Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oral Bisphenol A (BPA) given to rats at moderate doses is associated with erectile dysfunction, cavernosal lipofibrosis and alterations of global gene transcription

Abstract

Bisphenol A (BPA), a suspected reproductive biohazard and endocrine disruptor, released from plastics is associated with ED in occupationally exposed workers. However, in rats, despite the induction of hypogonadism, apoptosis of the penile corporal smooth muscle (SM), fat infiltration into the cavernosal tissue and changes in global gene expression with the intraperitoneal administration of high dose BPA, ED was not observed. We investigated whether BPA administered orally rather than intraperitoneally to rats for longer periods and lower doses will lead to ED. Main outcome measures are ED, histological, and biochemical markers in rat penile tissues. In all, 2.5-month-old rats were given drinking water daily without and with BPA at 1 and 0.1 mg kg–1 per day. Two months later, erectile function was determined by cavernosometry and electrical field stimulation (EFS) and serum levels of testosterone (T), estradiol (E2) and BPA were measured. Penile tissue sections were assayed by Masson (SM/collagen), Oil Red O (fat), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (apoptosis), immunohistochemistry for Oct4 (stem cells), and α-SM actin/calponin (SM and myofibroblasts), applying quantitative image analysis. Other markers were assayed by western blotting. DNA microarrays/microRNA (miR) assays defined transcription profiles. Orally administered BPA did not affect body weight, but (1) decreased serum T and E2; (2) reduced the EFS response and increased the drop rate; (3) increased within the corporal tissue the presence of fat, myofibroblasts and apoptosis; (4) lowered the contents of SM and stem cells, but not nerve terminals; and (5) caused alterations in the transcriptional profiles for both mRNA and miRs within the penile shaft. Long-term exposure of rats to oral BPA caused a moderate corporal veno-occlusive dysfunction (CVOD), possibly due to alterations within the corporal tissue that pose gene transcriptional changes related to inflammation, fibrosis and epithelial/mesenchymal transition (EMT).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Myers JP, vom Saal FS, Akingbemi BT, Arizono K, Belcher S, Colborn T et al. Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ Health Perspect 2009; 117: 309–315.

    Article  CAS  PubMed  Google Scholar 

  2. Carwile JL, Ye X, Zhou X, Calafat AM, Michels KB . Canned soup consumption and urinary bisphenol A: a randomized crossover trial. JAMA 2011; 306: 2218–2220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liao C, Kannan K . Widespread occurrence of bisphenol a in paper and paper products: implications for human exposure. Environ Sci Technol 2011; 45: 9372–9379.

    Article  CAS  PubMed  Google Scholar 

  4. Liao C, Kannan K . High levels of bisphenol a in paper currencies from several countries, and implications for dermal exposure. Environ Sci Technol 2011; 45: 6761–6768.

    Article  CAS  PubMed  Google Scholar 

  5. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL . Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 2005; 113: 391–395.

    Article  CAS  PubMed  Google Scholar 

  6. He Y, Miao M, Wu C, Yuan W, Gao E, Zhou Z et al. Occupational exposure levels of bisphenol A among Chinese workers. J Occup Health 2009; 51: 432–436.

    Article  CAS  PubMed  Google Scholar 

  7. He Y, Miao M, Herrinton LJ, Wu C, Yuan W, Zhou Z et al. Bisphenol A levels in blood and urine in a Chinese population and the personal factors affecting the levels. Environ Res 2009; 109: 629–633.

    Article  CAS  PubMed  Google Scholar 

  8. Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M et al. Endocrine disruptors and Polycystic Ovary Syndrome (PCOS): elevated serum levels of Bisphenol A in women with PCOS. J Clin Endocrinol Metab 2011; 96: E480–E484.

    Article  CAS  PubMed  Google Scholar 

  9. Sharpe RM . Bisphenol A exposure and sexual dysfunction in men. Editorial commentary on ref. #18. Hum Reprod 2010; 25: 292–294.

    Article  CAS  PubMed  Google Scholar 

  10. Li D, Zhou Z, Qing D, He Y, Wu T, Miao M et al. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum Reprod 2010; 25: 519–527.

    Article  CAS  PubMed  Google Scholar 

  11. Li DK, Zhou Z, Miao M, He Y, Qing D, Wu T et al. Relationship between urine bisphenol-A (BPA) level and declining male sexual function. J Androl 2010; 31: 500–506.

    Article  CAS  PubMed  Google Scholar 

  12. Li DK, Zhou Z, Miao M, He Y, Wang J, Ferber JR et al. Urine Bisphenol-A (BPA) level in relation to semen quality. Fertil Steril 2011; 95: 625–630.

