Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats

Abstract

Objective:

Consumption of a high-fat (HF) diet is a contributing factor for the development of obesity. HF diet per se acts as a stressor, stimulating hypothalamo–pituitary–adrenal (HPA) axis activity resulting in elevated glucocorticoid levels; however, the mechanism behind this activation is unclear. We hypothesized that consumption of an HF diet activates HPA axis by increasing norepinephrine (NE) in the paraventricular nucleus (PVN) of the hypothalamus, leading to elevation in corticotrophin-releasing hormone (CRH) concentration in the median eminence (ME) resulting in elevated serum corticosterone (CORT).

Subjects:

To test this hypothesis, diet-induced obese (DIO) and diet-resistant (DR) rats were exposed to either chow or HF diet for 6 weeks.

Measurements:

At the end of 6 weeks, NE in the PVN was measured using HPLC, CRH in the ME, and CORT and leptin levels in the serum were measured using RIA and ELISA, respectively. The gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in NE synthesis, and leptin receptor in brainstem noradrenergic nuclei were also measured.

Results:

HF diet increased PVN NE in both DIO and DR rats (P<0.05). However, this was accompanied by increases in CRH and CORT secretion only in DR animals, but not in DIO rats. Leptin receptor mRNA levels in the brainstem noradrenergic areas were not affected in both DIO and DR rats. However, HF diet increased TH mRNA levels only in DIO rats.

Conclusion:

Significant differences occur in all the arms of HPA axis function between DIO and DR rats. Further studies are needed to determine whether this could be a causative factor or a consequence to obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mueller EE, Nistico G In: Academic Press: New York, Brain Messengers and the Pituitary 1989; 462–467 pp.

  2. Tsigos C, Chrousos GP . Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53: 865–871.

    Article  Google Scholar 

  3. Dallman MF, la Fleur SE, Pecoraro NC, Gomez F, Houshyar H, Akana SF . Minireview: glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 2004; 145: 2633–2638.

    Article  CAS  Google Scholar 

  4. la Fleur SE . The effects of glucocorticoids on feeding behavior in rats. Physiol Behav 2006; 89: 110–114.

    Article  CAS  Google Scholar 

  5. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF . Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 2004; 145: 3754–3762.

    Article  CAS  Google Scholar 

  6. Makimura H, Mizuno TM, Roberts J, Silverstein J, Beasley J, Mobbs CV . Adrenalectomy reverses obese phenotype and restores hypothalamic melanocortin tone in leptin-deficient ob/ob mice. Diabetes 2000; 49: 1917–1923.

    Article  CAS  Google Scholar 

  7. Solomon J, Bradwin G, Cocchia MA, Coffey D, Condon T, Garrity W et al. Effects of adrenalectomy on body weight and hyperglycemia in five months old Ob/Ob mice. Hormone and Metabolic Research=Hormon- und Stoffwechselforschung=Hormones et Metabolisme 1977; 9: 152–156.

    Article  CAS  Google Scholar 

  8. Yilmaz A, Suleyman H, Umudum Z, Sahin YN . The effect of adrenalectomy on leptin levels and some metabolic parameters in rats with diet-induced obesity. Biol Pharm Bull 2002; 25: 580–583.

    Article  CAS  Google Scholar 

  9. Levin BE, Hogan S, Sullivan AC . Initiation and perpetuation of obesity and obesity resistance in rats. Am J Physiol 1989; 256: R766–R771.

    CAS  Google Scholar 

  10. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE . Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol 1997; 273: R725–R730.

    CAS  Google Scholar 

  11. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, Meaney MJ . High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol 1997; 273: E1168–E1177.

    Article  CAS  Google Scholar 

  12. Legendre A, Harris RB . Exaggerated response to mild stress in rats fed high-fat diet. Am J Physiol 2006; 291: R1288–R1294.

