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Magnesium prevents phosphate-induced vascular
calcification via TRPM7 and Pit-1 in an aortic
tissue culture model

Tomohiro Sonou1, Masaki Ohya1, Mitsuru Yashiro1, Asuka Masumoto1, Yuri Nakashima1, Teppei Ito2,
Toru Mima1, Shigeo Negi1, Hiromi Kimura-Suda2 and Takashi Shigematsu1

Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but

mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium

concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in

serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to

demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the

calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM)

and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-

dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mM magnesium. The FTIR

images and SEM–EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded

with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced

by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was

increased in tissues cultured in HP medium and was gradually—and dose dependently—decreased by magnesium. We conclude

that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.
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INTRODUCTION

Vascular calcification (VC) is prevalent in patients with chronic
kidney disease (CKD) and leads to an increase in cardiovascular
disease and both overall and cardiovascular mortality rates.1–4

Phosphate concentrations at supra-physiological levels are
considered the most effective inducer of VC in experimental in vivo
and in vitro models. We previously reported that increased uptake
of phosphate through phosphate transporter-1 (Pit-1)-induced
calcification of VSMCs in an aortic tissue culture model.5,6

Magnesium is the fourth most abundant mineral cation in the
body and plays an important role in numerous enzyme
reactions, transport processes and synthetic systems (for example,
for proteins, DNA and RNA). Recent studies—in the general
population, predialysis CKD patients, and hemodialysis patients—
have shown low magnesium levels to correlate with both overall and
cardiovascular mortality.7–9 In middle-aged subjects, 24-h urine
magnesium was inversely associated with cardiovascular risk
factors.10

The link between serum magnesium and VC has been assessed
in several clinical studies. A prospective study in 47 hemodialysis
patients revealed an association between serum magnesium
and intima-media thickness in carotid arteries, and that CKD patients
with higher serum magnesium had a significantly lower pulse
wave velocity (PWV).11 Furthermore, an observational study in
283 CKD patients reported an association between high serum
magnesium and improved endothelial function.12 We previously
reported the significance of serum magnesium as an independent
factor modulating parathyroid hormone levels in 1231 uremic
patients.13

In vivo animal studies have shown dietary magnesium
or magnesium-containing phosphate binders prevent VC.14

In vitro studies confirm the preventive effect of magnesium on
VC,15,16 with high magnesium levels being shown to prevent
calcification of bovine vascular smooth muscle cells (VSMCs)17 and
in human aortic VSMCs.18 However, the mechanisms by which
magnesium may influence VC remain unclear. The present study
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aimed to investigate, in an aortic tissue culture model, whether
increasing magnesium affects VC, and whether Transient
Receptor Potential Melastin 7 (TRPM7) and Pit-1 are mechanistically
implicated in this effect. We also elucidated the mineral composition
of the vascular calcification using Fourier transform infrared (FTIR)
spectroscopic imaging, scanning electron microscopy (SEM)
and energy dispersive X-ray spectroscopy (EDX) mapping.

MATERIALS AND METHODS

Experimental animals
Male Sprague-Dawley rats (7 weeks old; Kiwa Laboratory Animals Co.,
Wakayama, Japan) were maintained under specific pathogen-free conditions
with a 12-h light/dark cycle. After 2–7 days of acclimatization, all rats
were euthanized by intraperitoneal administration of 100 mgkg�1 of pento-
barbital and their aortas recovered for culture. All experimental procedures
were approved by the Animal Care and Use Committee of Wakayama
Medical University, and were in accordance with NIH guidelines for the care
and use of laboratory animals.

Aortic tissue culture
Aortic tissue culture was performed as previously described.6 Briefly,
aortas (from the arch to the iliac bifurcation) were removed and carefully
denuded of connective tissue. The vessels were cut into 3–5-mm rings
and placed in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum,
penicillin and streptomycin. Aortic segments were maintained at 37 °C in a
5% CO2 incubator, changing the medium every 2 days for a total of
10 days. The concentrations of Ca2+ and phosphate in the DMEM were
1.8 and 0.9 mM, respectively, with a pH of 7.2 (control). To stimulate
phosphate-induced calcification, NaH2PO4 and Na2HPO4 were added to
serum-supplemented DMEM to give a final phosphate concentration
of 3.8 mM. MgSO4 was added to this high-phosphate medium to create various
magnesium concentrations. To investigate the role of TRPM7—a
Mg2+ transporter—we applied 200 μmol l�1 2-aminoethoxy-diphenylborate
(2-APB) to inhibit TRPM7.
On completion of the 10-day culture, aortic segments were washed twice