    Article  CAS  PubMed  Google Scholar 

  13. Moon DG, Sung DJ, Kim YS, Cheon J, Kim JJ . Bisphenol A inhibits penile erection via alteration of histology in the rabbit. Int J Impot Res 2001; 13: 309–316.

    Article  CAS  PubMed  Google Scholar 

  14. Kovanecz I, Gelfand R, Masouminia M, Gharib S, Segura D, Vernet D et al. Chronic high dose Bisphenol A (BPA) induces substantial histological and gene expression alterations in rat penile tissue without impairing erectile function. J Sex Med 2013 doi:10.1111/jsm.12336(e-pub ahead of print).

  15. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Bisphenol A. September 2008. National Toxicology Program U.S. Department of Health and Human Services. Center For The Evaluation of Risks To Human Reproduction. NIH Publication No. 08-5994.

  16. Olivieri F, Rippo MR, Monsurro V, Salvioli S, Capri M, Procopio AD et al. MicroRNAs linking inflammation-aging; cellular senescence and cancer. Ageing Res Rev 2013 pii: S1568-1637(13)00023-8.

  17. Mathieu J, Ruohola-Baker H . Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 2013; 786: 329–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh S, Li SS . Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 2012; 13: 10143–10153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 2010; 29: 401–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kovanecz I, Rivera S, Nolazco G, Vernet D, Segura D, Gharib S et al. Separate or combined treatments with daily sildenafil, molsidomine, or muscle-derived stem cells prevent erectile dysfunction in a rat model of cavernosal nerve damage. J Sex Med 2012; 9: 2814–2826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovanecz I, Rambhatla A, Ferrini MG, Vernet D, Sanchez S, Rajfer J et al. Chronic daily tadalafil prevents the corporal fibrosis and veno-occlusive dysfunction (CVOD) that occurs following cavernosal nerve resection in the rat. BJU Int 2008; 101: 203–210.

    CAS  PubMed  Google Scholar 

  22. Nolazco G, Kovanecz I, Vernet D, Gelfand RA, Tsao J, Ferrini MG et al. Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int 2008; 101: 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  23. Magee TR, Kovanecz I, Davila HH, Ferrini MG, Cantini L, Vernet D et al. Antisense and short hairpin RNA (shRNA) constructs targeting PIN (protein inhibitor of NOS) ameliorate aging-related erectile dysfunction in the rat. J Sex Med 2007; 4: 633–643.

    Article  CAS  PubMed  Google Scholar 

  24. Prins GL, Yea S-H, Bircha L, Hob S-m, Kannan K . Serum bisphenolA pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague–Dawley rats. Reprod Toxicol 2011; 31: 1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Shiraishi S, Lee PW, Leung A, Goh VH, Swerdloff RS, Wang C . Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography-tandem mass spectrometry. Clin Chem 2008; 54: 1855–1863.

    Article  CAS  PubMed  Google Scholar 

  26. Tsao J, Vernet DA, Gelfand R, Kovanecz I, Nolazco G, Bruhn KW et al. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle. Stem Cell Res Ther 2013; 4: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vernet D, Gelfand R, Sarkissyan S, Heber D, Vadgama J, Gonzalez-Cadavid NF . Long-term exposure of breast cell lines to ethanol affects the transcriptional signature for some oncogenic gene families, but has little effect on this phenotype in mammospheres or on the expression of stem cell markers. Proceedings of 102nd Annual Meeting 2011 American Association for Cancer Research: Orlando, FL (abstract 5559).

    Google Scholar 

  28. Gelfand R, Vernet D, Kovanecz I, Rajfer J, Gonzalez-Cadavid NF . Specific molecular signatures characterize human tunica albuginea fibroblasts, Peyronie's plaque myofibroblasts, and corpora cavernosa smooth muscle cells, and their response to a fibrotic stimulus. J Sex Med 2011; 8: 6, (abstract 10).

    Google Scholar 

  29. Vernet D, Heydarkhan S, Kovanecz I, Lue Y-H, Rajfer J, Gonzalez-Cadavid NF . Characterization of endogenous stem cells from the mouse penis that express an embryonic stem cell gene and undergo differentiation into several cell lineages. J Urol 2009; 181: 43, (abstract 120).

    Article  Google Scholar 

  30. Carew RM, Wang B, Kantharidis P . The role of EMT in renal fibrosis. Cell Tissue Res 2012; 347: 103–116.

    Article  CAS  PubMed  Google Scholar 

  31. Fuxe J, Karlsson MC . TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol 2012; 22: 455–461.

    Article  CAS  PubMed  Google Scholar 

  32. Nehra A, Goldstein I, Pabby A, Nugent M, Huang YH, de las Morenas A et al. Mechanisms of venous leakage: a prospective clinicopathological correlation of corporeal function and structure. J Urol 1996; 156: 1320–1329.

