The impact of angiotensin receptor blockers on arterial stiffness: a meta-analysis

Feng Peng^{1,4}, Hongming Pan^{2,4}, Bin Wang², Jinxiu Lin¹ and Wenquan Niu³

Some studies reported a protective role of angiotensin receptor blockers (ARBs) against arterial stiffness. Therefore, we performed a meta-analysis of published clinical trials to systematically assess the impact of ARBs on arterial stiffness as measured by using pulse wave velocity (PWV). Eligible articles were identified by searching PubMed, EMBASE, Cochrane, Wanfang and CNKI databanks before 31 July 2014. The data were extracted independently and in duplicate. Forty articles including 53 clinical trials qualified, including 1650 and 1659 subjects in ARB treatment and control groups, respectively. Overall reductions in carotid-femoral PWV (cfPWV) and brachial-ankle PWV (baPWV) were statistically significant, with an average of -42.52 cm s^{-1} (95% CI: -81.82 to -3.21; P=0.034) and $-107.08 \text{ cm s}^{-1}$ (95% CI: -133.98 to -80.18; P<0.0005), respectively, after receiving ARBs. Subgroup analysis by ARB type revealed that telmisartan (weighted mean difference or WMD = $-100.82 \text{ cm s}^{-1}$; P<0.0005) and valsartan (WMD = $-104.59 \text{ cm s}^{-1}$; P<0.0005) significantly reduced baPWV, but only valsartan reduced cfPWV (WMD = -65.58; P=0.030). cfPWV was significantly reduced in comparisons of ARBs with placebo (WMD = -79.65 cm s^{-1} ; P<0.0005). There were low probabilities of publication bias. Taken together, our findings support the important role of ARB treatment in improving arterial stiffness.

Hypertension Research (2015) 38, 613-620; doi:10.1038/hr.2015.51; published online 9 April 2015

Keywords: angiotensin receptor blocker; arterial stiffness; blood pressure; meta-analysis; pulse wave velocity

INTRODUCTION

It is well established that arterial stiffness is an independent predictor for future cardiovascular events and all-cause mortality in general populations.^{1–3} Mounting evidence suggests that the renin–angiotensin system (RAS) has a pivotal role in the progression of arterial stiffness, and blockade of this system can alleviate its progression.^{4,5} Angiotensin II receptor antagonists, which are known as angiotensin receptor blockers (ARBs), are a group of pharmaceuticals that inhibit the negative impact of angiotensin II. Angiotensin II is a potent vasoactive peptide on the endothelium in RAS, which lowers blood pressure and improves arterial elasticity.^{6,7} The beneficial impact of ARBs on arterial stiffness extends beyond the resulting blood pressure reduction.⁸ However, the exact mechanisms underlying the ARBdependent improvement in arterial stiffness remain poorly understood.

The heart is the primary site of damage of elevated arterial stiffness. Heart contraction produces a pulse or energy wave that travels through the circulation. Arterial stiffness is predominantly reflected by the traveling speed of this pulse wave, which is termed pulse wave velocity (PWV). PWV is established as a simple, well-validated and reproducible technique of applanation tonometry.⁹ PWV measurement is a general clinical tool that has yielded some of the strongest evidence of the prognostic significance of large artery stiffening. Several clinical trials explored the potential impact of ARBs on arterial stiffness in various populations.^{10–13} However, a comprehensive evaluation of this impact is lacking. Therefore, we systematically performed a meta-analysis of all published clinical trials that assessed the impact of ARBs on arterial stiffness as measured by PWV compared with other types of drugs.

METHODS

This meta-analysis conformed to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement.¹⁴

Search strategy

We obtained potentially relevant articles by searching PubMed, EMBASE (Excerpta Medica Database), Cochrane (http://www.thecochranelibrary.com), Wanfang (http://www.wanfangdata.com.cn) and CNKI (China National Knowledge Infrastructure, http://www.cnki.net) as of 31 July 2014 by using

E-mail: niuwenguan_shcn@163.com

¹Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; ²Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang, China and ³State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ⁴These authors contributed equally to this work.

Correspondence: Professor J Lin, Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou 350005, China. E-mail: linjinxiu@medmail.com.cn

or Professor W Niu, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Second Road 197, Shanghai 200025, China.

Received 23 October 2014; revised 4 February 2015; accepted 20 February 2015; published online 9 April 2015

614

the subject terms 'pulse wave velocity,' 'arterial stiffness,' 'angiotensin receptor blocker,' 'angiotensin II antagonism' and 'sartan.' We additionally obtained the citations of relevant articles by reviewing the references of retrieved studies and review articles. We restricted search results to clinical trials on humans that were published in English or Chinese.

Selection

Two authors (Feng Peng and Wenquan Niu) independently read the titles and abstracts of all retrieved articles and assessed article eligibility. If an article could not be rejected with certainty from the title or abstract, we obtained its full text to decide whether data on the topic of interest were provided. If more than one publication was based on the same study group, the data from the most recent or complete article were extracted. If results were provided according to different drug types in either the treatment or control group, we treated the results separately.

Inclusion/exclusion criteria

Our analyses were restricted to clinical trials that met all of the following inclusion criteria: designed in a randomized manner and compared the ARB treatment with a placebo or other types of drugs on arterial stiffness as measured by PWV. Trials were excluded (one was sufficient for exclusion) if they were duplicate publications, conference abstracts, proceedings, case reports, case series, editorials, review articles or non-English and non-Chinese articles.

Data extraction

Two authors (Feng Peng and Wenquan Niu) independently completed the data inclusion sheets using a standard Excel spreadsheet template (Microsoft, Redmond, WA, USA). We resolved disagreements during data extraction and reached consensus after a discussion and review of original articles.

We extracted detailed information for the impact of ARBs on arterial stiffness from each eligible article, including the first author, publication year, ethnicity and disease status of study patients, sample size in each arm, PWV type, study design, masking status, the type and dose of drugs used in each group, age, gender, body mass index, follow-up duration, levels and changes of systolic blood pressure (SBP) and diastolic blood pressure, pulse pressure, heart rate and PWV at the baseline and follow-up.

Statistics

Quantitative parameters were compared by using weighted mean difference (WMD) and 95% confidence interval (95% CI) when hinged on a randomeffects model by using the DerSimonian and Laird method¹⁵ for patients taking ARBs versus placebo or other drugs. Pearson correlation analysis was used to examine the relationship between quantitative parameters of interest. The inconsistency index (I^2) statistic was calculated to assess between-study heterogeneity, and this statistic is defined as the percentage of the observed between-study variability that is because of heterogeneity rather than chance.