    CAS  Google Scholar 

  13. Levin BE, Richard D, Michel C, Servatius R . Differential stress responsivity in diet-induced obese and resistant rats. Am J Physiol 2000; 279: R1357–R1364.

    CAS  Google Scholar 

  14. Chrousos GP . Regulation and dysregulation of the hypothalamic-pituitary-adrenal axis. The corticotropin-releasing hormone perspective. Endocrinol Metab Clin North Am 1992; 21: 833–858.

    Article  CAS  Google Scholar 

  15. Herman JP, Prewitt CM, Cullinan WE . Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit Rev Neurobiol 1996; 10: 371–394.

    Article  CAS  Google Scholar 

  16. Herman JP, Cullinan WE . Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997; 20: 78–84.

    Article  CAS  Google Scholar 

  17. Cunningham Jr ET, Sawchenko PE . Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 1988; 274: 60–76.

    Article  Google Scholar 

  18. Chua Jr SC, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science (New York, NY) 1996; 271: 994–996.

    Article  CAS  Google Scholar 

  19. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  Google Scholar 

  20. Grill HJ, Kaplan JM . The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 2002; 23: 2–40.

    Article  CAS  Google Scholar 

  21. Hay-Schmidt A, Helboe L, Larsen PJ . Leptin receptor immunoreactivity is present in ascending serotonergic and catecholaminergic neurons of the rat. Neuroendocrinology 2001; 73: 215–226.

    Article  CAS  Google Scholar 

  22. Hosoi T, Kawagishi T, Okuma Y, Tanaka J, Nomura Y . Brain stem is a direct target for leptin's action in the central nervous system. Endocrinology 2002; 143: 3498–3504.

    Article  CAS  Google Scholar 

  23. Clark KA, Shin AC, Sirivelu MP, Mohankumar SM, Mohankumar PS . Systemic administration of leptin decreases plasma corticosterone levels: role of hypothalamic norepinephrine. Brain Res 2008; 1195: 89–95.

    Article  CAS  Google Scholar 

  24. Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS . Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 1997; 138: 3859–3863.

    Article  CAS  Google Scholar 

  25. Clark KA, MohanKumar SM, MohanKumar PS . Effects of peripheral leptin administration on norepinephrine release in the paraventricular nucleus. Program No 89214 2004 Abstract Viewer/Itinerary Planner. Society for Neuroscience: Washington, DC, 2004.

    Google Scholar 

  26. Clark KA, Mohankumar SM, Kasturi BS, Mohankumar PS . Effects of central and systemic administration of leptin on neurotransmitter concentrations in specific areas of the hypothalamus. Am J Physiol 2006; 290: R306–R312.

    CAS  Google Scholar 

  27. MohanKumar PS, MohanKumar SM, Arbogast L, Quadri SK, Voogt JL . Effects of chronic hyperprolactinemia on tuberoinfundibular dopaminergic neurons. Proc Soc Exp Biol Med 1998; 217: 461–465.

    Article  CAS  Google Scholar 

  28. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 2nd edn. Academic: San Diego, CA, 1987.

    Google Scholar 

  29. Barber M, Kasturi BS, Austin ME, Patel KP, MohanKumar SM, MohanKumar PS . Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res 2003; 964: 128–135.

    Article  CAS  Google Scholar 

  30. Kasturi BS, MohanKumar SM, Sirivelu MP, MohanKumar PS . Chronic exposure to low levels of oestradiol-17beta affects oestrous cyclicity, hypothalamic norepinephrine and serum luteinising hormone in young intact rats. J Neuroendocrinol 2009; 21: 568–577.

    Article  CAS  Google Scholar 

  31. Francis J, MohanKumar SM, MohanKumar PS . Correlations of norepinephrine release in the paraventricular nucleus with plasma corticosterone and leptin after systemic lipopolysaccharide: blockade by soluble IL-1 receptor. Brain Res 2000; 867: 180–187.

    Article  CAS  Google Scholar 

  32. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP . Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 2009; 94: 2692–2701.