    Article  CAS  PubMed  Google Scholar 

  33. Nehra A, Azadzoi KM, Moreland RB, Pabby A, Siroky MB, Krane RJ et al. Cavernosal expandability is an erectile tissue mechanical property which predicts trabecular histology in an animal model of vasculogenic erectile dysfunction. J Urol 1998; 159: 2229–2236.

    Article  CAS  PubMed  Google Scholar 

  34. Kim K, Son TG, Kim SJ, Kim HS, Kim TS, Han SY et al. Suppressive effects of bisphenol A on the proliferation of neural progenitor cells. J Toxicol Environ Health A 2007; 70: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  35. Yang L, Luo L, Ji W, Gong C, Wu D, Huang H et al. Effect of low dose bisphenol A on the early differentiation of human embryonic stem cells into mammary epithelial cells. Toxicol Lett 2013; 218: 187–193.

    Article  CAS  PubMed  Google Scholar 

  36. Andersson KE . Neurotransmitters: central and peripheral mechanisms. Int J Impot Res 2000; 12: S26–S33.

    Article  PubMed  Google Scholar 

  37. Giuliano F, Rampin O . Neural control of erection. Physiol Behav 2004; 83: 189–201.

    Article  CAS  PubMed  Google Scholar 

  38. Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A . The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology 1997; 49: 822–830.

    Article  CAS  PubMed  Google Scholar 

  39. Cappelleri JC, Siegel RL, Glasser DB, Osterloh IH, Rosen RC . Relationship between patient self-assessment of erectile dysfunction and the sexual health inventory for men. Clin Ther 2001; 23: 1707–1719.

    Article  CAS  PubMed  Google Scholar 

  40. vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 2007; 24: 131–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu X, Matsushima A, Okada H, Shimohigashi Y . Distinction of the binding modes for human nuclear receptor ERRgamma between bisphenol A and 4-hydroxytamoxifen. J Biochem 2010; 148: 247–254.

    Article  CAS  PubMed  Google Scholar 

  42. Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A, Shimohigashi Y . Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ Health Perspect 2008; 116: 32–38.

    Article  CAS  PubMed  Google Scholar 

  43. Ye L, Zhao B, Hu G, Chu Y, Ge RS . Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol Lett 2011; 207: 137–142.

    Article  CAS  PubMed  Google Scholar 

  44. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007; 24: 199–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kato H, Furuhashi T, Tanaka M, Katsu Y, Watanabe H, Ohta Y et al. Effects of bisphenol A given neonatally on reproductive functions of male rats. Reprod Toxicol 2006; 22: 20–29.

    Article  CAS  PubMed  Google Scholar 

  46. Richter CA, Taylor JA, Ruhlen RL, Welshons WV, Vom Saal FS . Estradiol and Bisphenol A stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. Environ Health Perspect 2007; 115: 902–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karagiannis GS, Weile J, Bader GD, Minta J . Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation. BMC Cardiovasc Disord 2013; 13: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao J, GA Imbrie, WE Baur, LK Iyer, MJ Aronovitz, TB Kershaw et al. Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2013; 33: 257–265.

    Article  CAS  PubMed  Google Scholar 

  49. De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.

    Article  CAS  PubMed  Google Scholar 

  50. Guttilla IK, Adams BD, White BA . ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab 2012; 23: 73–82.

    Article  CAS  PubMed  Google Scholar 

  51. Mongroo PS, Rustgi AK . The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 2010; 10: 219–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peter ME . Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009; 8: 843–852.

    Article  CAS  PubMed  Google Scholar 

  53. Primo MN, Bak RO, Schibler B, Mikkelsen JG . Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes. Cytokine 2012; 60: 741–748.

    Article  CAS  PubMed  Google Scholar 

  54. Sonkoly E, Ståhle M, Pivarcsi A . MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 2008; 18: 131–140.

    Article  CAS  PubMed  Google Scholar 

  55. Patel V, Noureddine L . MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 2012; 21: 410–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He Y, Huang C, Lin X, Li J . MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 2013; 95: 1355–1359.

    Article  CAS  PubMed  Google Scholar 

  57. Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C. Hypertension 2012; 59: 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  58. Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 2013; 49: 544–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burnett AL . Erectile dysfunction. J Urol 2006; 175 (3 Pt 2): S25–S31.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant NIH-NIEHS R21ES019465 and partially by grant NIH-NIEHS 1U01ES020887, to NGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N F Gonzalez-Cadavid.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovanecz, I., Gelfand, R., Masouminia, M. et al. Oral Bisphenol A (BPA) given to rats at moderate doses is associated with erectile dysfunction, cavernosal lipofibrosis and alterations of global gene transcription. Int J Impot Res 26, 67–75 (2014). https://doi.org/10.1038/ijir.2013.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijir.2013.37

Keywords

This article is cited by

Search

Quick links