Predefined subgroup analyses were performed according to the types of drugs used in ARB treatment (mainly including valsartan, telmisartan, losartan, candesartan and irbesartan) and control (mainly including calcium channel blockers, angiotensin converting enzyme inhibitor or ACEI, placebo, non-RAS drugs, diuretics and β -blocker) groups to explore the potential sources of heterogeneity. Only subgroups involving two or more clinical trials were summarized in this meta-analysis.

We performed influential analysis by sequentially omitting each trial one at a time and computing differential estimates for the remaining trials to quantify the contribution of individual trials to the pooled estimates. We further resorted to meta-regression analysis to explore the other sources of heterogeneity from the divergence of baseline continuous characteristics across trials, including age, male percentage, body mass index and during of treatment.

We assessed the probability of publication bias by using Begg's test. The significance level was defined as P < 0.10 for the χ^2 -test of I^2 and Begg's test.¹⁶ The statistical analyses described above were completed using STATA software (StataCorp, College Station, TX, USA, version 11.2 for Windows).

RESULTS

Eligible trials

We illustrated the characteristics of all eligible trials and study patients in Tables 1 and 2, respectively. A flow diagram schematizing the process of article exclusion for specific reasons is summarized in Figure 1. In total, 40 articles with 53 clinical trials qualified, including 1650 subjects in the ARB treatment group and 1659 subjects in the control.8,10-13,17-51 Of all clinical trials, 41 were performed in East Asians, and 12 trials were performed in Caucasians. For the ARB type, 24 trials adopted valsartan, 10 trials adopted telmisartan, 9 trials adopted losartan, 7 trials adopted candesartan and 3 trials adopted irbesartan. Control subjects included 20 trials that adopted calcium channel blockers, 9 trials that adopted ACEIs, 7 trials that adopted a placebo, 5 trials that adopted diuretics, 5 trials that adopted nonantihypertensive drugs, 3 trials that adopted beta blockers and 1 trial that adopted beraprost sodium, eplerenone, renin inhibitor and statins. The average follow-up of all clinical trials was 18.75 (s.d.: 13.25) months with a range from 2 to 48 months.

Changes in pulse wave velocity

Overall and stratified changes in PWV between ARB treatment and control groups are provided in Figure 2 and Table 3. PWV is a validated method to quantify arterial stiffness, and it can be measured in different arterial segments. baPWV and cfPWV are the most common indices. We separately analyzed changes in brachial-ankle PWV (baPWV) and carotid-femoral PWV (cfPWV) in this metaanalysis. Overall reductions in cfPWV and baPWV were statistically significant by an average of -42.52 cm s^{-1} (95% CI: -81.82 to -3.21; P = 0.034) and $-107.08 \text{ cm s}^{-1}$ (95% CI: -133.98 to -80.18; P < 0.0005), respectively, after treatment with ARBs (Figure 2). There was strong evidence of heterogeneity in both comparisons. Overall reductions were strengthened for cfPWV and baPWV by -49.03 cm s⁻¹ (95% CI: -92.78 to -5.28; P=0.028) and -121.17 cm s⁻¹ (95% CI: -151.39 to -90.96; P<0.0005), respectively, after the removal of clinical trials that included controls who received ACEI or renin inhibitors, which might have exerted an effect similar to ARBs.

Stratified analyses by the type of ARBs detected significant reductions in baPWV for telmisartan (WMD = $-110.82 \text{ cm s}^{-1}$; 95% CI: -145.66 to -55.98; P < 0.0005) and valsartan (WMD = $-104.59 \text{ cm s}^{-1}$; 95% CI: -154.01 to -55.18; P < 0.0005), and reductions in cfPWV for valsartan (WMD = -65.58 cm/s; 95% CI: -124.84 to -6.32; P = 0.030) with evident heterogeneity (Table 3). Stratification by the type of drugs taken by controls revealed a significant reduction in cfPWV for placebo (WMD = -79.65 cm s^{-1} ; P = 0.001; $I^2 = 70.6\%$), and baPWV was significantly reduced for comparisons of ARBs with diuretics (WMD = -77.83 cm s^{-1} ; P < 0.0005), calcium channel blockers (WMD = $-130.74 \text{ cm s}^{-1}$; P < 0.0005) and non-RAS drugs (WMD = -81.66 cm s^{-1} ; P < 0.001) (Figure 2).

Changes in blood pressure and heart rate

Overall and stratified changes in blood pressure and heart rate between the ARB treatment and control groups are provided in Tables 4 and 5. Overall changes in SBP, diastolic blood pressure, pulse pressure and heart rate were not obvious between the two groups, and there was strong evidence of heterogeneity. Moreover, changes in PWV regressed with changes in pulse pressure in the ARB treatment group, and there was no observable significance for either cfPWV (P=0.229) or baPWV (P=0.228), even after adjusting for age, gender, body mass index and treatment duration.

The grouping of studies by ARB type revealed an obvious reduction in SBP for telmisartan (WMD = -1.12 mm Hg; 95% CI: -1.82 to -0.42; P=0.002; $l^2=0.0\%$) (Table 4) but a significant increase in heart rate for losartan (WMD=6.66 beats per minute; 95% CI: 0.77 to 12.55; P=0.027) (Table 5). Subgroup analysis by the type of drugs taken by controls revealed significant reductions in SBP

for comparisons of ARBs with placebo (WMD = -3.81 mm Hg; 95% CI: -6.70 to -0.91; P=0.010; $I^2=77.2\%$) and diuretics (WMD = -1.31 mm Hg; 95% CI: -2.33 to -0.27; P=0.013; $I^2=0.0\%$), and reductions in diastolic blood pressure for placebo

Table 1	The baseline	characteristics	of all	eligible	trials i	in this	meta-analysis
				<u> </u>			