in calcium–magnesium-free Hanks’ balanced salt solution (Wako Pure
Chemical Industries, Osaka, Japan) and divided into four analysis groups.
Group 1 was weighed on a microbalance and retained for the measurement of
calcium content. Group 2 was mounted in OCT compound (Sakura Finetek,
CA, USA) and sliced into 4 μm cryosections for microspectroscopy analysis.
Group 3 was mixed with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) for
extraction of total RNA (tRNA), and Group 4 was homogenized in RIPA
buffer (#9806, Cell Signaling Technology Japan, Tokyo, Japan) for western
blot analysis.

Quantification of calcification
Aortic segments were weighed and decalcified with 10% formic acid for 24 h.
The calcium content of the supernatant was quantified by the methylxylenol
blue method using the Wako Calcium E-Test (Wako Pure Chemical Industries,
Osaka, Japan). Results were corrected by wet tissue weight and expressed as
mgg�1 wet weight of tissue.

FTIR imaging
FTIR images were acquired using an imaging system with a mercury
cadmium telluride (MCT) line detector comprising 16 pixel elements
(Spotlight 400/Spectrum 400, Perkin-Elmer, MA, USA) in transmission mode
to make four scans in the 4000–680 cm− 1 range at a spectral resolution of
4 cm− 1 and a pixel size of 25× 25 μm.

SEM and EDX mapping
SEM images and EDX maps were obtained at × 1000 magnification using
a field emission scanning electron microscope (JSM-7800 F, JEOL, Japan)
operating at an accelerating voltage of 7.0 kV at a 10-mm working distance.

K-alpha is typically the strongest X-ray spectral line for an element bombarded
with energy sufficient to cause maximally intense X-ray emission.

Western blot analysis
Protein concentration was quantified utilizing a commercial reagent

(BCA; Pierce, IL, USA) and normalized to 0.5 or 1 μg μl− 1 for all samples. A
total of 10 μg of protein was applied to each lane of 15% polyacrylamide gels.

The gel was transferred to a polyvinylidene difluoride (PVDF) membrane using

Ezblot (AE-1460, ATTO, Tokyo, Japan) reagent and a semi-dry blotting
unit (WSE-4110 PoweredBLOT One, ATTO), according to the manufacturer’s

instructions. After transfer, the blots were blocked with a commercial blocking
reagent (Can Get Signal PVDF Blocking Reagent; Toyobo, Osaka, Japan) for

1 h at room temperature. After washing in Tris-buffered saline (50 mM Tris,

150 mM NaCl; pH 7.6) containing 0.1% Tween 20 (TBST), the blots were
incubated overnight at 4 °C with primary antibodies diluted in an

immunoreaction-enhancer solution (Can Get Signal Solution 1; Toyobo).
Primary antibodies used in this study were rabbit polyclonal anti-GAPDH

(sc-25778; Santa Cruz Biotechnology, CA, USA; diluted 1:1000) and rabbit

polyclonal anti-Pit-1 (sc-98814; Santa Cruz Biotechnology; diluted 1:1000). The
membrane was washed in TBST and then reacted with horseradish peroxidase-

conjugated donkey anti-rabbit IgG (ab16284; Abcam, Cambridge, MA, USA)

diluted in an immunoreaction-enhancer solution (1:5000 in Can Get Signal
Solution 2; Toyobo) for 1 h at room temperature. The membrane was washed

again in TBST and processed using an enhanced chemiluminescence procedure
(ECL Prime Western Blotting Detection Reagent; GE Healthcare Japan, Tokyo,

Japan). The ECL signals on the immunoblots were detected using a Fuji

LAS1000-plus chemiluminescence imaging system (Fuji Film, Tokyo, Japan)
and quantified using ImageJ software (version 1.47; National Institutes of

Health, Bethesda, MD, USA).

