Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sugary drinks in the pathogenesis of obesity and cardiovascular diseases

Abstract

Soft drink overconsumption is now considered to be a major public health concern with implications for cardiovascular diseases. This follows a number of studies performed in animals suggesting that chronic consumption of refined sugars can contribute to metabolic and cardiovascular dysregulation. In particular, the monosaccharide fructose has been attracting increasing attention as the more harmful sugar component in terms of weight gain and metabolic disturbances. High-fructose corn syrup is gradually replacing sucrose as the main sweetener in soft drinks and has been blamed as a potential contributor to the current high prevalence of obesity. There is also considerable evidence that fructose, rather than glucose, is the more damaging sugar component in terms of cardiovascular risk. This review focuses on the potential role of sugar drinks, particularly the fructose component, in the pathogenesis of obesity and cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Wells FW, Busby JC . Dietary assessment of major trends in US Food Consumption, 1970–2005. United States Department of Agriculture Economic Research Service 2008; Economic information bulletin no. 33: 18.

    Google Scholar 

  2. Murphy SP, Johnson RK . The scientific basis of recent US guidance on sugars intake. Am J Clin Nutr 2003; 78: 827S–833S.

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen SJ, Siega-Riz AM, Popkin BM . Trends in energy intake in US between 1977 and 1996: similar shifts seen across age groups. Obes Res 2002; 10: 370–378.

    Article  PubMed  Google Scholar 

  4. He FJ, Marrero NM, MacGregor GA . Salt intake is related to soft drink consumption in children and adolescents: a link to obesity? Hypertension 2008; 51: 629–634.

    Article  CAS  PubMed  Google Scholar 

  5. Aktas AY . The effects of television food advertisement on children′s food purchasing requests. Pediatr Int 2006; 48: 138–145.

    Article  Google Scholar 

  6. Johnston LD, Delva J, O'Malley PM . Soft drink availability, contracts, and revenues in American secondary schools. Am J Prev Med 2007; 33 (4 Suppl): S209–S225.

    Article  PubMed  Google Scholar 

  7. Bray GA, Nielsen SJ, Popkin BM . Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 2004; 79: 537–543.

    Article  CAS  PubMed  Google Scholar 

  8. Malik VS, Schulze MB, Hu FB . Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr 2006; 84: 274–288.

    Article  CAS  PubMed  Google Scholar 

  9. Berkey CS, Rockett HR, Field AE, Gillman MW, Colditz GA . Sugar-added beverages and adolescent weight change. Obes Res 2004; 12: 778–788.

    Article  PubMed  Google Scholar 

  10. French SA, Jeffery RW, Forster JL, McGovern PG, Kelder SH, Baxter JE . Predictors of weight change over two years among a population of working adults: the Healthy Worker Project. Int J Obes Relat Metab Disord 1994; 18: 145–154.

    CAS  PubMed  Google Scholar 

  11. Ludwig DS, Peterson KE, Gortmaker SL . Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 2001; 357: 505–508.

    Article  CAS  PubMed  Google Scholar 

  12. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004; 292: 927–934.

    Article  CAS  PubMed  Google Scholar 

  13. Tordoff MG, Alleva AM . Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. Am J Clin Nutr 1990; 51: 963–969.

    Article  CAS  PubMed  Google Scholar 

  14. Raben A, Vasilaras TH, Moller AC, Astrup A . Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr 2002; 76: 721–729.

    Article  CAS  PubMed  Google Scholar 

  15. Ebbeling CB, Feldman HA, Osganian SK, Chomitz VR, Ellenbogen SJ, Ludwig DS . Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics 2006; 117: 673–680.

    Article  PubMed  Google Scholar 

  16. Hulshof T, De Graaf C, Weststrate JA . The effects of preloads varying in physical state and fat content on satiety and energy intake. Appetite 1993; 21: 273–286.

    Article  CAS  PubMed  Google Scholar 

  17. DiMeglio DP, Mattes RD . Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord 2000; 24: 794–800.

    Article  CAS  PubMed  Google Scholar 

  18. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ . Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002; 76: 911–922.