Author (year)	Ethnicity	Status	PWV type	Design	Masking	ARB type	Drugs in controls	Treatment	Control	Follow-up (months)
Mahmud and Feely ⁸	Caucasian	Hypertension	cfPWV	Crossover	Open	Valsartan	ACEI	12	12	4
Mahmud and Feely ⁸	Caucasian	Hypertension	cfPWV	Crossover	Double	Losartan	Diuretics	11	11	4
Asmar <i>et al</i> . ²⁶	Caucasian	Hypertension	cfPWV	Crossover	Double	Telmisartan	Placebo	20	20	3
Suzuki <i>et al.</i> ³⁶	East Asian	Others	baPWV	Parallel	Double	Valsartan	Placebo	14	10	48
Takami and Shigemasa ³⁷	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	CCB	20	16	12
Takami and Shigemasa ³⁷	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	CCB	20	20	12
Takami and Shigemasa ³⁷	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	ACEI	20	20	12
Munakata <i>et al.</i> ³²	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	CCB	21	20	12
Anan ²⁵	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	ACEI	10	11	40
Ichihara <i>et al.</i> ²⁷	East Asian	Hypertension	baPWV	Parallel	Open	Losartan	ACEI	22	21	48
Ichihara <i>et al.</i> 27	East Asian	Hypertension	baPWV	Parallel	Open	Losartan	Placebo	22	21	48
Ichihara <i>et al.</i> ²⁸	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	ССВ	50	50	48
Rajagopalan <i>et al.</i> ³⁴	Caucasian	Healthy	cfPWV	Crossover	Double	Valsartan	Placebo	33	33	13
Morimoto et al. ³¹	East Asian	Hypertension	baPWV	Parallel	Open	Telmisartan	CCB	21	22	24
Zhao ⁵⁰	East Asian	Hypertension	cfPWV	Parallel	NA	Valsartan	Placebo	20	20	12
Rehman <i>et al</i> 35	Caucasian	Hypertension	cfPWV	Parallel	Double	Losartan	ACFL	19	20	12
Nakavama <i>et al</i> ³³	Fast Asian	Hypertension	haPWV	Parallel	Double	Telmisartan	Reraprost sodium	20	20	12
Kosch et al 29	Caucasian	Hypertension	cfPWW	Parallel	Double	Valsartan	Beta blocker	25	27	12
Zheng and Lin ⁵¹	Fact Asian	Hypertension		Parallol	Open	Valsartan	Diuretics	21	18	12
Zheng and Lin ⁵¹	East Asian	Hypertension		Parallol	Open	Valsartan	Bota blockor	21	20	12
Zheng and Lin ⁵¹	East Asian	Hypertension		Parallol	Open	Valsartan		21	20	12
Zheng and Lin ⁵¹	East Asian	Hypertension		Darallal	мл	Valsartan		21	24	12
Nekemure et el ¹²	EdSt Asidii	Hypertension		Parallel	Onen	ValSallall	ACEI	21	15	12
		Hypertension	DAPWV	Parallel	Open	Condocator	CCB	10	15	40
	East Asian	Hypertension		Parallel	Open	Candesartan		11	11	12
Shigenaga et al.22	East Asian	Hypertension		Parallel	NA NA	Vaisartan	Non-RAS	15	15	24
Snigenaga <i>et al.</i>	East Asian	Hypertension		Parallel	INA O	Candesartan	NON-RAS	15	15	24
Ruan <i>et al.</i> 40	East Asian	heart failure	DaPWV	Parallel	Open	Irbesartan	Non-RAS	25	22	12
LI et al.43	East Asian	Hypertension	DaPWV	Parallel	Open	Telmisartan	ACEI	34	34	12
Li et al.43	East Asian	Hypertension	baPWV	Parallel	Open	Telmisartan	CCB	34	34	12
Mitsuhashi <i>et al</i> . ¹¹	East Asian	Hypertension	baPWV	Parallel	Open	Losartan	Non-RAS	20	20	48
Long and Liu ⁴⁵	East Asian	Others	baPWV	Parallel	NA	Valsartan	CCB	35	40	24
Li and Wang ⁴⁴	East Asian	Hypertension	baPWV	Parallel	Open	Telmisartan	CCB	48	45	12
Li and Wang ⁴⁴	East Asian	Hypertension	baPWV	Parallel	Open	Telmisartan	Diuretics	48	42	12
Ruan <i>et al.</i> ⁴⁷	East Asian	Hypertension	baPWV	Parallel	Open	Candesartan	Non-RAS	23	19	12
Han <i>et al.</i> ¹⁹	East Asian	Others	baPWV	Parallel	Open	Valsartan	Statins	57	57	24
Lunder et al.21	Caucasian	Healthy	cfPWV	Parallel	Double	Valsartan	Placebo	20	20	4
Wu <i>et al.</i> ⁴⁸	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	CCB	48	50	2
Wu <i>et al.</i> ⁴⁸	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	ACEI	48	49	2
He et al. ³⁹	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	CCB	44	44	12
Feng ³⁸	East Asian	Hypertension	baPWV	Parallel	Open	Telmisartan	CCB	44	49	12
Tomiyama <i>et al</i> . ²⁰	East Asian	Hypertension	baPWV	Parallel	Open	Candesartan	CCB	56	57	32
Hayoz <i>et al.</i> ¹⁰	Caucasian	Hypertension	baPWV	Parallel	Double	Valsartan	CCB	63	62	38
Spanos et al. ¹³	Caucasian	Hypertension	cfPWV	Parallel	NA	Valsartan	Renin inhibitor	14	15	24
Yang <i>et al</i> . ⁴⁹	East Asian	Hypertension	baPWV	Parallel	NA	Valsartan	Diuretics	42	40	24
Kong <i>et al.</i> ⁴¹	East Asian	Hypertension	baPWV	Parallel	Open	Irbesartan	ACEI	34	34	12
Kong <i>et al.</i> ⁴¹	East Asian	Hypertension	baPWV	Parallel	Open	Irbesartan	CCB	34	34	12
Li and Ma ⁴²	East Asian	Hypertension	baPWV	Parallel	Open	Telmisartan	CCB	33	34	24
Huang <i>et al.</i> ⁴⁰	East Asian	Hypertension	baPWV	Parallel	Double	Losartan	Eplerenone	40	37	12
Kim <i>et al.</i> ¹¹	East Asian	Hypertension	cfPWV	Parallel	Open	Losartan	Beta blocker	88	94	24
Ihm et al.24	East Asian	Hypertension	cfPWV	Parallel	Open	Losartan	CCB	99	101	24
Agnoletti <i>et al.</i> ²³	Caucasian	Hypertension	cfPWV	Parallel	Open	Candesartan	CCB	33	33	12
Agnoletti <i>et al.</i> ²³	Caucasian	Hypertension	cfPWV	Parallel	Open	Candesartan	Diuretics	33	44	12
Agnoletti <i>et al.</i> ²³	Caucasian	Hypertension	cfPWV	Parallel	Open	Candesartan	Placebo	33	35	12

Abbreviations: ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; baPWV and cfPWV, brachial-ankle and carotid-femoral pulse wave velocity; CCB, calcium channel blocker; NA, not available; RAS, renin–angiotensin system.

