Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Highlight
  • Published:

Genome-wide scan revealed genetic loci for energy metabolism in Hispanic children and adolescents

Abstract

Objective:

Genome-wide scans were conducted in search for genetic locations linked to energy expenditure and substrate oxidation in children.

Design:

Pedigreed data of 1030 Hispanic children and adolescents were from the Viva La Familia Study which was designed to investigate genetic and environmental risk factors for the development of obesity in Hispanic families. A respiratory calorimeter was used to measure 24-h total energy expenditure (TEE), basal metabolic rate (BMR), sleep metabolic rate (SMR), 24-h respiratory quotient (24RQ), basal metabolic respiratory quotient (BMRQ) and sleep respiratory quotient (SRQ). Protein, fat and carbohydrate oxidation (PROOX, FATOX and CHOOX, respectively) were also estimated. All participants were genotyped for 384 single tandem repeat markers spaced an average of 10 cM apart. Computer program SOLAR was used to perform the genetic linkage analyses.

Results:

Significant linkage for TEE was detected on chromosome 1 near marker D1S2841, with a logarithm of the odds (LOD) score of 4.0. SMR, BMRQ and PROOX were associated with loci on chromosome 18, 17 and 9, respectively, with LOD scores of 4.88, 3.17 and 4.55, respectively. A genome-wide scan of SMR per kg fat-free mass (SpFFM) peaked in the same region as SMR on chromosome 18 (LOD, 5.24). Suggestive linkage was observed for CHOOX and FATOX. Several candidate genes were found in the above chromosomal regions including leptin receptor (LEPR).

Conclusion:

Regions on chromosomes 1, 9, 17 and 18 harbor genes affecting variation in energy expenditure and substrate oxidation in Hispanic children and adolescents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Ogden CL, Carroll DM, Curtin LR, McDowell MA, Tabak CJ, Flegal KM . Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006; 295: 1549–1555.

    Article  CAS  PubMed  Google Scholar 

  2. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467–472.

    Article  CAS  PubMed  Google Scholar 

  3. Zurlo F, Ferraro RT, Fontvielle AM, Rising R, Bogardus C, Ravussin E . Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians. Am J Physiol 1992; 263 (2 Part 1): E296–E300.

    CAS  PubMed  Google Scholar 

  4. Rice T, Tremblay A, Deriaz O, Perusse L, Rao DC, Bouchard C . Genetic pleiotropy for resting metabolic rate with fat-free mass and fat mass: the Quebec Family Study. Obes Res 1996; 4: 125–131.

    Article  CAS  PubMed  Google Scholar 

  5. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol 1990; 259 (5 Part 1): E650–E657.

    CAS  PubMed  Google Scholar 

  6. Fontaine E, Savard R, Tremblay A, Despres JP, Poehlman E, Bouchard C . Resting metabolic rate in monozygotic and dizygotic twins. Acta Genet Med Gemellol (Roma) 1985; 34: 41–47.

    Article  CAS  Google Scholar 

  7. Bouchard C, Tremblay A, Nadeau A, Despres JP, Theriault G, Boulay MR et al. Genetic effect in resting and exercise metabolic rates. Metabolism 1989; 38: 364–370.

    Article  CAS  PubMed  Google Scholar 

  8. Norman RA, Tataranni PA, Pratley R, Thompson DB, Hanson RL, Prochazka M et al. Autosomal genomic scan for loci linked to obesity and energy metabolism in Pima Indians. Am J Hum Genet 1998; 62: 659–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faith MS, Pietrobelli A, Nuñez C, Heo M, Heymsfield SB, Allison DB . Evidence for independent genetic influences on fat mass and body mass index in a pediatric twin sample. Pediatrics 1999; 104: 61–67.

    Article  CAS  PubMed  Google Scholar 

  10. Beunen G, Maes HH, Vlietinck R, Malina RM, Thomis M, Feys E et al. Univariate and multivariate genetic analysis of subcutaneous fat distribution in early adolescence. Behav Genet 1998; 28: 279–288.

    Article  CAS  PubMed  Google Scholar 

  11. Butte NF, Cai G, Cole SA, Comuzzie AG . Viva la Familia Study: genetic and environmental contributions to childhood obesity and its comorbidities in the Hispanic population. Am J Clin Nutr 2006; 84: 646–654.

    Article  CAS  PubMed  Google Scholar 

  12. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R et al. CDC growth charts: United States. Adv Data 2000; 314: 1–27.