    Article  CAS  PubMed  Google Scholar 

  19. Bantle JP, Raatz SK, Thomas W, Georgopoulos A . Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 2000; 72: 1128–1134.

    Article  CAS  PubMed  Google Scholar 

  20. Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 2004; 89: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  21. Fields M, Lewis CG . Dietary fructose but not starch is responsible for hyperlipidemia associated with copper deficiency in rats: effect of high-fat diet. J Am Coll Nutr 1999; 18: 83–87.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez FJ, Rizza RA, Romero JC . High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. Hypertension 1994; 23: 456–463.

    Article  CAS  PubMed  Google Scholar 

  23. Jurgens H, Haass W, Castaneda TR, Schurmann A, Koebnick C, Dombrowski F et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 2005; 13: 1146–1156.

    Article  PubMed  Google Scholar 

  24. Anderson JW, Story LJ, Zettwoch NC, Gustafson NJ, Jefferson BS . Metabolic effects of fructose supplementation in diabetic individuals. Diabetes Care 1989; 12: 337–344.

    Article  CAS  PubMed  Google Scholar 

  25. Bruckdorfer KR, Worcester NA, Yudkin J . The effect of dietary sucrose on plasma lipids and on the liver of the spiny mouse (Acomys cahirinus). Proc Nutr Soc 1974; 33: 3A–4A.

    CAS  PubMed  Google Scholar 

  26. Hallfrisch J, Lazar F, Jorgensen C, Reiser S . Insulin and glucose responses in rats fed sucrose or starch. Am J Clin Nutr 1979; 32: 787–793.

    Article  CAS  PubMed  Google Scholar 

  27. Beck-Nielsen H, Pedersen O, Sorensen NS . Effects of diet on the cellular insulin binding and the insulin sensitivity in young healthy subjects. Diabetologia 1978; 15: 289–296.

    Article  CAS  PubMed  Google Scholar 

  28. Beck-Nielsen H, Pedersen O, Lindskov HO . Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. Am J Clin Nutr 1980; 33: 273–278.

    Article  CAS  PubMed  Google Scholar 

  29. Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L . Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 2005; 54: 1907–1913.

    Article  CAS  PubMed  Google Scholar 

  30. Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 2006; 84: 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  31. Bunag RD, Tomita T, Sasaki S . Chronic sucrose ingestion induces mild hypertension and tachycardia in rats. Hypertension 1983; 5: 218–225.

    Article  CAS  PubMed  Google Scholar 

  32. Young JB, Landsberg L . Stimulation of the sympathetic nervous system during sucrose feeding. Nature 1977; 269: 615–617.

    Article  CAS  PubMed  Google Scholar 

  33. Young JB, Landsberg L . Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver. Am J Physiol 1979; 236: E524–E533.

    CAS  PubMed  Google Scholar 

  34. Asagami T, Reaven GM, Tsao PS . Enhanced monocyte adherence to thoracic aortae from rats with two forms of experimental hypertension. Am J Hypertens 1999; 12 (9 Pt 1): 890–893.

    Article  CAS  PubMed  Google Scholar 

  35. Hwang IS, Ho H, Hoffman BB, Reaven GM . Fructose-induced insulin resistance and hypertension in rats. Hypertension 1987; 10: 512–516.

    Article  CAS  PubMed  Google Scholar 

  36. Vasdev S, Longerich L, Gill V . Prevention of fructose-induced hypertension by dietary vitamins. Clin Biochem 2004; 37: 1–9.

    Article  CAS  PubMed  Google Scholar 

  37. Katakam PV, Ujhelyi MR, Hoenig ME, Miller AW . Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol 1998; 275 (3 Pt 2): R788–R792.

    CAS  PubMed  Google Scholar 

  38. Farah V, Elased KM, Chen Y, Key MP, Cunha TS, Irigoyen MC et al. Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 2006; 130: 41–50.

    Article  CAS  PubMed  Google Scholar 

  39. D'Angelo G, Elmarakby AA, Pollock DM, Stepp DW . Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension 2005; 46: 806–811.