616

Table 2 The baseline characteristics of all study patients between the treatment and control groups in this meta-analysis

	Age (years)		Gender (male, %)		BMI (kg m ^{−2})		PWV in treatment group		PWV in control group	
Author	Treatment	Control	Treatment	Control	Treatment	Control	Baseline	Follow-up	Baseline	Follow-up
Mahmud and Feely ⁸	49	49	NA	NA	NA	NA	1110	1050	1110	1040
Mahmud and Feely ⁸	57	57	45.5	45.5	NA	NA	1175	1035	1155	1170
Asmar et al.26	NA	NA	NA	NA	NA	NA	1253	NA	1307	NA
Suzuki H (2003)	56	57	NA	NA	NA	NA	1700	1470	1670	1440
Takami and Shigemasa ³⁷	71	72.8	100	100	22.8	23.2	NA	NA	NA	NA
Takami and Shigemasa ³⁷	71	72	100	100	22.8	22.7	NA	NA	NA	NA
Takami and Shigemasa ³⁷	71	71.4	100	100	22.8	22.9	NA	NA	NA	NA
Munakata <i>et al.</i> ³²	53	55	47.6	50	24.8	25.3	1669	NA	1622	NA
Anan <i>et al.</i> ²⁵	59	59	10	54.5	25.5	25.4	1853	1615	1818	1613
Ichihara <i>et al.</i> ²⁷	65	61	59.1	52.4	20.8	20.1	2004	1898	2012	1870
Ichihara et al.27	65	63	59.1	57.1	20.8	20.8	2004	1898	2008	2144
Ichihara <i>et al.</i> ²⁸	54.3	53.9	72	76	24.2	24.6	1671	1489	1723	1517
Rajagopalan <i>et al.</i> ³⁴	71	71	60	60	NA	NA	787	730	789	786
Morimoto et al.31	56	58	43	41	24.8	24	1699	1432	1611	1540
Zhao ⁵⁰	66.5	66.5	62.5	62.5	NA	NA	1280	800	1300	1128
Rehman <i>et al.</i> ³⁵	52.5	53.1	NA	NA	26.6	27.7	1200	NA	1100	NA
Nakavama <i>et al</i> ³³	71.7	70.7	60	60	23.4	21.9	1985	NA	2011	NA
Kosch et al 29	45.4	46.2	51.4	57.6	29	28.2	1090	1030	1100	1040
Zheng and Lin ⁵¹	52	50	61.9	55.6	24.8	24.7	1090	842.6	1060	967.8
Zheng and Lin ⁵¹	52	51	61.9	60	24.8	24.2	1090	842.6	1120	945.3
Zheng and Lin ⁵¹	52	52	61.9	62.5	24.8	25.1	1090	842.6	1080	706.3
Zheng and Lin ⁵¹	52	50	61.9	54 5	24.8	24.5	1090	842.6	1110	868
Nakamura <i>et al</i> ¹²	45	47	60	60	25.4	24.8	1680	1460	1620	1660
Ishii <i>et al</i> ¹⁷	68.4	68	NA	NA	23.9	23.5	2007.8	1364	1985 7	1813
Shigenaga et al 22	53.1	53 3	66.7	73.3	25.5	25.8	1953	1820	1981	1888
Shigenaga et al 22	52.9	53.3	60	73.3	25.1	25.8	1985	1820	1981	1888
Ruan et al 46	64.8	63.5	68	59	23.1 NA	23.0 NA	1716 5	1/182 7	1731.6	1610 /
Li et $a/43$	58.3	58	64.7	61.8	ΝA	NΔ	1859	1566	1859	1702
Li et $a/43$	58.3	57 1	64.7	67.6	NA	NΔ	1859	1566	1780	1559
Mitsubashi at al ¹¹	68.8	63.3	60	60	24.6	25.6	2011	1701	2008	1007
Long and Liu ⁴⁵	59.3	57.4	65.7	65	24.0	21.0	1260	1080	1210	11/0
Li and Wang44	72	73	NA	ΝA	20.J	24.J ΝΔ	2177	2085	2195	2117
Li and Wang ⁴⁴	72	73	NA	NA	NA	NA	2177	2085	2195	2117
Puan at al 47	61.8	63.5	69	63	NA	NA	1764 4	1524 3	1750 7	1634 5
Hop of al^{19}	10 0	10 0	51.2	45.0	22.0	22.0	1601 5	1625	1617	1529.0
Hall et al. 2^{21}	40.0	40.0	100	40.9	22.0	22.0	592	510	577	1020.9 500
Wu at al 48	42.0	43.1 NA	77 1	76	20.9	20.0	1707 9	1027.9	1950 6	14116
Wu et al 48	NA NA	NA	77.1	70	NA	NA	1797.0	1027.0	1030.0	1411.0
Wu et al. 39	60 5	50 /	//.1	/9.0	24.5	NA 25.4	2007.8	1027.0	1070.0	1010.0
Ferra ³⁸	60.5	59.4 EC 2	61	61	24.5	25.4	2007.8	1370.3	1965.7	1612.7
Temineme et el 20	57.2	20.3	64.2	62 1	NA 24.1		1629.0	1404.0	16/5.0	10/0.4
	50	50 4	04.2	05.1	24.1	23.0	1741	1576	1774	1002
Spaper at al 13	60	55	71.4	66.7	27.5	20.6	1110	1000	040	050
Spanos et al. ²⁰	6U 57 2	55 56 9	71.4	67.5	27.5	29.0	1110	1000	940	950
rang et al.	57.5	50.0	69	67.5	24.5	24.4	1230	1090	1250	100
Kong et al.41	52.4	52.2	64.7	67.6	NA NA	NA NA	1864	1553	1856	1623
	52.4	52	64.7	61.8	NA	INA NA	1864	1553	1862	1002
	58.6	58.1	54	58	NA	NA	17100	1436.5	1/22./	1465./
	49.2	48.6	NA CO F	INA E C I	NA	INA	1/18.9	1610.1	1648.1	15/0./
Kim et al. ⁺⁺	48.7	50.5	62.5	56.4	26	26	/52	/80	/68	/56
	50.6	51.1	61.6	54.5	25.1	25.4	900	890	850	860
Agnoletti <i>et al.</i> ²³	57.2	59.5	55	52	NA	NA	960	970	1030	980
Agnoletti <i>et al.</i> ²³	57.2	59.2	55	5/	NA	NA	960	970	9/0	980
Agnoletti <i>et al.</i> ²³	57.2	56.6	55	46	NA	NA	960	970	970	960

Abbreviations: BMI, body mass index; NA, not available; PWV, pulse wave velocity.

