Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome

Abstract

The prevalence of obesity and related metabolic disorders increases rapidly in western societies. A proper choice of foods may now prevent or delay many of the health consequences related to these disorders. In this respect, replacing dietary saturated fatty acids (SFAs) by cis-monounsaturated fatty acids (cis-MUFAs) has beneficial effects. In addition to diet-derived cis-MUFAs, the human body can also generate cis-MUFAsfrom SFAs through the action of stearoyl-CoA desaturases (SCDs). SCDs may play an adverse role in obesity and obesity-related insulin resistance. Here, we review the current knowledge on the molecular aspects and the role of SCD1 in obesity and the metabolic syndrome (MS). In mice, many studies have suggested a negative role for SCD1 in the development of obesity and insulin resistance. In humans, however, evidence is less convincing. If anything, increased, rather than decreased, levels of SCD1 mRNA levels are negatively associated with MS-related diseases such as insulin resistance. However, an unequivocal conclusion is currently not possible as the number of human studies is limited. Therefore, more human studies are needed at the molecular as well as at the physiological level to understand the true role of SCD1 during the development of obesity and the MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Wyatt SB, Winters KP, Dubbert PM . Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 2006; 331: 166–174.

    PubMed  Google Scholar 

  2. Schokker DF, Visscher TL, Nooyens AC, van Baak MA, Seidell JC . Prevalence of overweight and obesity in the Netherlands. Obes Rev 2007; 8: 101–108.

    CAS  PubMed  Google Scholar 

  3. Sturm R . Increases in morbid obesity in the USA: 2000–2005. Public Health 2007; 121: 492–496.

    CAS  PubMed  Google Scholar 

  4. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM . The epidemiology of obesity. Gastroenterology 2007; 132: 2087–2102.

    PubMed  Google Scholar 

  5. Mendoza JA, Drewnowski A, Christakis DA . Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults. Diabetes Care 2007; 30: 974–979.

    PubMed  Google Scholar 

  6. Howarth NC, Murphy SP, Wilkens LR, Hankin JH, Kolonel LN . Dietary energy density is associated with overweight status among 5 ethnic groups in the multiethnic cohort study. J Nutr 2006; 136: 2243–2248.

    CAS  PubMed  Google Scholar 

  7. Vogels N, Westerterp KR, Posthumus DL, Rutters F, Westerterp-Plantenga MS . Daily physical activity counts vs structured activity counts in lean and overweight Dutch children. Physiol Behav 2007; 92: 611–616.

    CAS  PubMed  Google Scholar 

  8. Jump DB, Clarke SD . Regulation of gene expression by dietary fat. Annu Rev Nutr 1999; 19: 63–90.

    CAS  PubMed  Google Scholar 

  9. Summers LK, Fielding BA, Bradshaw HA, Ilic V, Beysen C, Clark ML et al. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 2002; 45: 369–377.

    CAS  PubMed  Google Scholar 

  10. Vessby B, Unsitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001; 44: 312–319.

    CAS  PubMed  Google Scholar 

  11. Wang L, Folsom AR, Eckfeldt JH . Plasma fatty acid composition and incidence of coronary heart disease in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Nutr Metab Cardiovasc Dis 2003; 13: 256–266.

    CAS  PubMed  Google Scholar 

  12. Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, Espinoza D et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem 2007; 282: 15439–15450.

    CAS  PubMed  Google Scholar 

  13. Soyal S, Krempler F, Oberkofler H, Patsch W . PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 2006; 49: 1477–1488.

    CAS  PubMed  Google Scholar 

  14. Finck BN, Kelly DP . PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116: 615–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Man WC, Miyazaki M, Chu K, Ntambi JM . Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem 2006; 281: 1251–1260.

    CAS  PubMed  Google Scholar 

  16. Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R . Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 1974; 71: 4565–4569.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fulco AJ, Bloch K . Cofactor requirements for the formation of delta-9-unsaturated fatty acids in Mycobacterium Phlei. J Biol Chem 1964; 239: 993–997.

    CAS  PubMed  Google Scholar 

  18. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Morck C, Pilon M . C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 2006; 6: 39.

    PubMed  PubMed Central  Google Scholar 

  20. Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR . Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 1996; 271: 815–818.

    CAS  PubMed  Google Scholar 

  21. Thiede MA, Ozols J, Strittmatter P . Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J Biol Chem 1986; 261: 13230–13235.