    Google Scholar 

  13. Ellis KJ . Body composition of a young, multiethnic, male population. Am J Clin Nutr 1997; 66: 1323–1331.

    Article  CAS  PubMed  Google Scholar 

  14. Ellis KJ, Abrams SA, Wong WW . Body composition of a young, multiethnic female population. Am J Clin Nutr 1997; 65: 724–731.

    Article  CAS  PubMed  Google Scholar 

  15. Moon JK, Vohra FA, Valerio Jimenez OS, Puyau MR, Butte NF . Closed-loop control of carbon dioxide concentration and pressure improves response of room respiration calorimeters. J Nutr 1995; 125: 220–228.

    CAS  PubMed  Google Scholar 

  16. Weatherburn MW . Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 1967; 39: 971–974.

    Article  CAS  Google Scholar 

  17. Livesey G, Elia M . Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 1988; 47: 608–628.

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Wilder K, McPeek MS . Enhanced pedigree error detection. Hum Hered 2002; 54: 99–110.

    Article  PubMed  Google Scholar 

  19. Sobel E, Lange K . Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996; 58: 1323–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sobel E, Papp JC, Lange K . Detection and integration of genotyping errors in statistical genetics. Am J Hum Genet 2002; 70: 496–508.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heath SC . Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 1997; 61: 748–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Almasy L, Blangero J . Multipoint quantitative trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Self SG, Liang K-Y . Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 1987; 82: 605–610.

    Article  Google Scholar 

  24. Lange K, Boehnke M . Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. Am J Med Genet 1983; 14: 513–524.

    Article  CAS  PubMed  Google Scholar 

  25. Wu X, Luke A, Cooper RS, Zhu X, Kan D, Tayo BO et al. A genome scan among Nigerians linking resting energy expenditure to chromosome 16. Obes Res 2004; 12: 577–581.

    Article  CAS  PubMed  Google Scholar 

  26. Deriaz O, Dionne F, Perusse L, Tremblay A, Vohl MC, Cote G et al. DNA variation in the genes of the Na,K-adenosine triphosphatase and its relation with resting metabolic rate, respiratory quotient, and body fat. J Clin Invest 1994; 93: 838–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katzmarzyk PT, Rankinen T, Perusse L, Deriaz O, Tremblay A, Borecki I et al. Linkage and association of the sodium potassium-adenosine triphosphatase alpha2 and beta1 genes with respiratory quotient and resting metabolic rate in the Quebec Family Study. J Clin Endocrinol Metab 1999; 84: 2093–2097.

    CAS  PubMed  Google Scholar 

  28. Bouchard C, Perusse L, Chagnon YC, Warden C, Ricquier D . Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans. Hum Mol Genet 1997; 6: 1887–1889.

    Article  CAS  PubMed  Google Scholar 

  29. Kovacs P, Harper I, Hanson RL, Infante AM, Bogardus C, Tataranni PA et al. A novel missense substitution (Val1483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic Pima Indians. Diabetes 2004; 53: 1915–1919.

    Article  CAS  PubMed  Google Scholar 

  30. Norman RA, Leibel RL, Chung WK, Power-Kehoe L, Chua Jr SC, Knowler WC et al. Absence of linkage of obesity and energy metabolism to markers flanking homologues of rodent obesity genes in Pima Indians. Diabetes 1996; 45: 1229–1232.

    Article  CAS  PubMed  Google Scholar 

  31. van Rossum CT, Hoebee B, Seidell JC, Bouchard C, van Baak MA, de Groot CP et al. Genetic factors as predictors of weight gain in young adult Dutch men and women. Int J Obes Relat Metab Disord 2002; 26: 517–528.

    Article  CAS  PubMed  Google Scholar 

  32. Loos RJ, Rankinen T, Chagnon Y, Tremblay A, Perusse L, Bouchard C . Polymorphisms in the leptin and leptin receptor genes in relation to resting metabolic rate and respiratory quotient in the Quebec Family Study. Int J Obes (Lond) 2006; 30: 183–190.

    Article  CAS  Google Scholar 

  33. Portoles O, Sorli JV, Frances F, Coltell O, Gonzalez JI, Saiz C et al. Effect of genetic variation in the leptin gene promoter and the leptin receptor gene on obesity risk in a population-based case-control study in Spain. Eur J Epidemiol 2006; 21: 605–612.

    Article  CAS  PubMed  Google Scholar 

  34. Duarte SF, Francischetti EA, Genelhu-Abreu V, Barroso SG, Braga JU, Cabello PH et al. Q223R leptin receptor polymorphism associated with obesity in Brazilian multiethnic subjects. Am J Hum Biol 2006; 18: 448–453.