Figure 1 Flow diagram of search strategy and trial selection.

Figure 2 Forest plots of carotid-femoral and brachial-ankle pulse wave velocity (left and right) changes between angiotensin receptor blocker treatment and control groups according to the types of drugs used in the controls.

Subgroups	Studies (n)	<i>WMD; 95% CI;</i> P	<i>I² (</i> P)
baPWV			
Telmisartan	9	-100.82; -145.66 to -55.98; 0.000	96.3% (0.000)
Losartan	4	-81.30; -204.54 to -41.95; 0.196	96.4% (0.000)
Valsartan	19	-104.59; -154.01 to -55.18; 0.000	95.7% (0.000)
Candesartan	4	- 139.49; - 288.74 to 9.76; 0.067	71.0% (0.016)
Irbesartan	3	- 69.70; - 176.80 to 37.40; 0.202	0.0% (0.723)
cfPWV			
Losartan	4	37.02; -122.88 to 48.86; 0.398	92.7% (0.000)
Valsartan	6	-65.58; -124.84 to -6.32; 0.030	69.0% (0.006)
Candesartan	3	-3.77; -47.53 to 39.99; 0.866	0.0% (0.559)

Table 3 Weighted mean differences in pulse wave velocity between the ARB treatment and control groups according to the type of drugs in treatment group

Abbreviations: 95% CI, 95% confidence interval; ARB, angiotensin receptor blocker; baPWV and cfPWV, brachial-ankle and carotid-femoral pulse wave velocity; l^2 , inconsistency index; WMD, weighted mean difference.

Table 4 Weighted mean differences in systolic and diastolic blood pressure between the ARB treatment and control groups according to the types of drugs taken in both groups

		Systolic blood pressure (mm Hg,)	Diastolic blood pressure (mm Hg)				
Groups	Studies (n)	<i>WMD; 95% CI;</i> P	<i>l² (</i> P)	Studies (n)	<i>WMD; 95% CI;</i> P	<i>l² (</i> P)		
Overall	52	-0.74; -1.58 to 0.11; 0.086	68.9% (0.000)	52	-0.58; -1.15 to -0.02; 0.042	78.8% (0.000)		
By drugs in treatment group								
Valsartan	25	-0.16; -1.50 to 1.19; 0.821	74.1% (0.000)	25	-0.71; -1.63 to 0.20; 0.128	88.0% (0.000)		
Telmisartan	8	-1.12; -1.82 to -0.42; 0.002	0.0% (0.911)	8	0.35; -0.10 to 0.80; 0.123	0.0% (0.975)		
Losartan	9	-1.93; -4.08 to 0.22; 0.078	63.1% (0.006)	9	-0.68; -1.53 to 0.17; 0.117	21.0% (0.256)		
Candesartan	7	-1.73; -5.29 to 1.83; 0.340	49.7% (0.064)	7	-1.07; -3.47 to 1.32; 0.380	60.9% (0.018)		
Irbesartan	3	0.51; -2.42 to 3.45; 0.731	56.8% (0.099)	3	-0.49; -4.26 to 3.27; 0.798	62.2% (0.071)		
By drugs in control group								
ACEI	9	-0.92; -2.74 to 0.91; 0.325	50.8% (0.039)	9	-0.90; -2.41 to 0.62; 0.248	57.7% (0.015)		
Placebo	6	-3.81; -6.70 to -0.91; 0.010	77.2% (0.001)	6	-2.65; -3.89 to -1.40; 0.000	36.1% (0.166)		
Diuretics	5	-1.31; -2.33 to -0.27; 0.013	0.0% (0.777)	5	-1.49; -3.63 to 0.64; 0.170	83.8% (0.000)		
CCB	20	0.51; -0.72 to 1.75; 0.417	65.6% (0.000)	20	0.50; -0.23 to 1.23; 0.179	79.8% (0.000)		
Beta blocker	4	-0.78; -2.88 to 1.32; 0.469	0.0% (0.991)	4	-2.11; -3.43 to -0.78; 0.002	4.4% (0.371)		
Non-RAS	5	-2.30; -6.12 to 1.52; 0.238	58.3% (0.048)	5	-0.73; -2.77 to 1.31; 0.482	33.2% (0.200)		

Abbreviations: 95% CI, 95% confidence interval; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; l^{ρ} , inconsistency index; NA, not available; RAS, renin–angiotensin system; WMD, weighted mean difference.

(WMD = -2.65 mm Hg; 95% CI: -3.89 to -1.40; P < 0.0005; $I^2 = 36.1\%$) and beta blockers (WMD = -2.11 mm Hg; 95% CI: -3.43 to -0.78; P = 0.002; $I^2 = 4.4\%$), with improved heterogeneity (Table 4). In contrast, comparisons of ARBs with beta blockers revealed a significant increase in heart rate (WMD = 8.47 beats per minute; 95% CI: 0.87-16.08; P = 0.029; $I^2 = 87.1\%$) (Table 5).

Publication bias

Publication bias was only calculated for overall estimates because of the small number of studies involved in subgroup analyses. There was a low probability of publication bias for the overall comparisons of baPWV and cfPWV between the ARB treatment and control groups, as reflected by Begg's test (P = 0.479 and 0.631, respectively). Similarly, there was no observable publication bias for the overall comparisons of SBP (P for Begg's test: 0.877), diastolic blood pressure (P = 0.350), pulse pressure (P = 0.921) and heart rate (P = 0.718) between the two groups.

Meta-regression analysis

We performed meta-regression analyses to assess the confounding impact of age, gender, body mass index and treatment duration on the treatment of ARBs versus other types of drugs in terms of PWV and other related indexes and further explore potential sources of heterogeneity. Age explained some part of the heterogeneity for baPWV (regression coefficient: -5.18; P=0.028) but not cfPWV (regression coefficient: -2.87; P=0.300), which indicates that the change in PWV was negatively associated with increases in age. No significance was observed for the other confounders.