    CAS  PubMed  Google Scholar 

  22. Li J, Ding SF, Habib NA, Fermor BF, Wood CB, Gilmour RS . Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. Int J Cancer 1994; 57: 348–352.

    CAS  PubMed  Google Scholar 

  23. Ward RJ, Travers MT, Richards SE, Vernon RG, Salter AM, Buttery PJ et al. Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochim Biophys Acta 1998; 1391: 145–156.

    CAS  PubMed  Google Scholar 

  24. Anamnart S, Tomita T, Fukui F, Fujimori K, Harashima S, Yamada Y et al. The P-OLE1 gene of Pichia angusta encodes a delta 9-fatty acid desaturase and complements the ole1 mutation of Saccharomyces cerevisiae. Gene 1997; 184: 299–306.

    CAS  PubMed  Google Scholar 

  25. Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly Jr TJ et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 1988; 263: 17291–17300.

    CAS  PubMed  Google Scholar 

  26. Ideta R, Seki T, Adachi K . Sequence analysis and characterization of FAR-17c, an androgen-dependent gene in the flank organs of hamsters. J Dermatol Sci 1995; 9: 94–102.

    CAS  PubMed  Google Scholar 

  27. Fukuchi-Mizutani M, Tasaka Y, Tanaka Y, Ashikari T, Kusumi T, Murata N . Characterization of delta 9 acyl-lipid desaturase homologues from Arabidopsis thaliana. Plant Cell Physiol 1998; 39: 247–253.

    CAS  PubMed  Google Scholar 

  28. Enoch HG, Catala A, Strittmatter P . Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem 1976; 251: 5095–5103.

    CAS  PubMed  Google Scholar 

  29. Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM et al. Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 2003; 278: 33904–33911.

    CAS  PubMed  Google Scholar 

  30. Kaestner KH, Ntambi JM, Kelly Jr TJ, Lane MD . Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 1989; 264: 14755–14761.

    CAS  PubMed  Google Scholar 

  31. Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S . Scd3 a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics 2001; 71: 182.

    CAS  PubMed  Google Scholar 

  32. Miyazaki M, Bruggink SM, Ntambi JM . Identification of mouse palmitoyl-CoA delta 9 desaturase. J Lipid Res 2006; 47: 700–704.

    CAS  PubMed  Google Scholar 

  33. Miyazaki M, Dobrzyn A, Elias PM, Ntambi JM . Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proc Natl Acad Sci USA 2005; 102: 12501–12506.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM . Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 1999; 340 (Pt 1): 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K et al. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 2005; 332: 735.

    CAS  PubMed  Google Scholar 

  36. Zhang S, Yang Y, Shi Y . Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J 2005; 388: 135–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2005; 2: 251–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D et al. Identification of Ras-related nuclear protein, targeting protein for Xenopus Kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 2007; 67: 4390–4398.

    CAS  PubMed  Google Scholar 

  39. Breuer S, Pech K, Buss A, Spitzer C, Ozols J, Hol EM et al. Regulation of stearoyl-CoA desaturase-1 after central and peripheral nerve lesions. BMC Neurosci 2004; 5: 15.

    PubMed  PubMed Central  Google Scholar 

  40. Shanklin J, Whittle E, Fox BG . Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 1994; 33: 12787–12794.

    CAS  PubMed  Google Scholar 

  41. Sperling P, Ternes P, Zank TK, Heinz E . The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 2003; 68: 73–95.

    CAS  PubMed  Google Scholar 

  42. Ntambi JM . Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem 1992; 267: 10925–10930.

    CAS  PubMed  Google Scholar 

  43. Aguilar PS, de Mendoza D . Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 2006; 62: 1507–1514.

    CAS  PubMed  Google Scholar 

  44. Polley SD, Tiku PE, Trueman RT, Caddick MX, Morozov IY, Cossins AR . Differential expression of cold- and diet-specific genes encoding two carp liver delta 9-acyl-CoA desaturase isoforms. Am J Physiol Regul Integr Comp Physiol 2003; 284: R41–R50.

    CAS  PubMed  Google Scholar 

  45. Zhang L, Ge L, Tran T, Stenn K, Prouty SM . Isolation and characterization of the human stearoyl-CoA desaturase gene promoter: requirement of a conserved CCAAT cis-element. Biochem J 2001; 357: 183–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bene H, Lasky D, Ntambi JM . Cloning and characterization of the human stearoyl-CoA desaturase gene promoter: transcriptional activation by sterol regulatory element binding protein and repression by polyunsaturated fatty acids and cholesterol. Biochem Biophys Res Commun 2001; 284: 1194–1198.

