Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4

Abstract

Objective:

Abundant evidence has demonstrated that long-term cytokine-mediated inflammation is a risk factor for obesity and type 2 diabetes mellitus (T2DM). Our previous study reveals a significant association between promoter polymorphisms of Th2-derived cytokine interleukin-4 (IL-4) and T2DM, which suggests possible roles of IL-4 in metabolism. In this study, we focused on examining the putative regulation of glucose and lipid metabolism by IL-4.

Methods:

C57BL/6 mice were intraperitoneally injected with either adenovirus containing full-length IL-4 encoding gene (AdIL-4) or recombinant IL-4 for mimicking the status of transient and long-term IL-4 overexpression, respectively, and the effects of the overexpressed IL-4 to glucose/lipid metabolism and insulin sensitivity were subsequently investigated.

Results:

Our results reveal that IL-4 improves insulin sensitivity and glucose tolerance through upregulating Akt phosphorylation while attenuating GSK-3β activities. IL-4 is also involved in lipid metabolism by inhibiting lipid accumulation in fat tissues, which lead to decreased weight gain and fat mass.

Conclusions:

Our results suggest that IL-4 regulates glucose and lipid metabolism by promoting insulin sensitivity, glucose tolerance and inhibiting lipid deposits. This study uncovers the novel roles of IL-4 in metabolism and provides new insights in the interaction between cytokines/immune responses, insulin sensitivity and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Goldstein BJ . Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol 2002; 90: 3G–10G.

    Article  CAS  Google Scholar 

  2. Sone H, Suzuki H, Takahashi A, Yamada N . Disease model: hyperinsulinemia and insulin resistance. Part A-targeted disruption of insulin signaling or glucose transport. Trends Mol Med 2001; 7: 320–322.

    Article  CAS  Google Scholar 

  3. Ginsberg HN . Insulin resistance and cardiovascular disease. J Clin Invest 2000; 106: 453–458.

    Article  CAS  Google Scholar 

  4. Pickup JC . Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27: 813–823.

    Article  Google Scholar 

  5. Crook M . Type 2 diabetes mellitus: a disease of the innate immune system? An update. Diabet Med 2004; 21: 203–207.

    Article  CAS  Google Scholar 

  6. Dandona P, Aljada A, Bandyopadhyay A . Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25: 4–7.

    Article  CAS  Google Scholar 

  7. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–198.

    Article  CAS  Google Scholar 

  8. Pickup JC, Crook MA . Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41: 1241–1248.

    Article  CAS  Google Scholar 

  9. Pickup JC, Mattock MB, Chusney GD, Burt D . NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40: 1286–1292.

    Article  CAS  Google Scholar 

  10. Wellen KE, Hotamisligil GS . Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    Article  CAS  Google Scholar 

  11. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  Google Scholar 

  12. Wei LH, Jacobs AT, Morris Jr SM, Minor KD, Mazzocco VR, Freund GG . IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 2000; 279: C248–C256.

    Article  CAS  Google Scholar 

  13. Wurster AL, Withers DJ, Uchida T, Wither DJ, Grusby MJ . Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent rescue from apoptosis. Mol Cell Biol 2002; 22: 117–126.

    Article  CAS  Google Scholar 

  14. Sun XJ, Wang LM, Zhang Y, Yenush L, Myers Jr MG, Glasheen E et al. Role of IRS-2 in insulin and cytokine signaling. Nature 1995; 377: 173–177.

    Article  CAS  Google Scholar 

  15. Hartman ME, O′Connor JC, Godbout JP, Minor KD, Mazzocco VR, Freund GG . Insulin receptor substrate-2-dependent interleukin-4 signaling in macrophages is impaired in two models of type 2 diabetes mellitus. J Biol Chem 2004; 27: 28045–28050.

    Article  Google Scholar 

  16. Ho KT, Shiau MY, Chang YH, Chen CM, Yang SC, Huang CN . Association of IL-4 promoter polymorphisms in Taiwanese patients with type 2 diabetes mellitus. Metabolism 2010; 59: 1717–1722.

    Article  CAS  Google Scholar 

  17. Luo J, Quan J, Tsai J, Hobensack CK, Sullivan C, Hector R et al. Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metabolism 1998; 47: 663–668.

    Article  CAS  Google Scholar 

  18. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett PG, Gadbois TM et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000; 49: v1390–v1394.

    Article  Google Scholar 

  19. Chen D, Wang MW . Development and application of rodent models for type 2 diabetes. Diabetes Obes Metab 2005; 7: 307–317.