    Article  CAS  Google Scholar 

  33. Cusin I, Rouru J, Rohner-Jeanrenaud F . Intracerebroventricular glucocorticoid infusion in normal rats: induction of parasympathetic-mediated obesity and insulin resistance. Obes Res 2001; 9: 401–406.

    Article  CAS  Google Scholar 

  34. Hauner H, Schmid P, Pfeiffer EF . Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 1987; 64: 832–835.

    Article  CAS  Google Scholar 

  35. Ahima RS, Prabakaran D, Flier JS . Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 1998; 101: 1020–1027.

    Article  CAS  Google Scholar 

  36. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996; 382: 250–252.

    Article  CAS  Google Scholar 

  37. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum WA . Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly. Diabetes 1997; 46: 1235–1238.

    Article  CAS  Google Scholar 

  38. Huang Q, Rivest R, Richard D . Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Endocrinology 1998; 139: 1524–1532.

    Article  CAS  Google Scholar 

  39. Nowak KW, Pierzchala-Koziec K, Tortorella C, Nussdorfer GG, Malendowicz LK . Effects of prolonged leptin infusion on rat pituitary-adrenocortical function. Int J Mol Med 2002; 9: 61–64.

    CAS  PubMed  Google Scholar 

  40. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 2004; 53: 1253–1260.

    Article  CAS  Google Scholar 

  41. Banks WA . The blood-brain barrier as a cause of obesity. Curr Pharm Des 2008; 14: 1606–1614.

    Article  CAS  Google Scholar 

  42. Widmaier EP, Rosen K, Abbott B . Free fatty acids activate the hypothalamic-pituitary-adrenocortical axis in rats. Endocrinology 1992; 131: 2313–2318.

    Article  CAS  Google Scholar 

  43. Benthem L, Keizer K, Wiegman CH, de Boer SF, Strubbe JH, Steffens AB et al. Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation. Am J Physiol Endocrinol Metab 2000; 279: E1286–E1293.

    Article  CAS  Google Scholar 

  44. Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I . Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology 1987; 121: 883–892.

    Article  CAS  Google Scholar 

  45. Morgan TE, Rozovsky I, Goldsmith SK, Stone DJ, Yoshida T, Finch CE . Increased transcription of the astrocyte gene GFAP during middle-age is attenuated by food restriction: implications for the role of oxidative stress. Free Radic Biol Med 1997; 23: 524–528.

    Article  CAS  Google Scholar 

  46. Levin BE . Reduced paraventricular nucleus norepinephrine responsiveness in obesity-prone rats. Am J Physiol 1996; 270: R456–R461.

    CAS  PubMed  Google Scholar 

  47. Markey KA, Sze PY . Influence of ACTH on tyrosine hydroxylase activity in the locus coeruleus of mouse brain. Neuroendocrinology 1984; 38: 269–275.

    Article  CAS  Google Scholar 

  48. Smith MA, Brady LS, Glowa J, Gold PW, Herkenham M . Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res 1991; 544: 26–32.

    Article  CAS  Google Scholar 

  49. Bullo M, Garcia-Lorda P, Megias I, Salas-Salvado J . Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res 2003; 11: 525–531.

    Article  CAS  Google Scholar 

  50. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  Google Scholar 

  51. Besedovsky HO, del Rey A, Klusman I, Furukawa H, Monge Arditi G, Kabiersch A . Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. J Steroid Biochem Mol Biol 1991; 40: 613–618.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH AG027697 and NSF IBN 0236385. AC Shin was supported by the MSU Biomedical Health Research Initiative. We thank Ms Katrina Linning for her technical help. We also thank Dr Soyeon Ahn, Michigan State University (currently an Assistant Professor at University of Miami) for her guidance on statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S MohanKumar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, A., MohanKumar, S., Sirivelu, M. et al. Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. Int J Obes 34, 1218–1226 (2010). https://doi.org/10.1038/ijo.2010.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.34

Keywords

This article is cited by

Search

Quick links