    Article  CAS  PubMed  Google Scholar 

  40. Pamies-Andreu E, Fiksen-Olsen M, Rizza RA, Romero JC . High-fructose feeding elicits insulin resistance without hypertension in normal mongrel dogs. Am J Hypertens 1995; 8: 732–738.

    Article  CAS  PubMed  Google Scholar 

  41. Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K et al. The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens 2002; 15 (1 Pt 1): 66–71.

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi R, Nagano M, Nakamura F, Higaki J, Fujioka Y, Ikegami H et al. Role of angiotensin II in high fructose-induced left ventricular hypertrophy in rats. Hypertension 1993; 21 (6 Pt 2): 1051–1055.

    Article  CAS  PubMed  Google Scholar 

  43. Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristobal M, Nepomuceno T et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 2007; 292: F423–F429.

    Article  CAS  PubMed  Google Scholar 

  44. Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 2007; 293: F1256–F1261.

    Article  CAS  PubMed  Google Scholar 

  45. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L et al. Insulin resistance in essential hypertension. N Engl J Med 1987; 317: 350–357.

    Article  CAS  PubMed  Google Scholar 

  46. Brands MW, Hildebrandt DA, Mizelle HL, Hall JE . Sustained hyperinsulinemia increases arterial pressure in conscious rats. Am J Physiol 1991; 260 (4 Pt 2): R764–R768.

    CAS  PubMed  Google Scholar 

  47. Takagawa Y, Berger ME, Tuck ML, Golub MS . Impaired endothelial alpha-2 adrenergic receptor-mediated vascular relaxation in the fructose-fed rat. Hypertens Res 2002; 25: 197–202.

    Article  CAS  PubMed  Google Scholar 

  48. Stirpe F, Della CE, Bonetti E, Abbondanza A, Abbati A, De Stefano F . Fructose-induced hyperuricaemia. Lancet 1970; 2: 1310–1311.

    Article  CAS  PubMed  Google Scholar 

  49. Hallfrisch J . Metabolic effects of dietary fructose. FASEB J 1990; 4: 2652–2660.

    Article  CAS  PubMed  Google Scholar 

  50. Perlstein TS, Gumieniak O, Williams GH, Sparrow D, Vokonas PS, Gaziano M et al. Uric acid and the development of hypertension: the normative aging study. Hypertension 2006; 48: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  51. Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, Lakka HM, Lakka TA et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med 2004; 164: 1546–1551.

    Article  CAS  PubMed  Google Scholar 

  52. Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC . High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care 2008; 31: 361–362.

    Article  CAS  PubMed  Google Scholar 

  53. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2006; 290: F625–F631.

    Article  CAS  PubMed  Google Scholar 

  54. Yudkin J . Sugar and ischaemic heart disease. Practitioner 1967; 198: 680–683.

    CAS  PubMed  Google Scholar 

  55. Yudkin J . Dietary factors in arteriosclerosis: sucrose. Lipids 1978; 13: 370–372.

    Article  CAS  PubMed  Google Scholar 

  56. Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71: 1455–1461.

    Article  CAS  PubMed  Google Scholar 

  57. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 2007; 116: 480–488.

    Article  PubMed  Google Scholar 

  58. Aeberli I, Zimmermann MB, Molinari L, Lehmann R, l'Allemand D, Spinas GA et al. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am J Clin Nutr 2007; 86: 1174–1178.

    Article  CAS  PubMed  Google Scholar 

  59. Austin MA, Mykkanen L, Kuusisto J, Edwards KL, Nelson C, Haffner SM et al. Prospective study of small LDLs as a risk factor for non-insulin dependent diabetes mellitus in elderly men and women. Circulation 1995; 92: 1770–1778.

    Article  CAS  PubMed  Google Scholar 

  60. Berneis KK, Krauss RM . Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 2002; 43: 1363–1379.

    Article  CAS  PubMed  Google Scholar 

  61. Heine RJ, Dekker JM . Beyond postprandial hyperglycaemia: metabolic factors associated with cardiovascular disease. Diabetologia 2002; 45: 461–475.