    Article  Google Scholar 

  20. Nakamura T, Terajima T, Ogata T, Ueno K, Hashimoto N, Ono K et al. Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biol Pharm Bull 2006; 29: 1167–1174.

    Article  CAS  Google Scholar 

  21. Nagayama Y, Mizuguchi H, Hayakawa T, Niwa M, McLachlan SM, Rapoport B . Prevention of autoantibody-mediated Graves′-like hyperthyroidism in mice with IL-4, a Th2 cytokine. J Immunol 2003; 170: 3522–3527.

    Article  CAS  Google Scholar 

  22. Sacks D, Noben-Trauth N . The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002; 2: 845–858.

    Article  CAS  Google Scholar 

  23. Senn JJ, Klover PJ, Nowak IA, Mooney RA . Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002; 51: 3391–3399.

    Article  CAS  Google Scholar 

  24. Klover PJ, Clementi AH, Mooney RA . Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 2005; 146: 3417–3427.

    Article  CAS  Google Scholar 

  25. Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 2008; 322: 1539–1543.

    Article  CAS  Google Scholar 

  26. Lee YW, Eum SY, Chen KC, Hennig B, Toborek M . Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 2004; 10: 19–27.

    Article  CAS  Google Scholar 

  27. Bruun JM, Lihn AS, Pedersen SB, Richelsen B . Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 2005; 90: 2282–2289.

    Article  CAS  Google Scholar 

  28. Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ, Roberts MF et al. Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J Immunol 2007; 179: 4953–4957.

    Article  CAS  Google Scholar 

  29. Plas DR, Thompson CB . Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 2002; 13: 75–78.

    Article  Google Scholar 

  30. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331: 1621–1624.

    Article  CAS  Google Scholar 

  31. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB . Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 2001; 21: 5899–5912.

    Article  CAS  Google Scholar 

  32. Lee SJ, Kim JY, Nogueiras R, Linares JF, Perez-Tilve D, Jung DY et al. PKCζ-regulated inflammation in the nonhematopoietic compartment is critical for obesity-induced glucose intolerance. Cell Metab 2010; 12: 65–77.

    Article  CAS  Google Scholar 

  33. Duran A, Rodriguez A, Martin P, Serrano M, Flores JM, Leitges M et al. Crosstalk between PKCzeta and the IL4/Stat6 pathway during T-cell-mediated hepatitis. EMBO J 2004; 23: 4595–4605.

    Article  CAS  Google Scholar 

  34. Martin P, Villares R, Rodriguez-Mascarenhas S, Zaballos A, Leitges M, Kovac J et al. Control of T helper 2 cell function and allergic airway inflammation by PKCzeta. Proc Natl Acad Sci USA 2005; 102: 9866–9871.

    Article  CAS  Google Scholar 

  35. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 2008; 7: 496–507.

    Article  CAS  Google Scholar 

  36. Barnea M, Madar Z, Froy O . High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 2009; 150: 161–168.

    Article  CAS  Google Scholar 

  37. Konturek PC, Jaworek J, Maniatoglou A, Bonior J, Meixner H, Konturek SJ et al. Leptin modulates the inflammatory response in acute pancreatitis. Digestion 2002; 65: 149–160.

    Article  CAS  Google Scholar 

  38. Bełtowski J . Adiponectin and resistin--new hormones of white adipose tissue. Med Sci Monit 2003; 9: RA55–RA61.

    PubMed  Google Scholar 

  39. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  CAS  Google Scholar 

  40. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    Article  CAS  Google Scholar 

  41. Elbe-Bürger A, Egyed A, Olt S, Klubal R, Mann U, Rappersberger K et al. Overexpression of IL-4 alters the homeostasis in the skin. J Invest Dermatol 2002; 118: 767–778.

    Article  Google Scholar 

  42. Nunez NP, Oh WJ, Rozenberg J, Perella C, Anver M, Barrett JC et al. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res 2006; 66: 5469–5476.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Council, Taiwan, Republic of China (NSC97-2320-B-040-006-MY3 and NSC98-2320-B-010-034-MY3). We thank Dr Yuji Nagayama, Department of Pharmacology, Nagasaki University School of Medicine, Japan, and Dr Basil Rapoport, Autoimmune Disease Unit, Cedars-Sinai Research Institute and School of Medicine, University of California, for their gifts of adenovirus in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-Y Shiau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YH., Ho, KT., Lu, SH. et al. Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. Int J Obes 36, 993–998 (2012). https://doi.org/10.1038/ijo.2011.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.168

Keywords

This article is cited by

Search

Quick links