DISCUSSION

The key finding of this study was that ARBs, particularly telmisartan and valsartan, significantly reduced baPWV and cfPWV relative to placebo, except SBP. To the authors' knowledge, this study is the most comprehensive meta-analysis to assess the comparison of ARBs with the other types of drugs in terms of PWV and related indices of arterial stiffness.

Groups		Pulse pressure (mm Hg)		Heart rate (beats per minute)				
	Studies (n)	<i>WMD; 95% CI;</i> P	<i>I</i> ² (P)	<i>Studies (</i> n <i>)</i>	<i>WMD; 95% CI;</i> P	<i>I² (</i> P)		
Overall	28	-0.45; -1.41 to 0.51; 0.359	44.0% (0.007)	17	1.34; -0.57 to 3.26; 0.169	74.7% (0.000)		
By drugs in treatm	nent group							
Valsartan	13	-0.58; -2.26 to 1.10; 0.501	70.2% (0.000)	8	0.94; -0.30 to 2.18; 0.138	12.2% (0.335)		
Telmisartan	4	-0.10; -2.35 to 2.16; 0.934	0.0% (0.706)	2	0.98; -3.62 to 5.58; 0.675	0.0% (0.766)		
Losartan	3	0.45; -2.35 to 3.26; 0.751	22.9% 90.273)	4	6.66; 0.77 to 12.55; 0.027	89.8% (0.000)		
Candesartan	5	-0.36; -2.87 to 2.16; 0.782	0.0% 90.603)	3	-2.81; -5.85 to 0.23; 0.070	0.0% (0.755)		
Irbesartan	3	-1.27; -3.46 to 0.93; 0.257	0.0% (0.866)					
By drugs in contro	ol group							
ACEI	6	-1.27; -3.17 to 0.63; 0.189	0.0% (0.516)	4	0.41; -1.51 to 2.32; 0.675	0.0% (0.786)		
Placebo	3	-2.88; -6.40 to 0.64; 0.109	0.0% (0.869)					
Diuretics	2	0.95; -2.62 to 4.52; 0.603	0.0% (0.432)					
CCB	12	-0.45; -1.91 to 1.0; 0.540	68.8% (0.000)	7	1.00; -0.39 to 2.39; 0.159	20.8% (0.271)		
Beta blocker				3	8.47; 0.87 to 16.08; 0.029	87.1% (0.000)		
Non-RAS	4	0.77; -1.93 to 3.47; 0.574	0.0% (0.563)					

Table 5 Weighted mean differences in pulse pressure and heart rate between the ARB treatment and control groups according to the types of drugs taken in both groups

Abbreviations: 95% CI, 95% confidence interval; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; P, inconsistency index; RAS, renin–angiotensin system; NA, not available; WMD, weighted mean difference.

Angiotensin II is the terminal pressor effector molecular of RAS that plays an active role in blood pressure regulation via the induction of vasoconstriction and sodium and fluid retention and the initiation and progression of endothelial dysfunction and vascular remodeling.52 Therefore, it is reasonably expected that ARBs may improve arterial compliance via blockade of the negative role of angiotensin II in the endothelium, as exemplified by the improvement in vascular compliance and endothelial function in healthy elderly subjects taking ARBs.³⁴ However, many, but not all, clinical studies documented the beneficial impact of ARBs on arterial stiffness. For example, Suzuki et al.36 observed a comparative reduction in PWV between treatment with and without ARBs. As a caveat, this lack of reproducibility might be attributed to the diverse types of drugs taken by controls or the individually underpowered clinical trials. We performed a metaanalysis of data from 40 articles and 3309 subjects and demonstrated significantly lower levels of baPWV and cfPWV and SBP in patients taking ARBs, especially telmisartan and valsartan, than placebo, which reinforces the selection of ARBs as the first-line treatment for arterial destiffening in clinical routine. Moreover, Shahin and coworkers summarized the impact of ACEIs on arterial stiffness and found that ACEIs significantly reduced PWV relative to the placebo, but this difference was non-significant relative to other antihypertensive agents, including ARBs, calcium channel blockers, beta blockers and diuretics.53 Consistent with the results of this meta-analysis, the impact of ARBs on improvements in arterial elasticity was superior, but insignificant, compared with ACEIs. It is also worth stressing that the modulatory impact of ARBs on arterial stiffness is independent of the resulting blood pressure decrease, which was confirmed by many previous studies.⁸ These results suggest that additional mechanisms are invoked by ARBs in the treatment of arterial stiffness.

Several possible limitations should be acknowledged. First, a set of subgroup analyses was undertaken, but significant heterogeneity persisted in some subgroups. Second, we must have some reservations regarding the interpretation of our subgroup results because of the limited number of clinical trials with relatively small sample sizes in some subgroups. In fact, Hannah and colleagues suggested that the study power is low if the number of studies included in a metaanalysis is 10 or fewer.⁵⁴ Third, our statistical tests reported a low probability of publication bias, which is consistent with all metaanalyses, but selection bias cannot be completely excluded because we only retrieved published articles and trials written in English or Chinese. Therefore, our conclusions require further verification in larger, more targeted clinical trials.

Taken together, meta-analyses of the data from 40 articles and 3309 subjects support an important role of ARB treatment in improving arterial stiffness. For practical reasons, successful validation of the present results with accumulating data from large randomized clinical trials will shed more light on the widespread administration of ARBs in the treatment of arterial stiffness in daily clinical practice.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank for the support provided by The Natural Science Foundation of Heilongjiang Province (Grant No. C201320).

- 1 Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010; 55: 1318–1327.
- 2 Otsuka K, Fukuda S, Shimada K, Suzuki K, Nakanishi K, Yoshiyama M, Yoshikawa J. Serial assessment of arterial stiffness by cardio-ankle vascular index for prediction of future cardiovascular events in patients with coronary artery disease. *Hypertens Res* 2014; **37**: 1014–1020.
- 3 Seidlerova J, Filipovsky J, Mayer O, Wohlfahrt P, Cifkova R. Positive effects of antihypertensive treatment on aortic stiffness in the general population. *Hypertens Res* 2014; **37**: 64–68.
- 4 Wolf G. Free radical production and angiotensin. Curr Hypertens Rep 2000; 2: 167–173.
- 5 Otsuka T, Munakata R, Kato K, Kodani E, Ibuki C, Kusama Y, Seino Y, Kawada T. Oscillometric measurement of brachial artery cross-sectional area and its relationship with cardiovascular risk factors and arterial stiffness in a middle-aged male population. *Hypertens Res* 2013; **36**: 910–915.