    CAS  PubMed  Google Scholar 

  47. Miller CW, Ntambi JM . Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci USA 1996; 93: 9443–9448.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Riserus U, Tan GD, Fielding BA, Neville MJ, Currie J, Savage DB et al. Rosiglitazone increases indexes of stearoyl-CoA desaturase activity in humans: link to insulin sensitization and the role of dominant-negative mutation in peroxisome proliferator-activated receptor-gamma. Diabetes 2005; 54: 1379–1384.

    CAS  PubMed  Google Scholar 

  49. Montanaro MA, Bernasconi AM, Gonzalez MS, Rimoldi OJ, Brenner RR . Effects of fenofibrate and insulin on the biosynthesis of unsaturated fatty acids in streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 369–378.

    CAS  PubMed  Google Scholar 

  50. Heinemann FS, Ozols J . Degradation of stearoyl-coenzyme A desaturase: endoproteolytic cleavage by an integral membrane protease. Mol Biol Cell 1998; 9: 3445–3453.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Strittmatter P, Thiede MA, Hackett CS, Ozols J . Bacterial synthesis of active rat stearyl-CoA desaturase lacking the 26-residue amino-terminal amino acid sequence. J Biol Chem 1988; 263: 2532–2535.

    CAS  PubMed  Google Scholar 

  52. Mziaut H, Korza G, Ozols J . The N terminus of microsomal delta 9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. Proc Natl Acad Sci USA 2000; 97: 8883–8888.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kato H, Sakaki K, Mihara K . Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase. J Cell Sci 2006; 119: 2342–2353.

    CAS  PubMed  Google Scholar 

  54. Mziaut H, Korza G, Benraiss A, Ozols J . Selective mutagenesis of lysyl residues leads to a stable and active form of delta 9 stearoyl-CoA desaturase. Biochim Biophys Acta 2002; 1583: 45–52.

    CAS  PubMed  Google Scholar 

  55. Ozols J . Degradation of hepatic stearyl CoA delta 9-desaturase. Mol Biol Cell 1997; 8: 2281–2290.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Heinemann FS, Mziaut H, Korza G, Ozols J . A microsomal endopeptidase from liver that preferentially degrades stearoyl-CoA desaturase. Biochemistry 2003; 42: 6929–6937.

    CAS  PubMed  Google Scholar 

  57. Heinemann FS, Korza G, Ozols J . A plasminogen-like protein selectively degrades stearoyl-CoA desaturase in liver microsomes. J Biol Chem 2003; 278: 42966–42975.

    CAS  PubMed  Google Scholar 

  58. Scaglia N, Matias Caviglia J, Ariel Igal R . High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim Biophys Acta 2005; 1687: 141–151.

    CAS  PubMed  Google Scholar 

  59. Los D, Horvath I, Vigh L, Murata N . The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett 1993; 318: 57–60.

    CAS  PubMed  Google Scholar 

  60. Laoteng K, Anjard C, Rachadawong S, Tanticharoen M, Maresca B, Cheevadhanarak S . Mucor rouxii delta9-desaturase gene is transcriptionally regulated during cell growth and by low temperature. Mol Cell Biol Res Commun 1999; 1: 36–43.

    CAS  PubMed  Google Scholar 

  61. Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M et al. The role of desaturases in cold-induced lipid restructuring. Biochem Soc Trans 2002; 30: 1082–1086.

    CAS  PubMed  Google Scholar 

  62. Fukuchi-Mizutani M, Tasaka Y, Tanaka Y, Ashikari T, Kusumi T, Murata N . Characterization of {delta} A9 Acyl-lipid Desaturase Homologues from Arabidopsis thaliana. Plant Cell Physiol 1998; 39: 247–253.

    CAS  PubMed  Google Scholar 

  63. Nishida I, Murata N . Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 1996; 47: 541–568.

    CAS  PubMed  Google Scholar 

  64. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. N Engl J Med 2003; 348: 1625–1638.

    PubMed  Google Scholar 

  65. Ceschi M, Gutzwiller F, Moch H, Eichholzer M, Probst-Hensch NM . Epidemiology and pathophysiology of obesity as cause of cancer. Swiss Med Wkly 2007; 137: 50–56.

