Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

mTORC1 signaling in energy balance and metabolic disease

Abstract

The mammalian target of rapamycin complex 1 (mTORC1) pathway regulates cellular responses to fuel availability. Recent studies have demonstrated that within the central nervous system, and in particular the hypothalamus, mTORC1 represents an essential intracellular target for the actions of hormones and nutrients on food intake and body weight regulation. By being at the crossroads of a nutrient-hormonal signaling network, mTORC1 also controls important functions in peripheral organs, such as muscle oxidative metabolism, white adipose tissue differentiation and β-cell-dependent insulin secretion. Notably, dysregulation of the mTORC1 pathway has been implicated in the development of obesity and obesity-related conditions, such as type 2 diabetes. This manuscript will therefore review recent progress made in understanding the role of the mTORC1 pathway in the regulation of energy balance and peripheral metabolism. Furthermore, we will critically discuss the potential relevance of this intracellular pathway as a therapeutic target for the treatment of metabolic disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Friedman JM . Obesity in the new millennium. Nature 2000; 404: 632–634.

    CAS  PubMed  Google Scholar 

  2. Smyth S, Heron A . Diabetes and obesity: the twin epidemics. Nat Med 2006; 12: 75–80.

    CAS  PubMed  Google Scholar 

  3. Flier JS . Obesity wars: molecular progress confronts an expanding epidemic. Cell 2004; 116: 337–350.

    CAS  PubMed  Google Scholar 

  4. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB . Annual deaths attributable to obesity in the United States. JAMA 1999; 282: 1530–1538.

    Article  CAS  PubMed  Google Scholar 

  5. Qiu C, De Ronchi D, Fratiglioni L . The epidemiology of the dementias: an update. Curr Opin Psychiatry 2007; 20: 380–385.

    PubMed  Google Scholar 

  6. An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K et al. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am J Pathol 2003; 163: 591–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    CAS  PubMed  Google Scholar 

  8. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    CAS  PubMed  Google Scholar 

  9. Seeley RJ, Woods SC . Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 2003; 4: 901–909.

    CAS  PubMed  Google Scholar 

  10. Cota D, Proulx K, Seeley RJ . The role of CNS fuel sensing in energy and glucose regulation. Gastroenterology 2007; 132: 2158–2168.

    CAS  PubMed  Google Scholar 

  11. Shin AC, Zheng H, Berthoud HR . An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 2009; 97: 572–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berthoud HR, Morrison C . The brain, appetite, and obesity. Annu Rev Psychol 2008; 59: 55–92.

    PubMed  Google Scholar 

  13. Horvath TL, Andrews ZB, Diano S . Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab 2009; 20: 78–87.

    CAS  PubMed  Google Scholar 

  14. Xue B, Kahn BB . AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 2006; 574: 73–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lam TK, Schwartz GJ, Rossetti L . Hypothalamic sensing of fatty acids. Nat Neurosci 2005; 8: 579–584.

    CAS  PubMed  Google Scholar 

  16. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312: 927–930.

    CAS  PubMed  Google Scholar 

  17. Ropelle ER, Pauli JR, Fernandes MF, Rocco SA, Marin RM, Morari J et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 2008; 57: 594–605.

    CAS  PubMed  Google Scholar 

  18. Morrison CD, Xi X, White CL, Ye J, Martin RJ . Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am J Physiol Endocrinol Metab 2007; 293: E165–E171.

    CAS  PubMed  Google Scholar 

  19. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    CAS  PubMed  Google Scholar 

  20. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . Mammalian TOR: a homeostatic ATP sensor. Science 2001; 294: 1102–1105.

    CAS  PubMed  Google Scholar 

  21. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24: 9508–9516.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    CAS  PubMed  Google Scholar 

  23. Heitman J, Movva NR, Hall MN . Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253: 905–909.

    CAS  PubMed  Google Scholar 

  24. Laplante M, Sabatini DM . mTOR signaling at a glance. J Cell Sci 2009; 122: 3589–3594.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Plum L, Belgardt BF, Bruning JC . Central insulin action in energy and glucose homeostasis. J Clin Invest 2006; 116: 1761–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 2008; 118: 1796–1805.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  28. Proud CG . Amino acids and mTOR signalling in anabolic function. Biochem Soc Trans 2007; 35: 1187–1190.