- Angiotensin receptor blockers and arterial stiffness F Peng et al
- 6 Shirai K, Utino J, Saiki A, Endo K, Ohira M, Nagayama D, Tatsuno I, Shimizu K, Takahashi M, Takahara A. Evaluation of blood pressure control using a new arterial stiffness parameter, cardio-ankle vascular index (CAVI). *Curr Hypertens Rev* 2013; 9: 66–75.
- 7 Kim EJ, Song WH, Lee JU, Shin MS, Lee S, Kim BO, Hong KS, Han SW, Park CG, Seo HS. Efficacy of losartan and carvedilol on central hemodynamics in hypertensives: a prospective, randomized, open, blinded end point, multicenter study. *Hypertens Res* 2014; **37**: 50–56.
- 8 Mahmud A, Feely J. Effect of angiotensin ii receptor blockade on arterial stiffness: beyond blood pressure reduction. Am J Hypertens 2002; 15: 1092–1095.
- 9 Kim JH, Oh SJ, Lee JM, Hong EG, Yu JM, Han KA, Min KW, Son HS, Chang SA. The effect of an Angiotensin receptor blocker on arterial stiffness in type 2 diabetes mellitus patients with hypertension. *Diabetes Metab J* 2011; **35**: 236–242.
- 10 Hayoz D, Zappe DH, Meyer MA, Baek I, Kandra A, Joly MP, Mazzolai L, Haesler E, Periard D. Changes in aortic pulse wave velocity in hypertensive postmenopausal women: comparison between a calcium channel blocker vs angiotensin receptor blocker regimen. J Clin Hypertens (Greenwich) 2012; 14: 773–778.
- 11 Kim EJ, Song WH, Lee JU, Shin MS, Lee S, Kim BO, Hong KS, Han SW, Park CG, Seo HS. Efficacy of losartan and carvedilol on central hemodynamics in hypertensives: a prospective, randomized, open, blinded end point, multicenter study. *Hypertens Res* 2013; **37**: 50–6.
- 12 Nakamura T, Inoue T, Suzuki T, Kawagoe Y, Ueda Y, Koide H, Node K. Comparison of renal and vascular protective effects between telmisartan and amlodipine in hypertensive patients with chronic kidney disease with mild renal insufficiency. *Hypertens Res* 2008; **31**: 841–850.
- 13 Spanos G, Kalaitzidis R, Karasavvidou D, Pappas K, Siamopoulos KC. Efficacy of aliskiren and valsartan in hypertensive patients with albuminuria: a randomized parallelgroup study. J Renin Angiotensin Aldosterone Syst 2012; 14: 315–21.
- 14 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264–269 W264.
- 15 DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. *Contemp Clin Trials* 2007; 28: 105–114.
- 16 Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol 2011; 11: 41.
- 17 Ishii H, Tsukada T, Yoshida M. Angiotensin II type-I receptor blocker, candesartan, improves brachial-ankle pulse wave velocity independent of its blood pressure lowering effects in type 2 diabetes patients. *Intern Med* 2008; 47: 2013–2018.
- 18 Mitsuhashi H, Tamura K, Yamauchi J, Ozawa M, Yanagi M, Dejima T, Wakui H, Masuda S, Azuma K, Kanaoka T, Ohsawa M, Maeda A, Tsurumi-Ikeya Y, Okano Y, Ishigami T, Toya Y, Tokita Y, Ohnishi T, Umemura S. Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis. *Atherosclerosis* 2009; **207**: 186–190.
- 19 Han SH, Kang EW, Yoon SJ, Yoon HS, Lee HC, Yoo TH, Choi KH, Han DS, Kang SW. Combined vascular effects of HMG-CoA reductase inhibitor and angiotensin receptor blocker in non-diabetic patients undergoing peritoneal dialysis. *Nephrol Dial Transplant* 2011; **26**: 3722–3728.
- 20 Tomiyama H, Yoshida M, Yamada J, Matsumoto C, Odaira M, Shiina K, Yamashina A. Arterial-cardiac destiffening following long-term antihypertensive treatment. Am J Hypertens 2011; 24: 1080–1086.
- 21 Lunder M, Janic M, Sabovic M. Reduction of age-associated arterial wall changes by low-dose valsartan. *Eur J Prev Cardiol* 2012; **19**: 1243–1249.
- 22 Shigenaga A, Tamura K, Dejima T, Ozawa M, Wakui H, Masuda S, Azuma K, Tsurumi-Ikeya Y, Mitsuhashi H, Okano Y, Kokuho T, Sugano T, Ishigami T, Toya Y, Uchino K, Tokita Y, Umemura S. Effects of angiotensin II type 1 receptor blocker on blood pressure variability and cardiovascular remodeling in hypertensive patients on chronic peritoneal dialysis. *Nephron Clin Pract* 2009; **112**: c31–40.
- 23 Agnoletti D, Zhang Y, Borghi C, Blacher J, Safar ME. Effects of antihypertensive drugs on central blood pressure in humans: a preliminary observation. *Am J Hypertens* 2013; 26: 1045–1052.
- 24 Ihm SH, Jeon HK, Chae SC, Lim DS, Kim KS, Choi DJ, Ha JW, Kim DS, Kim KH, Cho MC, Baek SH. Belasco trial investigators RoK. Benidipine has effects similar to losartan on the central blood pressure and arterial stiffness in mild to moderate essential hypertension. *Chin Med J (Engl)* 2013; **126**: 2021–2028.
- 25 Anan F, Takahashi N, Ooie T, Yufu K, Hara M, Nakagawa M, Yonemochi H, Saikawa T, Yoshimatsu H. Effects of valsartan and perindopril combination therapy on left ventricular hypertrophy and aortic arterial stiffness in patients with essential hypertension. *Eur J Clin Pharmacol* 2005; **61**: 353–359.
- 26 Asmar R, Gosse P, Topouchian J, N'Tela G, Dudley A, Shepherd GL. Effects of telmisartan on arterial stiffness in Type 2 diabetes patients with essential hypertension. *J Renin Angiotensin Aldosterone Syst* 2002; 3: 176–180.
- 27 Ichihara A, Hayashi M, Kaneshiro Y, Takemitsu T, Homma K, Kanno Y, Yoshizawa M, Furukawa T, Takenaka T, Saruta T. Low doses of losartan and trandolapril improve arterial stiffness in hemodialysis patients. *Am J Kidney Dis* 2005; **45**: 866–874.