    Article  CAS  PubMed  Google Scholar 

  62. O'Keefe JH, Gheewala NM, O'Keefe JO . Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 2008; 51: 249–255.

    Article  CAS  PubMed  Google Scholar 

  63. Paolisso G, Manzella D, Ferrara N, Gambardella A, Abete P, Tagliamonte MR et al. Glucose ingestion affects cardiac ANS in healthy subjects with different amounts of body fat. Am J Physiol 1997; 273 (3 Pt 1): E471–E478.

    CAS  PubMed  Google Scholar 

  64. Paolisso G, Manzella D, Tagliamonte MR, Rizzo MR, Gambardella A, Varricchio M . Effects of different insulin infusion rates on heart rate variability in lean and obese subjects. Metabolism 1999; 48: 755–762.

    Article  CAS  PubMed  Google Scholar 

  65. Schwarz JM, Acheson KJ, Tappy L, Piolino V, Muller MJ, Felber JP et al. Thermogenesis and fructose metabolism in humans. Am J Physiol 1992; 262 (5 Pt 1): E591–E598.

    CAS  PubMed  Google Scholar 

  66. Vollenweider P, Tappy L, Randin D, Schneiter P, Jequier E, Nicod P et al. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 1993; 92: 147–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baron AD, Brechtel G . Insulin differentially regulates systemic and skeletal muscle vascular resistance. Am J Physiol 1993; 265 (1 Pt 1): E61–E67.

    CAS  PubMed  Google Scholar 

  68. Brundin T, Wahren J . Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose. Am J Physiol 1993; 264 (4 Pt 1): E504–E513.

    CAS  PubMed  Google Scholar 

  69. Tappy L, Randin JP, Felber JP, Chiolero R, Simonson DC, Jequier E et al. Comparison of thermogenic effect of fructose and glucose in normal humans. Am J Physiol 1986; 250 (6 Pt 1): E718–E724.

    CAS  PubMed  Google Scholar 

  70. Brown CM, Dulloo AG, Yepuri G, Montani JP . Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol 2008; 294: R730–R737.

    Article  CAS  PubMed  Google Scholar 

  71. Bowman SA, Vinyard BT . Fast food consumption of US adults: impact on energy and nutrient intakes and overweight status. J Am Coll Nutr 2004; 23: 163–168.

    Article  PubMed  Google Scholar 

  72. Vogel RA, Corretti MC, Plotnick GD . Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol 1997; 79: 350–354.

    Article  CAS  PubMed  Google Scholar 

  73. Jeppesen J, Chen YI, Zhou MY, Schaaf P, Coulston A, Reaven GM . Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am J Clin Nutr 1995; 61: 787–791.

    Article  CAS  PubMed  Google Scholar 

  74. Frary CD, Johnson RK, Wang MQ . Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 2005; 105: 110–113.

    Article  PubMed  Google Scholar 

  75. Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC . Habitual caffeine intake and the risk of hypertension in women. JAMA 2005; 294: 2330–2335.

    Article  CAS  PubMed  Google Scholar 

  76. Dulloo AG, Miller DS . The thermogenic properties of ephedrine/methylxanthine mixtures: human studies. Int J Obes 1986; 10: 467–481.

    CAS  PubMed  Google Scholar 

  77. Melanson KJ, Zukley L, Lowndes J, Nguyen V, Angelopoulos TJ, Rippe JM . Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 2007; 23: 103–112.

    Article  CAS  PubMed  Google Scholar 

  78. Monsivais P, Perrigue MM, Drewnowski A . Sugars and satiety: does the type of sweetener make a difference? Am J Clin Nutr 2007; 86: 116–123.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' studies discussed in this review were supported by grants to CMB from the Swiss National Science Foundation (Project no. 3200BO-112186), the Swiss Heart Foundation and the Swiss Foundation for Nutrition Research (Project 351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Brown.

Additional information

Conflict of interest

The authors have declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C., Dulloo, A. & Montani, JP. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. Int J Obes 32 (Suppl 6), S28–S34 (2008). https://doi.org/10.1038/ijo.2008.204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.204

Keywords

This article is cited by

Search

Quick links