    CAS  PubMed  Google Scholar 

  29. Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F et al. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 2008; 7: 456–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Byfield MP, Murray JT, Backer JM . hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005; 280: 33076–33082.

    CAS  PubMed  Google Scholar 

  31. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 2005; 102: 14238–14243.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng T, Golub TR, Sabatini DM . The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 2002; 22: 5575–5584.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003; 421: 856–859.

    CAS  PubMed  Google Scholar 

  34. Myers MG, Cowley MA, Munzberg H . Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 2008; 70: 537–556.

    CAS  PubMed  Google Scholar 

  35. Yokogami K, Wakisaka S, Avruch J, Reeves SA . Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 2000; 10: 47–50.

    CAS  PubMed  Google Scholar 

  36. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T et al. Function of mitochondrial Stat3 in cellular respiration. Science 2009; 323: 793–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Finley LW, Haigis MC . The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev 2009; 8: 173–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P . mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450: 736–740.

    CAS  PubMed  Google Scholar 

  39. Ghosh HS, McBurney M, Robbins PD . SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010; 5: e9199.

    PubMed  PubMed Central  Google Scholar 

  40. Hardie DG . AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774–785.

    CAS  PubMed  Google Scholar 

  41. Inoki K, Zhu T, Guan KL . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    CAS  PubMed  Google Scholar 

  42. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lage R, Diéguez C, Vidal-Puig A, López M . AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 2008; 14: 539–549.

    CAS  PubMed  Google Scholar 

  44. Steinberg GR, Kemp BE . AMPK in health and disease. Physiol Rev 2009; 89: 1025–1078.

    CAS  PubMed  Google Scholar 

  45. Huang J, Manning BD . A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem SocTrans 2009; 37: 217–222.

    CAS  Google Scholar 

  46. Cone RD . Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005; 8: 571–578.

    CAS  PubMed  Google Scholar 

  47. Inhoff T, Stengel A, Peter L, Goebel M, Tache Y, Bannert N et al. Novel insight in distribution of nesfatin-1 and phospho-mTOR in the arcuate nucleus of the hypothalamus of rats. Peptides 2010; 31: 257–262.

    CAS  PubMed  Google Scholar 

  48. Villanueva EC, Munzberg H, Cota D, Leshan RL, Kopp K, Ishida-Takahashi R et al. Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology 2009; 150: 4541–4551.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cota D, Matter EK, Woods SC, Seeley RJ . The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 2008; 28: 7202–7208.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Blouet C, Ono H, Schwartz GJ . Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 2008; 8: 459–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM et al. Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest 2008; 118: 2959–2968.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Reed AS, Unger EK, Olofsson LE, Piper ML, Myers Jr MG, Xu AW . Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes 59: 894–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA 2001; 98: 4652–4657.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Blouet C, Jo YH, Li X, Schwartz GJ . Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 2009; 29: 8302–8311.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    CAS  PubMed  Google Scholar 

  56. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004; 279: 12005–12008.

    CAS  PubMed  Google Scholar 

  57. Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 2005; 280: 25196–25201.

    CAS  PubMed  Google Scholar 

  58. Lane MD, Wolfgang M, Cha SH, Dai Y . Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond) 2008; 32 (Suppl 4): S49–S54.

    CAS  Google Scholar 

  59. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000; 288: 2379–2381.

    CAS  PubMed  Google Scholar 

  60. López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 2008; 7: 389–399.

    PubMed  Google Scholar 

  61. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 2008; 454: 846–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci USA 2007; 104: 17358–17363.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wortman MD, Clegg DJ, D’Alessio D, Woods SC, Seeley RJ . C75 inhibits food intake by increasing CNS glucose metabolism. Nat Med 2003; 9: 483–485.