Statistical analysis
Data are presented as mean± s.d. The data were primarily analyzed with
Bartlett’s test for equality of variance. When homoscedasticity was not

confirmed by Levene's test, the Kruskal–Wallis test was applied to the data.
Based on the results of the Kruskal–Wallis tests, post hoc Steel-Dwass multiple

comparisons were performed to compare the differences between various

conditions. Data from the 2-APB investigation was analyzed by two-way
ANOVA (magnesium supplementation× 2-APB). Po0.05 was considered to be

statistically significant. All statistical analysis was performed using JMP software
(version 11.2; SAS Institute, Cary, NC, USA).

RESULTS

Magnesium prevents phosphate-induced calcification in a rat aortic
tissue culture
After the 10-day ex vivo incubation, the calcium content in aortas
cultured in high-phosphate medium (3.8 mM l− 1) was significantly
increased compared with control, in agreement with previous
investigations including our own.5,6 When magnesium was added to
the high-phosphate medium, VC (quantified as aortic calcium
content) was suppressed in a dose-dependent manner, and almost
completely prevented by supplementation with 2.0 mM magnesium
(Figure 1).

FTIR imaging of phosphate distribution in aortic media
Figure 2 shows FTIR images of aortas cultured in various conditions
for 10 days. In the FTIR images visualizing the distribution of
phosphate ions at approximately 1035–1025 cm− 1 (designated as
hydroxyapatite), the white- and red-colored regions are areas of
high infrared (IR) absorbance, whereas the blue region indicates
weaker IR absorbance. Accordingly, the FTIR images show that
phosphate accumulated in aortic rings cultured in several calcifying
conditions (high phosphate, magnesium 1.2, and magnesium 1.6).
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SEM–EDX imaging of phosphate, calcium and magnesium
distribution in aortic media
As shown in Figure 3, both phosphate and calcium were barely
present in aortic rings cultured in control medium, whereas they
were markedly evident in the calcified areas of aortas cultured in
high-phosphate conditions, consistent with our previous work.6

Magnesium distribution in aorta sections incubated with high
phosphate was also compared with that in aorta cultured in control,
and found to be reduced as magnesium concentration increased from
1.6 mM to 2.4 mM. The SEM–EDX overlay map demonstrated that
phosphorus and calcium co-localized in the area of medial calcifica-
tion induced by exposure to high-phosphate concentrations.

Inhibition of TRPM7 decreased the protective effect of magnesium
on VC
The inhibitory effect of magnesium on phosphate-induced VC was
partially decreased by 2-APB, an inhibitor of TRPM7 (Figure 4).

Magnesium inhibits the phosphate-induced increase in Pit-1
protein
Pit-1 protein in aortic rings maintained in high-phosphate medium
for 10 days was significantly higher than that observed in control
(~2.5-fold greater). After incubation in high-phosphate medium

Figure 1 Calcium content of aortic rings incubated under various
conditions after 10 days of ex vivo incubation (n=8–10 rings obtained from
eight rats). *Statistically significant compared with CON (Po0.05).
#Statistically significant compared with HP (Po0.05). Ca, calcium;
CON, control medium; HP, high-phosphate medium; Mg, magnesium;
Pi, phosphorus.

Figure 2 SEM images and EDX elemental maps of aortas cultured under various conditions. EDX elemental maps show phosphorus (Pi; red), calcium
(Ca; green) and magnesium (Mg; blue). CON, control medium (0.9 mM Pi, 0.8 mM magnesium); EDX, energy dispersive X-ray spectroscopy; HP, high-
phosphate medium (3.8 mM Pi, 0.8 mM magnesium); Mg 1.6, high-phosphate medium supplemented with 1.6 mM magnesium; Mg 2.0, high-phosphate
medium supplemented with 2.0 mM magnesium; SEM, scanning electron microscopy. A full color version of this figure is available at the Hypertension
Research journal online.
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supplemented with 2.0 mM magnesium, Pit-1 was significantly
decreased compared with that in sections cultured in high-
phosphate conditions alone, in fact being comparable to levels in
control samples instead (Figure 5).

