Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of secreted proteins associated with obesity and type 2 diabetes in Psammomys obesus

Abstract

Objective:

Skeletal muscle produces a variety of secreted proteins that have important roles in intercellular communication and affects processes such as glucose homoeostasis. The objective of this study was to develop a novel Signal Sequence Trap (SST) in conjunction with cDNA microarray technology to identify proteins secreted from skeletal muscle of Psammomys obesus that were associated with obesity and type 2 diabetes (T2D).

Design:

Secreted proteins that were differentially expressed between lean, normal glucose tolerant (NGT), overweight and impaired glucose tolerant (IGT) and obese, T2D P. obesus were isolated using SST in conjunction with cDNA microarray technology. Subsequent gene expression was measured in tissues from P. obesus by real-time PCR (RT-PCR).

Results:

The SST yielded 1600 positive clones, which were screened for differential expression. A total of 91 (6%) clones were identified by microarray to be differentially expressed between NGT, IGT and T2D P. obesus. These clones were sequenced to identify 51 genes, of which only 27 were previously known to encode secreted proteins. Three candidate genes not previously associated with obesity or type 2 diabetes, sushi domain containing 2, collagen and calcium-binding EGF domains 1 and periostin (Postn), as well as one gene known to be associated, complement component 1, were shown by RT-PCR to be differentially expressed in skeletal muscle of P. obesus. Further characterization of the secreted protein Postn revealed it to be predominantly expressed in adipose tissue, with higher expression in visceral compared with subcutaneous adipose depots.

Conclusion:

SST in conjunction with cDNA microarray technology is a powerful tool to identify differentially expressed secreted proteins involved in complex diseases such as obesity and type 2 diabetes. Furthermore, a number of candidate genes were identified, in particular, Postn, which may have a role in the development of obesity and type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. O'Rahilly S, Barroso I, Wareham NJ . Genetic factors in type 2 diabetes: the end of the beginning? Science 2005; 307: 370–373.

    Article  CAS  PubMed  Google Scholar 

  2. Kahn CR . Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43: 1066–1084.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  PubMed  Google Scholar 

  4. Stryer L. Biochemistry 3rd edn. W.H. Freeman and Company, New York, 1988.

    Google Scholar 

  5. Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 2004; 279: 41114–41123.

    Article  CAS  PubMed  Google Scholar 

  6. Nishizawa H, Matsuda M, Yamada Y, Kawai K, Suzuki E, Makishima M et al. Musclin, a novel skeletal muscle-derived secretory factor. J Biol Chem 2004; 279: 19391–19395.

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 2004; 63: 263–267.

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 2003; 24: 113–119.

    Article  CAS  PubMed  Google Scholar 

  9. McPherron AC, Lawler AM, Lee SJ . Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83–90.

    Article  CAS  PubMed  Google Scholar 

  10. Massague J, Cheifetz S, Endo T, Nadal-Ginard B . Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci USA 1986; 83: 8206–8210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horsley V, Jansen KM, Mills ST, Pavlath GK . IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 2003; 113: 483–494.

    Article  CAS  PubMed  Google Scholar 

  12. Busquets S, Figueras M, Almendro V, Lopez-Soriano FJ, Argiles JM . Interleukin-15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of the cytokine. Biochim Biophys Acta 2006; 1760: 1613–1617.

    Article  CAS  PubMed  Google Scholar 

  13. Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK . Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 2004; 53: 1643–1648.

    Article  CAS  PubMed  Google Scholar 

  14. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006; 55: 2688–2697.

    Article  CAS  PubMed  Google Scholar 

  15. Chan MH, Carey AL, Watt MJ, Febbraio MA . Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiol Regul Integr Comp Physiol 2004; 287: R322–R327.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, Krook A . Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 2006; 20: 3364–3375.

    Article  CAS  PubMed  Google Scholar 

  17. Kim HJ, Higashimori I, Park SY, Choi H, Dong J, Kim YJ et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 2004; 53: 1060–1067.

    Article  CAS  PubMed  Google Scholar 

  18. Barnett M, Collier GR, Collier FM, Zimmet P, O′Dea KA . cross-sectional and short-term longitudinal characterisation of NIDDM in Psammomys obesus. Diabetologia 1994; 37: 671–676.

    Article  CAS  PubMed  Google Scholar 

  19. Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR . Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Int J Exp Diabetes Res 2000; 1: 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collier GR, McMillan JS, Windmill K, Walder K, Tenne-Brown J, de Silva A et al. Beacon: a novel gene involved in the regulation of energy balance. Diabetes 2000; 49: 1766–1771.

    Article  CAS  PubMed  Google Scholar 

  21. Bolton K, Segal D, McMillan J, Jowett J, Heilbronn L, Abberton K et al. Decorin is a secreted protein associated with obesity and type 2 diabetes. Int J Obes (London) 2008; 32: 1113–1121.

    Article  CAS  Google Scholar 

  22. Karasuyama H, Rolink A, Melchers F . Recombinant interleukin 2 or 5, but not 3 or 4, induces maturation of resting mouse B lymphocytes and propagates proliferation of activated B cell blasts. J Exp Med 1988; 167: 1377–1390.

    Article  CAS  PubMed  Google Scholar 

  23. Spooncer E, Heyworth CM, Dunn A, Dexter TM . Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation 1986; 31: 111–118.