    CAS  PubMed  Google Scholar 

  64. Clegg DJ, Benoit SC, Air EL, Jackman A, Tso P, D’Alessio D et al. Increased dietary fat attenuates the anorexic effects of intracerebroventricular injections of MTII. Endocrinology 2003; 144: 2941–2946.

    CAS  PubMed  Google Scholar 

  65. Proulx K, Cota D, Woods SC, Seeley RJ . Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes 2008; 57: 3231–3238.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    CAS  PubMed  Google Scholar 

  67. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006; 51: 801–810.

    CAS  PubMed  Google Scholar 

  68. Figlewicz DP, MacDonald NA, Sipols AJ . Modulation of food reward by adiposity signals. Physiol Behav 2007; 91: 473–478.

    CAS  PubMed  Google Scholar 

  69. Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP . The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol Endocrinol Metab 2009; 297: E202–E210.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Roa J, Garcia-Galiano D, Varela L, Sanchez-Garrido MA, Pineda R, Castellano JM et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009; 150: 5016–5026.

    CAS  PubMed  Google Scholar 

  71. Cao R, Lee B, Cho HY, Saklayen S, Obrietan K . Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Mol Cell Neurosci 2008; 38: 312–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N . Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61: 10–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Richter JD, Klann E . Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev 2009; 23: 1–11.

    CAS  PubMed  Google Scholar 

  74. Mori H, Inoki K, Munzberg H, Opland D, Faouzi M, Villanueva EC et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 2009; 9: 362–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hornberger TA, Chien S . Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 2006; 97: 1207–1216.

    CAS  PubMed  Google Scholar 

  76. Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008; 8: 411–424.

    CAS  PubMed  Google Scholar 

  77. Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009; 187: 859–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aguilar V, Alliouachene S, Sotiropoulos A, Sobering A, Athea Y, Djouadi F et al. S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab 2007; 5: 476–487.

    CAS  PubMed  Google Scholar 

  79. Rivas DA, Lessard SJ, Coffey VG . mTOR function in skeletal muscle: a focal point for overnutrition and exercise. Appl Physiol Nutr Metab 2009; 34: 807–816.

    CAS  PubMed  Google Scholar 

  80. Tremblay F, Jacques H, Marette A . Modulation of insulin action by dietary proteins and amino acids: role of the mammalian target of rapamycin nutrient sensing pathway. Curr Opin Clin Nutr Metab Care 2005; 8: 457–462.

    CAS  PubMed  Google Scholar 

  81. Khamzina L, Veilleux A, Bergeron S, Marette A . Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 2005; 146: 1473–1481.

    CAS  PubMed  Google Scholar 

  82. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200–205.

    CAS  PubMed  Google Scholar 

  83. Badman MK, Flier JS . The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 2007; 132: 2103–2115.

    CAS  PubMed  Google Scholar 

  84. Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE . Brain adipocytokine action and metabolic regulation. Diabetes 2006; 55 (Suppl 2): S145–S154.

    CAS  PubMed  Google Scholar 

  85. Seale P, Kajimura S, Spiegelman BM . Transcriptional control of brown adipocyte development and physiological function–of mice and men. Genes Dev 2009; 23: 788–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kozak LP, Anunciado-Koza R . UCP1: its involvement and utility in obesity. Int J Obes (Lond) 2008; 32 (Suppl 7): S32–S38.

    CAS  Google Scholar 

  87. Ravussin E, Kozak LP . Have we entered the brown adipose tissue renaissance? Obes Rev 2009; 10: 265–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Laplante M, Sabatini DM . An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009; 19: R1046–R1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang HH, Huang J, Duvel K, Boback B, Wu S, Squillace RM et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 2009; 4: e6189.

    PubMed  PubMed Central  Google Scholar 

  90. Chakrabarti P, English T, Shi J, Smas CM, Kandror KV . The mTOR complex 1 suppresses lipolysis, stimulates lipogenesis and promotes fat storage. Diabetes 2010; 59: 775–781.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee MJ, Fried SK . Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab 2009; 296: E1230–E1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Maya-Monteiro CM, Bozza PT . Leptin and mTOR: partners in metabolism and inflammation. Cell Cycle 2008; 7: 1713–1717.