DISCUSSION

Previous clinical studies have suggested that lower serum magnesium
levels are associated with increased VC,19,20 and were supported by
experimental studies demonstrating that magnesium directly prevents
calcification in VSMCs.11,16–18,21 Because VSMCs lack the structure
and matrix of a vessel, it is preferable to use an aortic tissue
culture model to conduct in vitro investigation of the mechanism(s)
involved in VC. Early indications were that magnesium attenuates the
accumulation of calcium in the rat aortic tissue culture model,
but these aortas were cultured without serum,11 which drastically
accelerates calcification in VSMCs.22 We thus adopted the rat aortic
tissue culture model using serum-supplemented medium—a more
physiological condition—to evaluate the inhibitory effect of magne-
sium on VC. In the present study, we clearly demonstrate
that magnesium prevents phosphate-induced VC in this rat
tissue culture model (Figure 1), and replicate a previous finding
from VSMC cultures11 that 2-APB—an inhibitor of TRPM7—negates
this effect of magnesium (Figure 4).
Previous studies have also suggested that phosphate uptake through

Pit-1—a member of the type ΙΙΙ sodium-dependent phosphate
transporter—is essential for calcification of VSMCs.5,23,24 Those
studies, and our own previous investigation,6 demonstrated that
Pit-1 is upregulated in high-phosphate conditions. In the present
study, we verified that Pit-1 protein expression was increased by
high-phosphate conditions, a phenomenon that was reversed by
supplementation with a high magnesium concentration. It is unclear

Figure 3 FTIR images of the distribution of phosphate (~1035–1025 cm−1, designated as hydroxyapatite) in aortas cultured under various conditions.
CON, control medium (0.9 mM Pi, 0.8 mM magnesium); FTIR, Fourier transform infrared spectroscopy; HP, high-phosphate medium (3.8 mM Pi, 0.8 mM

magnesium); Mg, magnesium; Mg 1.6, high-phosphate medium supplemented with 1.6 mM Mg; Mg 2.0, high-phosphate medium supplemented with
2.0 mM Mg; P, phosphate; SEM, scanning electron microscopy. A full color version of this figure is available at the Hypertension Research journal online.

Figure 4 2-APB inhibits the effect of magnesium on VC (n=15–16 rings
obtained from 10 rats). Two-way ANOVA (magnesium concentration×2-ABP)
was performed. Figure indicates the main effects of both magnesium
concentration and 2-APB on VC in rat aorta. ANOVA, analysis of variance;
2-APB, 2-aminoethoxy-diphenylborate; Ca, calcium; HP, high-phosphate
medium; Mg, magnesium; P, phosphate.
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why or how magnesium regulates the expression of Pit-1 protein;
we aim to elucidate this in subsequent investigations.
Calcium deposits in aortic sections can be visualized using the

von Kossa method, which stains both soluble (chlorides and sulphates)
and insoluble (carbonates and phosphates) calcium compounds.5,25,26

Because this method is unable to quantify the type of calcium salt,
we went further in our previous report by revealing the distributions
of calcium and phosphate in structural medial calcifications
using FTIR and SEM–EDX.6 These techniques can visualize distribu-
tions of both individual mineral elements and specific calcium
compounds such as phosphate (1035–1025 cm− 1) that are indicative
of hydroxyapatite in aortic rings. All elements (phosphate, calcium and
magnesium) accumulated in calcified sections under high-phosphate
conditions but this accumulation was gradually diminished by
increasing magnesium concentrations. These data suggest that the
inhibitory effect of magnesium on VC is unlikely to be caused by
either replacement of magnesium with calcium, or by excessive
magnesium accumulation.
In vitro studies of VC have mostly used cell culture systems, but

because these models lack the structure and matrix of a normal vessel,
the extrapolation of these findings to more physiological scenarios is of
limited value. The aortic tissue culture model used in the present study
is more physiologically relevant, and indicated that magnesium
prevents high-phosphate-induced VC via actions on TRPM7 and
Pit-1. In further investigation, we aim to clarify the mechanistic basis
of how magnesium regulates Pit-1.
We previously reported that hypermagnesemia, defined as

serum Mg level ⩾ 2.2 mg dl− 1 (0.92 mM), was found in 53.9% of
uremic patients and develops frequently in those with an eGFR
o5 ml min− 1.12 The present study suggests that 2.0 mM magnesium
almost completely prevents VC in an aortic tissue culture model.
Higher serum magnesium might be beneficial for patients presenting

vascular calcification such as in CKD. Several clinical symptoms
develop at serum magnesium levels above 2.5 mM and severe disorders
are observed at levels greater than 5mmol l− 1.27 Further study
and interventions are needed for CKD patients.
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