    Article  PubMed  Google Scholar 

  35. Stefan N, Vozarova B, Del Parigi A, Ossowski V, Thompson DB, Hanson RL et al. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes Relat Metab Disord 2002; 26: 1629–1632.

    Article  CAS  PubMed  Google Scholar 

  36. Perusse L, Rice T, Chagnon YC, Despres JP, Lemieux S, Roy S et al. A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes 2001; 50: 614–621.

    Article  CAS  PubMed  Google Scholar 

  37. Dong C, Li WD, Li D, Price RA . Interaction between obesity-susceptibility loci in chromosome regions 2p25-p24 and 13q13-q21. Eur J Hum Genet 2005; 13: 102–108.

    Article  CAS  PubMed  Google Scholar 

  38. Dong C, Li WD, Geller F, Lei L, Li D, Gorlova OY et al. Possible genomic imprinting of three human obesity-related genetic loci. Am J Hum Genet 2005; 76: 427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li WD, Dong C, Li D, Zhao H, Price RA . An obesity-related locus in chromosome region 12q23-24. Diabetes 2004; 53: 812–820.

    Article  CAS  PubMed  Google Scholar 

  40. Loos RJ, Katzmarzyk PT, Rao DC, Rice T, Leon AS, Skinner JS, et al., HERITAGE Family Study. Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study. J Clin Endocrinol Metab 2003; 88: 5935–5943.

    Article  CAS  PubMed  Google Scholar 

  41. Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE et al. A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hum Genet 2002; 70: 1247–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes 2004; 53: 803–811.

    Article  CAS  PubMed  Google Scholar 

  43. Martin LJ, Cianflone K, Zakarian R, Nagrani G, Almasy L, Rainwater DL et al. Bivariate linkage between acylation-stimulating protein and BMI and high-density lipoproteins. Obes Res 2004; 12: 669–678.

    Article  CAS  PubMed  Google Scholar 

  44. Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA 2000; 97: 14478–14483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Couzens M, Liu M, Tuchler C, Kofler B, Nessler-Menardi C, Parker RM et al. Peptide YY-2 (PYY2) and pancreatic polypeptide-2 (PPY2): species-specific evolution of novel members of the neuropeptide Y gene family. Genomics 2000; 64: 318–323.

    Article  CAS  PubMed  Google Scholar 

  46. Conlon JM . The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP). Peptides 2002; 23: 269–278.

    Article  PubMed  Google Scholar 

  47. Shmulewitz D, Heath SC, Blundell ML, Han Z, Sharma R, Salit J et al. Linkage analysis of quantitative traits for obesity, diabetes, hypertension, and dyslipidemia on the island of Kosrae, Federated States of Micronesia. Proc Natl Acad Sci USA 2006; 103: 3502–3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Tilburg JH, Sandkuijl LA, Strengman E, van Someren H, Rigters-Aris CA, Pearson PL et al. A genome-wide scan in type 2 diabetes mellitus provides independent replication of a susceptibility locus on 18p11 and suggests the existence of novel Loci on 2q12 and 19q13. J Clin Endocrinol Metab 2003; 88: 2223–2230.

    Article  CAS  PubMed  Google Scholar 

  49. Parker A, Meyer J, Lewitzky S, Rennich JS, Chan G, Thomas JD et al. A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located on chromosome 18p11. Diabetes 2001; 50: 675–680.

    Article  CAS  PubMed  Google Scholar 

  50. Lewis CE, North KE, Arnett D, Borecki IB, Coon H, Ellison RC et al. Sex-specific findings from a genome-wide linkage analysis of human fatness in non-Hispanic whites and African Americans: the HyperGEN study. Int J Obes (Lond) 2005; 29: 639–649.

    Article  CAS  Google Scholar 

  51. Kraja AT, Rao DC, Weder AB, Cooper R, Curb JD, Hanis CL et al. Two major QTLs and several others relate to factors of metabolic syndrome in the family blood pressure program. Hypertension 2005; 46: 751–757.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families who participated in this study. This project was funded with federal funds from the NIH R01 DK59264 and from USDA/ARS under Cooperative Agreement 58-6250-51000-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N F Butte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, G., Cole, S., Butte, N. et al. Genome-wide scan revealed genetic loci for energy metabolism in Hispanic children and adolescents. Int J Obes 32, 579–585 (2008). https://doi.org/10.1038/ijo.2008.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.20

Keywords

This article is cited by

Search

Quick links