    CAS  PubMed  Google Scholar 

  93. Vila-Bedmar R, Lorenzo M, Fernandez-Veledo S . Adenosine 5′-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 2010; 151: 980–992.

    CAS  PubMed  Google Scholar 

  94. Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN . Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008; 8: 399–410.

    CAS  PubMed  Google Scholar 

  95. Leibowitz G, Cerasi E, Ketzinel-Gilad M . The role of mTOR in the adaptation and failure of beta-cells in type 2 diabetes. Diabetes Obes Metab 2008; 10 (Suppl 4): 157–169.

    CAS  PubMed  Google Scholar 

  96. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000; 408: 994–997.

    CAS  PubMed  Google Scholar 

  97. Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 2005; 19: 2199–2211.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rachdi L, Balcazar N, Osorio-Duque F, Elghazi L, Weiss A, Gould A et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc Natl Acad Sci USA 2008; 105: 9250–9255.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fu A, Ng AC, Depatie C, Wijesekara N, He Y, Wang GS et al. Loss of Lkb1 in adult beta cells increases beta cell mass and enhances glucose tolerance in mice. Cell Metab 2009; 10: 285–295.

    CAS  PubMed  Google Scholar 

  100. Zahr E, Molano RD, Pileggi A, Ichii H, San Jose S, Bocca N et al. Rapamycin impairs beta-cell proliferation in vivo. Transplant Proc 2008; 40: 436–437.

    CAS  PubMed  Google Scholar 

  101. Azzariti A, Porcelli L, Gatti G, Nicolin A, Paradiso A . Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol 2008; 75: 1035–1044.

    CAS  PubMed  Google Scholar 

  102. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008; 57: 945–957.

    CAS  PubMed  Google Scholar 

  103. Chang GR, Wu YY, Chiu YS, Chen WY, Liao JW, Hsu HM et al. Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice. Basic Clin PharmacolToxicol 2009; 105: 188–198.

    CAS  Google Scholar 

  104. Chen P, Yan H, Chen Y, He Z . The variation of AkT/TSC1-TSC1/mTOR signal pathway in hepatocytes after partial hepatectomy in rats. Exp Mol Pathol 2009; 86: 101–107.

    CAS  PubMed  Google Scholar 

  105. Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gausseres N, Steiler T et al. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am J Physiol Endocrinol Metab 2009; 297: E1313–E1323.

    CAS  PubMed  Google Scholar 

  106. Aggarwal D, Fernandez ML, Soliman GA . Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism 2006; 55: 794–802.

    CAS  PubMed  Google Scholar 

  107. Badiou S, Cristol JP, Mourad G . Dyslipidemia following kidney transplantation: diagnosis and treatment. Curr Diab Rep 2009; 9: 305–311.

    CAS  PubMed  Google Scholar 

  108. Subramanian S, Trence DL . Immunosuppressive agents: effects on glucose and lipid metabolism. Endocrinol Metab Clin North Am 2007; 36: 891–905.

    CAS  PubMed  Google Scholar 

  109. Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G . The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 2007; 56: 1500–1507.

    CAS  PubMed  Google Scholar 

  110. Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010; 59: 1338–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R et al. Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes 2009; 58: 1321–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ropelle ER, Fernandes MF, Flores MB, Ueno M, Rocco S, Marin R et al. Central exercise action increases the AMPK and mTOR response to leptin. PLoS ONE 2008; 3: e3856.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM Avenir Programme, Fondation Recherche Médicale, Region Aquitaine and European Community's Seventh Framework Programme Marie Curie International Reintegration Grant no. 224757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Cota.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catania, C., Binder, E. & Cota, D. mTORC1 signaling in energy balance and metabolic disease. Int J Obes 35, 751–761 (2011). https://doi.org/10.1038/ijo.2010.208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.208

Keywords

This article is cited by

Search

Quick links