- 28 Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M. Effects of amlodipine and valsartan on vascular damage and ambulatory blood pressure in untreated hypertensive patients. *J Hum Hypertens* 2006; **20**: 787–794.
- 29 Kosch M, Levers A, Lang D, Bartels V, Rahn KH, Pavenstadt H, Hausberg M. A randomized, double-blind study of valsartan versus metoprolol on arterial distensibility and endothelial function in essential hypertension. *Nephrol Dial Transplant* 2008; 23: 2280–2285.
- 30 Mahmud A, Feely J. Reduction in arterial stiffness with angiotensin II antagonist is comparable with and additive to ACE inhibition. *Am J Hypertens* 2002; **15**: 321–325.
- 31 Morimoto S, Yano Y, Maki K, Sawada K. Renal and vascular protective effects of telmisartan in patients with essential hypertension. *Hypertens Res* 2006; 29: 567–572.
- 32 Munakata M, Nagasaki A, Nunokawa T, Sakuma T, Kato H, Yoshinaga K, Toyota T. Effects of valsartan and nifedipine coat-core on systemic arterial stiffness in hypertensive patients. Am J Hypertens 2004; 17: 1050–1055.
- 33 Nakayama T, Masubuchi Y, Kawauchi K, Masaki R, Hironaga T, Ishima H, Torigoe M, Shimabukuro H. Beneficial effect of beraprost sodium plus telmisartan in the prevention of arterial stiffness development in elderly patients with hypertension and cerebral infarction. *Prostaglandins Leukot Essent Fatty Acids* 2007; **76**: 309–314.
- 34 Rajagopalan S, Kariisa M, Dellegrottaglie S, Bard RL, Kehrer C, Matlow S, Daley W, Pitt B, Brook R. Angiotensin receptor blockade improves vascular compliance in healthy normotensive elderly individuals: results from a randomized double-blind placebocontrolled trial. J Clin Hypertens (Greenwich) 2006; 8: 783–790.
- 35 Rehman A, Ismail SB, Naing L, Roshan TM, Rahman AR. Reduction in arterial stiffness with angiotensin II antagonism and converting enzyme inhibition. A comparative study among malay hypertensive subjects with a known genetic profile. *Am J Hypertens* 2007; 20: 184–189.
- 36 Suzuki H, Nakamoto H, Okada H, Sugahara S, Kanno Y. A selective angiotensin receptor antagonist, Valsartan, produced regression of left ventricular hypertrophy associated with a reduction of arterial stiffness. Adv Perit Dial 2003: 19: 59–66.
- 37 Takami T, Shigemasa M. Efficacy of various antihypertensive agents as evaluated by indices of vascular stiffness in elderly hypertensive patients. *Hypertens Res* 2003; 26: 609–614.
- 38 Feng W. Effect of telmisartan and amlodipine on artery elastic function in essential hypertensive patients. *Chin J Clin Res* 2011; 1: 810–811.
- 39 He L, Wei C, Zheng Z. Impact of ARB on arterial stiffness in female hypertensive patients with impaired glucose tolerance. *Chin J Clin Cardiol* 2011; 27: 158–159.
- 40 Huang R, Liu T, Gao Y, Zhen Y. Effect of eplerenone and losartan on arterial stiffness and insulin-like growth factor 1 in patients with mild to moderate essential hypertension. *Chin J Clin Cardiol* 2013; 29: 64–67.
- 41 Kong H, Li Y, Zhuang Q, Li X. Effect of benazepril, felodipine and rbesartan on blood pressure and brachial-ankle pulse wave velocity in essential hypertensive patients. *Chin Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease* 2012; 20: 1657–1658.
- 42 Li Y, Ma S. Comparative Study of telmisartan and amlodipine improving arterial stifness in type 2 diabetes mellitus patients with hypertension. *Chin J Arterioscler* 2013; 21: 252–256.
- 43 Li Y, Shu M, Du M. Pedndopril, amlodipine and telmisartan improve arterial stifness in patients with hypertension. *Chin J Cardiol* 2009; **37**: 908–912.
- 44 Li Y, Wang H. Effect of various antihypertensive drugs on the improvement of pulse wave velocity in patients with light-to- moderate essential hypertension. *Chin New Med* 2010; **41**: 448–451.
- 45 Long D, Liu Q. Impact of valsartan on arterial stiffness in patients with coronary heart disease and hypertension. J Clin Res 2010; 27: 436–438.
- 46 Ruan C, Chen R, Li Z. The change of peripheral vascular function in patients with congestive heart failure and the effect of irbesartan intervention. *Med J Chin People Health* 2009; 21: 226–228.
- 47 Ruan C, Chen R, Wang Z. The change of peripheral vascular function in patients with hypertension and the effect of candesartan intervention. *Med J Chin People Health* 2010; 22: 1069–1070.
- 48 Wu Z, Qi H, Sheng G. Study on difference of various antihypertensive drugs on pulse wave velocity and correlation with high Sensitivity C-Reactive Protein and von Willebrand Factor. *Chin J Arterioscler* 2011; **19**: 693–696.
- 49 Yang P, Yu H, Wei T. Effects of valsartan on large artery elasticity in patients with essential hypertension. *Chin J Exp Tradition Med Formula* 2012; 18: 256–259.
- 50 Zhao W. Effect of valsartan on artery elastic function in elder essential hypertensive patients. *Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease* 2007; 15: 767–768.
- 51 Zheng X, Lin J. Effects of various antihypertensive drugs on arterial elasticity in patients with essential hypertension. *Chin J Hypertens* 2008; 16: 404–407.
- 52 Weir MR, Dzau VJ. The renin-angiotensin-aldosterone system: a specific target for hypertension management. *Am J Hypertens* 1999; **12**: 205S–213S.
- 53 Shahin Y, Khan JA, Chetter I. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomised controlled trials. *Atherosclerosis* 2012; **221**: 18–33.
- 54 Hannah RR, Alexander JS, Michael B. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. Wiley, New York, USA, 2005, P105.

620