    Article  CAS  PubMed  Google Scholar 

  24. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy 2000; 7: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Wright W, Bernlohr DA, Cushman SW, Chen X . Alterations of the classic pathway of complement in adipose tissue of obesity and insulin resistance. Am J Physiol Endocrinol Metab 2007; 292: E1433–E1440.

    Article  CAS  PubMed  Google Scholar 

  26. Gabrielsson BG, Johansson JM, Lonn M, Jernas M, Olbers T, Peltonen M et al. High expression of complement components in omental adipose tissue in obese men. Obes Res 2003; 11: 699–708.

    Article  CAS  PubMed  Google Scholar 

  27. Howarth FC, Glover L, Culligan K, Qureshi MA, Ohlendieck K . Calsequestrin expression and calcium binding is increased in streptozotocin-induced diabetic rat skeletal muscle though not in cardiac muscle. Pflugers Arch 2002; 444: 52–58.

    Article  CAS  PubMed  Google Scholar 

  28. Jandeleit-Dahm K, Rumble J, Cox AJ, Kelly DJ, Dziadek M, Cooper ME et al. SPARC gene expression is increased in diabetes-related mesenteric vascular hypertrophy. Microvasc Res 2000; 59: 61–71.

    Article  CAS  PubMed  Google Scholar 

  29. Taft RA, Denegre JM, Pendola FL, Eppig JJ . Identification of genes encoding mouse oocyte secretory and transmembrane proteins by a signal sequence trap. Biol Reprod 2002; 67: 953–960.

    Article  CAS  PubMed  Google Scholar 

  30. Jacobs KA, Collins-Racie LA, Colbert M, Duckett M, Golden-Fleet M, Kelleher K et al. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 1997; 198: 289–296.

    Article  CAS  PubMed  Google Scholar 

  31. Chen H, Leder P . A new signal sequence trap using alkaline phosphatase as a reporter. Nucleic Acids Res 1999; 27: 1219–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchell KJ, Pinson KI, Kelly OG, Brennan J, Zupicich J, Scherz P et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 2001; 28: 241–249.

    Article  CAS  PubMed  Google Scholar 

  33. Frederiksen CM, Hojlund K, Hansen L, Oakeley EJ, Hemmings B, Abdallah BM et al. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia 2008; 51: 2068–2077.

    Article  CAS  PubMed  Google Scholar 

  34. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  35. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003; 100: 8466–8471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spiegelman BM, Frank M, Green H . Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem 1983; 258: 10083–10089.

    CAS  PubMed  Google Scholar 

  37. Bernlohr DA, Doering TL, Kelly Jr TJ, Lane MD . Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem Biophys Res Commun 1985; 132: 850–855.

    Article  CAS  PubMed  Google Scholar 

  38. Hunt CR, Ro JH, Dobson DE, Min HY, Spiegelman BM . Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci USA 1986; 83: 3786–3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuhn B, Del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 2007; 13: 962–969.

    Article  PubMed  Google Scholar 

  40. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 1999; 14: 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  41. Tai IT, Dai M, Chen LB . Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by anti-periostin antibodies. Carcinogenesis 2005; 26: 908–915.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki H, Dai M, Auclair D, Kaji M, Fukai I, Kiriyama M et al. Serum level of the periostin, a homologue of an insect cell adhesion molecule, in thymoma patients. Cancer Lett 2001; 172: 37–42.

    Article  CAS  PubMed  Google Scholar 

  43. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 2004; 5: 329–339.

    Article  CAS  PubMed  Google Scholar 

  44. Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 2002; 62: 5358–5364.

    CAS  PubMed  Google Scholar 

  45. Hamilton DW . Functional role of periostin in development and wound repair: implications for connective tissue disease. J Cell Commun Signal 2008; 2: 9–17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bornstein P . Matricellular proteins: an overview. Matrix Biol 2000; 19: 555–556.

    Article  CAS  PubMed  Google Scholar 

  47. Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ . Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 2003; 14: 261–271.

    Article  CAS  PubMed  Google Scholar 

  48. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M et al. Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 2008; 205: 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hutley LJ, Herington AC, Shurety W, Cheung C, Vesey DA, Cameron DP et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab 2001; 281: E1037–E1044.

    Article  CAS  PubMed  Google Scholar 

  50. Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T et al. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 2004; 24: 3992–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004; 53: 2087–2094.

    Article  CAS  PubMed  Google Scholar 

  52. Wajchenberg BL . Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21: 697–738.

    Article  CAS  PubMed  Google Scholar 

  53. Moller DE, Kaufman KD . Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 2005; 56: 45–62.

    Article  CAS  PubMed  Google Scholar 

  54. Liu KH, Chan YL, Chan WB, Chan JC, Chu CW . Mesenteric fat thickness is an independent determinant of metabolic syndrome and identifies subjects with increased carotid intima-media thickness. Diabetes Care 2006; 29: 379–384.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by ChemGenex Pharmaceuticals (Geelong, Victoria, Australia). Kristy Bolton was a recipient of a Deakin University postgraduate scholarship.

We gratefully acknowledge Adrian Cooper for his valuable technical assistance with the animal studies, and Ivano Broz for assistance with the bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Bolton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolton, K., Segal, D., McMillan, J. et al. Identification of secreted proteins associated with obesity and type 2 diabetes in Psammomys obesus. Int J Obes 33, 1153–1165 (2009). https://doi.org/10.1038/ijo.2009.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.148

Keywords

This article is cited by

Search

Quick links