: 93–141.

    CAS  PubMed  Google Scholar 

  39. Bello NT, Kemm MH, Ofeldt EM, Moran TH . Dose combinations of exendin-4 and salmon calcitonin produce additive and synergistic reductions in food intake in nonhuman primates. Am J Physiol Regul Integr Comp Physiol 2010; 299: R945–R952.

    Article  CAS  Google Scholar 

  40. Goldstone AP, Mercer JG, Gunn I, Moar KM, Edwards CM, Rossi M et al. Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Lett 1997; 415: 134–138.

    Article  CAS  Google Scholar 

  41. Trevaskis JL, Coffey T, Cole R, Lei C, Wittmer C, Walsh B et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 2008; 149: 5679–5687.

    Article  CAS  Google Scholar 

  42. Emond M, Schwartz GJ, Ladenheim EE, Moran TH . Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 1999; 276 (5 Part 2): R1545–R1549.

    CAS  PubMed  Google Scholar 

  43. Matson CA, Reid DF, Cannon TA, Ritter RC . Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 2000; 278: R882–R890.

    Article  CAS  Google Scholar 

  44. Emond M, Ladenheim EE, Schwartz GJ, Moran TH . Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 2001; 72: 123–128.

    Article  CAS  Google Scholar 

  45. Bjorbaek C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H et al. Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem 2001; 276: 4747–4755.

    Article  CAS  Google Scholar 

  46. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    Article  CAS  Google Scholar 

  47. Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci USA 2007; 104: 17358–17363.

    Article  CAS  Google Scholar 

  48. Grill HJ . Leptin and the systems neuroscience of meal size control. Front Neuroendocrinol 2010; 31: 61–78.

    Article  CAS  Google Scholar 

  49. Berthoud HR, Sutton GM, Townsend RL, Patterson LM, Zheng H . Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol Behav 2006; 89: 517–524.

    Article  CAS  Google Scholar 

  50. Potes CS, Lutz TA . Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 2010; 100: 511–518.

    Article  CAS  Google Scholar 

  51. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP . Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 1995; 7: 2294–2300.

    Article  CAS  Google Scholar 

  52. Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR . Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 2011; 152: 3103–3112.

    Article  CAS  Google Scholar 

  53. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 2001; 108: 1113–1121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andrea Spaeth, Amber Alhadeff, Theresa Leichner and Samantha Fortin for their technical assistance, and Dr Lori Flanagan-Cato for her valuable scientific discussion. This work was supported by the China Scholarship Council (SZ) and NIH grants: DK021397 (HJG), DK089752 (SEK), DK085435 (MRH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Yan or M R Hayes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Kanoski, S., Yan, J. et al. Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner. Int J Obes 36, 1522–1528 (2012). https://doi.org/10.1038/ijo.2011.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.265

Keywords

This article is cited by

Search

Quick links