    CAS  PubMed  Google Scholar 

  66. Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR . Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer 2007; 109: 1192–1202.

    PubMed  Google Scholar 

  67. Hursting SD, Nunez NP, Varticovski L, Vinson C . The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res 2007; 67: 2391–2393.

    CAS  PubMed  Google Scholar 

  68. Moore S, Knudsen B, True LD, Hawley S, Etzioni R, Wade C et al. Loss of stearoyl-CoA desaturase expression is a frequent event in prostate carcinoma. Int J Cancer 2005; 114: 563–571.

    CAS  PubMed  Google Scholar 

  69. Kuhajda FP . Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 2006; 66: 5977–5980.

    CAS  PubMed  Google Scholar 

  70. Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF . Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 1998; 58: 4611–4615.

    CAS  PubMed  Google Scholar 

  71. Schmidt LJ, Ballman KV, Tindall DJ . Inhibition of fatty acid synthase activity in prostate cancer cells by dutasteride. Prostate 2007; 67: 1111–1120.

    CAS  PubMed  Google Scholar 

  72. De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV . RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res 2003; 63: 3799–3804.

    CAS  PubMed  Google Scholar 

  73. Shurbaji MS, Kalbfleisch JH, Thurmond TS . Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum Pathol 1996; 27: 917–921.

    CAS  PubMed  Google Scholar 

  74. Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002; 297: 240–243.

    CAS  PubMed  Google Scholar 

  75. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 2002; 99: 11482–11486.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP et al. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 2007; 56: 1228–1239.

    CAS  PubMed  Google Scholar 

  77. Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M et al. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 2005; 115: 1030–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu CC, Qing K, Chen Y . Diet-induced changes in stearoyl-CoA desaturase 1 expression in obesity-prone and -resistant mice. Obes Res 2004; 12: 1264–1270.

    CAS  PubMed  Google Scholar 

  79. Asilmaz E, Cohen P, Miyazaki M, Dobrzyn P, Ueki K, Fayzikhodjaeva G et al. Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J Clin Invest 2004; 113: 414–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kakuma T, Lee Y, Unger RHAN . Effects of leptin, troglitazone, and dietary fat on stearoyl CoA desaturase. Biochem Biophys Res Commun 2002; 297: 1259–1263.

    CAS  PubMed  Google Scholar 

  81. Pinnamaneni SK, Southgate RJ, Febbraio MA, Watt MJ . Stearoyl CoA desaturase 1 is elevated in obesity but protects against fatty acid-induced skeletal muscle insulin resistance in vitro. Diabetologia 2006; 49: 3027–3037.

    CAS  PubMed  Google Scholar 

  82. Kudo N, Toyama T, Mitsumoto A, Kawashima Y . Regulation by carbohydrate and clofibric acid of palmitoyl-CoA chain elongation in the liver of rats. Lipids 2003; 38: 531–537.

    CAS  PubMed  Google Scholar 

  83. Liew CF, Groves CJ, Wiltshire S, Zeggini E, Frayling TM, Owen KR et al. Analysis of the contribution to type 2 diabetes susceptibility of sequence variation in the gene encoding stearoyl-CoA desaturase, a key regulator of lipid and carbohydrate metabolism. Diabetologia 2004; 47: 2168–2175.

    CAS  PubMed  Google Scholar 

  84. Warensjo E, Ingelsson E, Lundmark P, Lannfelt L, Syvanen A-C, Vessby B et al. Polymorphisms in the SCD1 Gene: Associations With Body Fat Distribution and Insulin Sensitivity. Obesity 2007; 15: 1732–1740.

    PubMed  Google Scholar 

  85. Gurnell M . ‘Striking the right balance’ in targeting PPARgamma in the betabolic syndrome: novel insights from human genetic studies. PPAR Res 2007; 2007: 83593.

    PubMed  PubMed Central  Google Scholar 

  86. Yamauchi T, Waki H, Kamon J, Murakami K, Motojima K, Komeda K et al. Inhibition of RXR and PPARgamma ameliorates diet-induced obesity and type 2 diabetes. J Clin Invest 2001; 108: 1001–1013.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was, in part, supported by Diabetes Fonds Nederland (Grant 2006.11.005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H E Popeijus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popeijus, H., Saris, W. & Mensink, R. Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int J Obes 32, 1076–1082 (2008). https://doi.org/10.1038/ijo.2008.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.55

Keywords

This article is cited by

Search

Quick links